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TURBULENT DIFFUSION IN MARKOVIAN FLOWS 

BY ALBERT FANNJIANG1 AND TOMASZ KOMOROWSKI 

University of California, Davis and ETH 

We prove turbulent diffusion theorems for Markovian velocity fields 
which either are mixing in time or have stationary vector potentials. 

1. Introduction. One of the central questions about the motion in ran- 
dom flows described by 

(1) dx(t) = b(t, x(t)) dt + 2K dw(t), x(O) = 0, 

with the molecular diffusivity K > 0, the standard Brownian motion {w(t)}t>0 
and a zero mean, jointly stationary, incompressible (i.e., V.b(t, x) = 0) velocity 
field b(t, x), is whether and when the motion has a long time diffusive limit 
which remains valid in the absence of molecular diffusion (K = 0) or in the 
limit of vanishing molecular diffusion (K -> 0). More specifically, one wants to 
find conditions under which the rescaled processes 

(2) x6(t) = 8X(t/2 ), 8 > 0 

converge in law, as s -> 0, to a Brownian motion with an enhanced diffusivity 
D(K) called the effective diffusivity, which has a nonzero limit as K tends 
to zero. The limit limK-OD(K) = D(0) is known as the eddy diffusivity or 
turbulent diffusivity for it is mainly a result of turbulent eddies. This question 
is referred to as the turbulent diffusion problem. 

Diffusive limit exits in the presense of molecular diffusion (K > 0) when 
the velocity field b has a jointly stationary vector potential [see Fannjiang 
and Komorowski (1997)]. Stationarity of velocity vector potential requires cer- 
tain velocity decorrelations in space but not in time. Nonstationary vector 
potentials may result in nondiffusive limits [see Fannjiang (1998), Fannjiang 
and Komorowski (1998)]. Although previous numerical simulations [Kraich- 
nan (1970)] suggests positive eddy diffusivity for three-dimensional Gaussian 
flows with fast decorrelation in space, an invariance principle, however, is 
unlikely to hold in this case with K = 0 due to possible trapping by flow- 
invariant domains unless there is also sufficient velocity decorrelation in time. 
It remains open if the effective diffusivity has a positive limit as K tends to 
zero for three-dimensional steady flows. In this connection, Komorowski and 
Papanicolaou (1997) have proved the diffusive limit for K = 0 and stationary 
Gaussian velocity fields which become independent after a finite time. Concep- 
tually this is a generalization of the corresponding turbulent diffusion result 
for white-noise velocity fields, but technically it is much more involved. 
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592 A. FANNJIANG AND T. KOMOROWSKI 

Generalizing in another direction, one may consider the turbulent diffusion 
problem for time-mixing flows, in particular, for time-mixing Markovian ve- 
locities for which time-mixing property can be conveniently characterized by 
a spectral gap. Markovian fields have been commonly used in fluid dynamics 
to model turbulent fluid velocity [McComb (1990), Frisch (1996)]. A turbu- 
lent diffusion theorem was obtained by Carmona and Xu (1997) for Ornstein- 
Uhlenbeck velocities with finite Fourier modes. 

In this paper, we prove an invariance principle for deterministic motion 
(K = 0) as well as diffusive motion (K > 0) in a general class of time-mixing, 
Markovian velocity fields with no decorrelation in space (Theorem A). More- 
over, we show that small molecular diffusion acts as a regular perturbation to 
the positive eddy diffusity. 

THEOREM A. Let b(t, x) be a stationary Markovian field that is square 
integrable and e-mixing in t. Then x,(t), t > 0 converge in law, as 8 4 0, to a 
Brownian motion with the effective diffusivity D(K) > 0, K> 0. Moreover, the 
limit exists, 

(3) lim D(K) = D(0) > 0. 
KiO 

The mixing property of the Markovian field b enables us to construct a 
stationary "corrector" as contrary to the usual nonstationary correctors in ho- 
mogenization theory possessing stationary derivatives. 

For our second result, we relax the time-mixing condition to the ellipticity 
condition (see Section 2), which allows velocity modes of small wave numbers 
to have long correlation time but we compensate the lack of time decorrela- 
tion with decorrelation in space by assuming a stationary vector potential for 
velocity. 

THEOREM B. Let b(t, x) be a bounded velocity field with a bounded, sta- 
tionary Markovian vector potential and satisfy the ellipticity condition (L2) 
(Section 2). Then x,(t) converge in law, as 8 . 0, to a Brownian motion with 
the effective diffusivity D(K) > 0 for any K > 0 and (3) holds. 

In proving Theorem B, we adopt the approach of Kipnis and Varadhan 
(1986) who established the central limit theorem for additive functionals of 
reversible, ergodic Markov processes. 

The key object in our problem is the environment process viewed from the 
particle which is irreversible. Because of irreversibility of the process we can- 
not apply the argument of Kipnis and Vardhan. To overcome this problem, 
we construct a family of "asymptotic correctors" which converges in the norm 
generated by the symmetric part of the Dirichlet form associated with the en- 
vironment process. To control the antisymmetric part of the process requires 
the boundedness of the velocity and the stream matrix. With that, using a 
perturbation argument, we then show that the crucial elements of Kipnis and 
Varadhan's approach remain valid in this case. 

Theorems A and B are independent of dimension and, to a certain degree, 
tight, except the boundedness assumption in Theorem B for technical reasons 
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[Fannjiang and Komorowski (1998)]. These two theorems are stated precisely 
as Theorems 1 and 2 below. 

2. Formulation and results. Let (X, X, PO) be a probability space. Let 
Tx, x E Rd be a stochastically continuous, jointly measurable group of measure 
preserving transformations of Xwith the following properties. 

(T1) T0 = Ida and Tx+y = TxTy, for all x, y E Rd. 
(T2) The mapping (., x) l> Tx(.v) is jointly measurable. 
(T3) Po[Tx(A)] = PO[A], for x E Rd, A E X. 
(T4) limx1o PO[v: I f o T?x{V) - f (.) > = 0, Vf E L2(Q) and Vi1 > 0. 
(T5) If PO[AATrX(A)] = 0, for all x E Rd then A is a trivial event, that is, 

PO(A) is either 0 or 1. 

It is well known that Tx induces a strongly continuous group of unitary 
mappings Ux on L2(X) 

(4) Uxf () = f(TX(.)), f E L2(X), x E Rd. 

The group has d independent, skew-adjoint generators Dk: 9 L-2() cor- 
responding to the directions ek, k = 1, ._. . d. 

Let Cg2(X), m = 1, . .. , oc be the space of functions f in the intersection of 
the domains of D' with IIDkfLo(t) < ?oo, k = 1, ... , d, n = 1, ... , m. It is 
well known that C% (2) = nm,i C,2w) is dense in LP(X), 1 < p < +oo [cf. 
Dedik and Subin (1982)]. 

Let Lo(g) be the space of functions f E L2(X) such that f f dPo = 0 and 
let Ho(g) be the space =1 _k n Lo(g) equipped with the scalar product 

(f, ) = E fDkfDkgdPo, f, g E Ho(g). 
k=1 

Here Ho(t) is a pre-Hilbert space and can be completed under the scalar 
product (f, g)Rt(,). Denote that completion by Ho(g). 

Let Q be the space of X-valued continuous functions C([O, +oo); X) and 
let e be its Borel a-algebra. Let pI, t > 0, be a strongly continuous Markov 
semigroup on L2(X) with the following properties. 

(P1) Ptl = 1 and Ptf > o, if f > O. 
(P2) f Ptf dPo = f f dPo, for all f E L2(X), t > O. 
(P3) Ex[f(Ot+h(w())&4<t] - PhF(w(t)), with F(Q) := Ef, for any f E L1(f?), t, 

h > 0 1. E X. 

Here E. is the expectation associated with the probability measures P., e<t 
are the a-algebras generated by events measurable up to time t, and Ot(w)(.) 

:(. + t), t > 0 is the standard shift operator on the path space (Q, 72). 

REMARK 1. Conditions (P1), (P2) imply that all Pt, t > 0 are contractions 
in any LP(X), for all 1 < p < +oo. 
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Let P be a Markovian measure on the path space (fQ, 42) such that 

(5) P(A) = f P(A)Po(dv), A E v 

and let E be the corresponding expectation. 

As a direct consequence of (T3) and (P2), P is stationary. That is, 

(S) P is invariant under the action of Ot and Tx for any (t, x) E R+ x Rd. 

Denote the space-time translates of a path by Tt,X(w) = Ot(0x(w)) = 

TX(OJWC))), V t, x. 
Following condition (S), Propositions 1 and 2 are well known. 

PROPOSITION 1. Let Pt and Ux commute, for all t > 0, x E Rd. 

PROPOSITION 2. E1f(To,X(w)) = ET (.)f(w), for any bounded, --measur- 
able f. 

We assume the time relaxation properties (LI) and (L2) for Theorem 1 and 
Theorem 2, respectively. 

(LI) Spectral gap: -(Lf, f)L2(X) > CllfI f12(2) for some constant cl > 0 and 

for all f E 9(L) n L2(X). 
(L2) Ellipticity: -(Lf, f)L2(X) > C2lf 112 for some constant c2 > 0 and all 

f E -9(L) n Ho(z). 

REMARK 2. Condition (LI) is equivalent to the exponential decay property 

(6) Ptf L2() eCt11 f L2(6) for any f E 2(X) 

[Rosenblatt (1971)]. Inequality (6) is in fact equivalent to e-mixing of the 
process X(t), t > 0 [Doukhan (1994), page 31; that is, limhtf, e(h) = 0, where 

e(h) = sup{Cor(X, Y): X is 4t+h-measurable, Y is e<t-measurable} 

with Cor(X, Y) being the correlation of X, Y. 

For Theorem 2 we also assume a reasonably general condition (L3) that the 
symmetric part of the Dirichlet form controls the antisymmetric part [Ma and 
Rockner (1992)]. 

(L3) The sector condition 

(7) | (L f, g)L2(X) < K I (L f, f )L2(0g) 1/2 |(Lg, g)L2(a?j 11/2 
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for some constant K > 0 and all f, g E 49(L). Here L: ?9(L) -> L2(9) 
is the generator of semigroup Pt, t > 0. 

REMARK 3. All reversible measures P0, such as stationary Ornstein- 
Uhlenbeck processes, satisfy (L3) (see Example 1 below). 

(Bi) The random field b = (bl, .. ., bd) E (L2(X))d is jointly continuous in 
(t, x), locally Lipschitzian in x, with finite second moments and of diver- 
gence free (i.e., Zi=1 f bi Di cp dPo = 0, V SD E C' (X)) 

Here and in the sequel we denote a random vector f on X by f (t, x; w) = 

f(Tt, x(w)(O)), (t, x) E R+ x Rd. 
For technical reasons in proving Theorem 2 we need the stronger assump- 

tion, (B2). 

(B2) b and its stream matrix P are stationary and bounded, that is, IlblIL -(Z')+ 

< +00. 

A stream matrix of b is a real, d x d skew-symmetric matrix-valued process 
P = [1i j] with Pi, j E Ho(X) such that bi = I Dj4i j. In three dimen- 
sions, T is related to the vector potential v = (V1, V2, V3) in the following way: 

0 V3 -v2 

if -V3 0 V0 

_V2 -VI 0_ 

Due to skew symmetry of P, b is divergence free. 
Let xS, x(t) be the process given by 

(8) dxs, x(t) = b(t, x', x(t)) dt + 2K dw(t - s), 
xSX(s) = x, 

where w(t), t > 0 is a standard Brownian motion starting at the origin. Its 
underlying probability space is denoted by (E, X, Q) with the corresponding 
expectations M, Mx. Denote the corresponding filtration by Ot, t > 0. Thanks 
to the stationarity (S); (B1) implies the global existence and uniqueness of 
xs, x(t; w, w), t > s for P a.s. w and Q a.s. w without the usual linear growth 
condition at far fields [Fannjiang and Komorowski (1997)]. 

The main results of this article are the following two theorems. 

THEOREM 1. In addition to the general assumptions (T1)-(T4), (P1)-(P3), 
(S) and (Bi), we assume (LI). Then the processes x(t), t > 0 converge weakly 
as s . 0 to a Brownian motion. Moreover, 

(9) lim D(K) = D(O)> 0. 
KiO 

THEOREM 2. In addition to the general assumptions (T1)-(T5), (P1)-(P3), 
(S), (L3) and (Bi), we assume (L2) and (B2). Then the processes x6(t), t > 0 
converge weakly as 8 t 0 to a Brownian motion and (9) holds. 
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EXAMPLE 1. An example of velocity satisfying assumptions of Theorem 1 
is the stationary, divergence free, Ornstein-Uhlenbeck vector field b(t, x; w) 
with the spectral measure 

exp (-r(k)jtj)F(k) (I- ikok) Jk?k 

where F(k) is integrable and decays fast for large k. For this velocity field 
e-mixing is equivalent to ae-mixing [Rosenblatt (1971), Doukhan (1994)1 and 
amounts to 

r(k) > c0 Vk E Rd 

for some positive constant c0. 
Particularly interesting is the power-law spectral measure with r(k) = 

ik128, F(k) = 1/lk12a+d-2 with ultraviolet cutoff kkl < K < oo. The integra- 
bility of F requires ae < 1 and the spectral gap condition (LI) now becomes 
/3 < 0. 

The boundedness requirement in (B2) already rules this class of velocity 
fields out of the scope of Theorem 2. Strictly speaking, to apply Theorem 2, 
we need to make smooth truncation on the velocity and its stream matrix. 
However, this is only due to the limitation of current techniques. The essential 
part of (B2) is the existence of a stationary stream matrix which requires 

IR >F(k) dk < oc 

or, equivalently, ae < 0. The ellipticity condition (L2), which is weaker than 
(LI), is satisfied for /3 < 1. We believe that Theorem 2 holds for the above 
Ornstein-Uhlenbeck velocity with ae < 0 and /3 < 1. 

EXAMPLE 2 (Diffusion-driven random fields). Suppose that T,, x E Rd sat- 
isfies the assumptions (T1)-(T5). Assume also that ai j: - R, i, j = 
1, ... , d are sufficiently regular random variables on certain probability space 
X; for example, we may require that all a j,j i, j = 1, . . ., d are in C3(Q), sym- 
metric and uniformly positive definite, that is, a, jj = a j i, for all i, j = 1, . . ., d 

and there exists A > 0 such that for all = (61, ..., d) E Rd we have 

,idj=ja j,j6jj > A[ [2. Let y(t;w,x), t E R, w E C([O,+cx);Rd) be a 
dimensional random diffusion originating at 0 with the generator Llu(x) = 

,dj=1 (a, j(x>)8ju(x)) for u: Rd -> R twice differentiable. Then, as is easy 
to see, process X(t; w) = Ty(t;w,x,)(.v) is Markovian with respect to the canonical 
filtration C([0, +oo); Rd). Its semigroup pt, t > 0 on L2(Y, X P0) is given by 
the formula Pt f (.) = Mof(Ty(t;w, x)((v)) and it generates in an obvious way the 
configuration measures on (fQ, e). Here Mo denotes the expectation computed 
with respect to the measure given by the diffusion. 

Suppose that T = [TP j] is a stream matrix whose entries belong to C2(X). 
Then P(t, x; w) = P(Tx(X(t; w))) defines a random field which is Markovian. 
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We can easily check that this field generates a canonical Markov process on 
(fQ, (-t)t>o) which satisfies the assumptions of Theorem 2. 

3. Preliminaries. Consider the environment process as viewed from the 
particle at any instant of time -r: [0, +oo) x Q x X- given by 

(10) w(t;, w) = Tx(t;w,w)(c(t)), t > 0. 

The rescaled process x(t), given by (2), induces a probability measure Q, on 
a Frechet space C([O, +oo); Rd). Then x,(t) is said to converge weakly to a 
Brownian motion if Q, converge weakly to a certain Wiener measure. Denote 
the covariance matrix of the limiting Brownian motion by D(K), K > 0. 

Set 

(11) Stf =) = MEv f(i1(t)), t > 0 for f E L?(X) 

where - is given by (10). 

PROPOSITION 3. If (T1)-(T4), (P1)-(P3), (S) and (Bi) hold, then: 

(i) St, t > 0 is a strongly continuous, Markov semigroup of contractions on 
L2(X). 

(ii) St, t > 0 is measure-preserving, that is, 

(12) Stf dPo = f dPo, t > 0, f E L2(9). 

Set 

(13) D, = 9(L) n C2(X). 

Denote the generator of the semigroup St, t > 0 by /, 

(14) If = Lf+ KAf + (b, Vf) for f E D1. 

The following results are standard. 

PROPOSITION 4. Suppose that (T1)-(T4), (P1)-(P3), (S) and (Bi) hold. We 
have: 

(i) D1 is dense in L22(2) and is invariant under the semigroup Pt, t > 0 
[i.e., Pt(D1) c D1 for all t > 0]. 

(ii) If (L2) and (L3) hold, then ?9(L) c HQ(2). 
(iii) Assume that the velocity field is bounded. Then D1 is invariant under 

the semigroup St, t > 0 [i.e., St(D1) C D1 for all t > 0]. 

Define 

(15) SO f (x, x) = ME, f (@(t), w(t)tx) V f E L2( x Rd). 
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PROPOSITION 5. 

(i) SI, t > 0 is a strongly continuous, Markov semigroup on L2( x Rd). 
(ii) The semigroup St is measure preserving, that is, 

(16) Stf dPodm = f dPo dm for all f E L2([ x Rd), t > O, 

where dm is the Lebesgue measure. 
(iii) Suppose that, in addition, either (L1) or all three conditions (L2), (L3) 

and (T5) holds. Then any f E L2( x Rd) such that Sof = f for a certain 
t > 0 is constant. 

PROOF. We only sketch the proof of (iii). Equation (16) is a consequence of 
the invariance of the Lebesgue measure under Brownian motion. 

Suppose that (L2), (L3) and (T5) hold. Then (L3) implies that the semigroup 
pt is holomorphic [Ma and Rockner (1992) Corollary 2.21, page 25], hence 

(17) ds |PSfA,B BL%i) = 2(-LPsfA, B, PsfA B)L2(.) 

11 2 
< -2c2 || PsfA, B Rt1(x)' 

where fA, B = fA, B - fA, B dPO. Since ||PtfA, B L2() = fA, B 1L2(X) we have 

11PsfA B ||1() 
= 0 for all 0 < s < t. This, along with (T5), implies that fA B 

is constant for any Borel set B c pd. Thus XA must be constant. 
Suppose that (Li) holds. By Remark 2, 

Il PtfA,B IL2(r) < exp(-cjt)I fA,B IL2(, ), 

which clearly implies that any fA, B and thus, in consequence, XA must be 
constant. D 

Propositions 3 and 5 are standard for K > 0 and can be extended easily 
to the case K = 0. The reason is that, under either (Li) or (L2), (L3), the 
molecular diffusion term KA in /, is negligible for small K, compared to L. 

4. Proof of Theorem 1. 

PROPOSITION 6. Under the same assumptions as in Theorem 1, we have 

(18) IlStf IL2(X) < exp(-clt)llf IL2(X), t > 0 

for any f E L2(X) 

PROOF. First assume that b is bounded and f E D1 C 9(/). Then we 
have 

(19) ( Yf' f)L2(X) > (-Lf, f)L2r) > C2 Hf 2 (e. 0 0 0~~~g' 
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for all f e D1 n LQ(2). By Proposition 4, Stf e D1, t > 0 for any f e D1. 
Consequently, 

d St f 1L2() = -(ISt f, Stf)L2(X) <C- Sf L2(E..f. dt 
thus 

(20) |Stf IL2() < exp(-c1t)JIf IL2(X) Vt > 0 

and f e D1 n L2(X). Equation (20) is then extended to L2(X) by using an 
approximation argument. Likewise the boundedness of the velocity is removed 
by another approximation argument. D 

Thanks to Proposition 6 we can define 

(21) = 10+0 Stbk dt. 

The following lemma is quite elementary. 

LEMMA 1. The expression (21) fk e -9(-/) is the unique solution of the 
equation 

(22) -_ fk = bk, k =1,...,d. 

First observe that 

(V, Xs(t)) = Ns v(t; w, w) + R8(t; w, w) 

for any v = (vl,..., Vd) e Rd where v = Eid=1 iv , R8(t; w), w) = -?v 
(t), w)) + 8Iv(7)(0; wt), w)) and 

(23) N, p#(t; w, w) = 82(V2 (, w )) + 8M (t2; ' 

with 

(24) M,fV(t;r) q=v(r/(t)) - qjv(-q(0))- f q/v (-7(s)) ds. 

By the stationarity of -q(t) we have that 

PO(2 Q [sup J R(t -]-(2 + 1) P Q [sup | Rs(t)J <,8- 
O<t<T ?O_t_82T 

<- (? + ) P8 Q su 
tPT IN,, v (t)l 

> 

Since supO<t<T IN1, v(t)l has finite second moment, the last expression tends 
to zero as 8o 4 0, that is, 

(25) lim sup I R,(t) = 0 
-40 0<t<T 

in probability w.r.t. P 0 Q. 
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Define S8(t; w0, w) = 8E k(w,w), for t > 0, where k(co,w) = Nl, 
((k + 1)tj; w), w) - N1, v(ktl; w, w). We prove in Lemma 2 that ,_ n > 0 is 
stationary and ergodic. Hence, the processes S,(t), t > 0 converge weakly in 
the Skorochod space D[O, +oo) to a Brownian motion with diffusion coefficient 
Iv12 + (-_Jfv, v)L2(@2) [Billingsley (1968), Theorem 23.1, page 206]. By (25), 

(26) lim sup I N8, V(t) - (v, x?(t)) | 0 
-40 O<t<T 

in probability. 
Equation (26) implies that lim8l0 SUPO<t<T JS8(t) - N8 q,(t)l = 0 in proba- 

bility, which shows the weak convergence of x?(t), t > 0 in D[O, +oCo) [Helland 
(1982), Theorem 5.1 and (5.9)]. Since x? are continuous processes, this in turn 
implies weak convergence in C[0, +oo). 

LEMMA 2. The sequence 7, n > 0 is stationary and ergodic. 

PROOF. First assume K = 0. Suppose that A e 4 is invariant, 071(A) = A. 
We now prove that g(v) = ExXA(Qq), .v E X satisfying Stg = g is constant by 
showing that {j, the o--algebra of invariant sets, is trivial [cf. Foguel (1969)]. 

If Xc is not the constant 1, then, by Proposition 6, 

(27) 11XC11L2(@a) = 1|StXCI1L2(X) < exp(-cjt) jXC 1L2(X), C C ei, 
and Xc = 0 since t is arbitrary. Or else Xc is the constant 1. Hence C has 
measure 0 or 1. 

For K > 0, stationarity of (4p(w, w))P,o follows from the divergence free 
property of the velocity [Port and Stone (1976), Theorem 3, page 500]. 

We turn to the proof of ergodicity. Suppose that XA(((k+1)k>0) = XA(((k)k>O) 
for some A in the o--algebra of cylindrical sets in the space of real-valued se- 
quences (x,),,>0. We have Stg = g, where g(x, x) = MXE.XA((4p)p>o), which, 
by Proposition 5, implies that g is a constant c. For any n > 1 and a Borel- 
measurable and bounded function h: R' -? R we write 

MEXA (((P )P>0) h((,, f, * * * v, f) = MEXA ((4P+n+l , f )p>O) h(4i, f v *v f) 

- MEg(w(ntl), w(ntl))h(4j, f, * *v, f) 

-cMEh(41,,., 4n,f) 

Hence XA must be a constant. D 

5. Proof of Theorem 2. 

PROPOSITION 7. 

(28) (f , ) L2(| I< K |(Yf, f)L2(X) 
1/ 

|(g, 9)L2(,) 

1/ 

and 

(29) (-Yf, f)L2(X) > (-Lf, f)L2(cr) > C2lf 1(2 

for some constant K' > 0 and any f, g E 9(y). 
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PROOF. From (14), we know that (29) holds for all f e D1. The sector 
condition (28) holds therefore for the operator jD1 for all K > O. Indeed, for 
f, g e D1, 

d 

(-Yf, g)L2(,) = (-Lf, g)L2(X) + K(f, g)f1l(X) - y (Pp, qDqf, Dpg)L2(X). 
p, q=1 

The condition (L2) and formula (29), used for f, g e D1 imply that 

|K(f ,g)Rl(X, I < KI(L f, f )L2(X)| 1121(Lg, g)L2(X) 
1/ 

(30) C2 

< K(yf, f)L2(X) 1/ (g, g)L2())1 
C2 

and likewise 

d 

E (p, qDqf, Dpg)L2(X) 
p, q=1 

(31) 
ITI() (Lf, f)L2(X) 

1/2 1(L g,g)L2(X)1/ 
C2 

(32) IITIIL-() 1(f f) 11/2(g 1/2)L2(X)1 
C2 

The sector condition (L3) for L together with (30) and (31) imply that (28) 
holds for f, g e D1. 

Both (28) and (29) can be extended from D1 to the entire ?9(QY) via a stan- 
dard Dirichlet form argument [see, e.g., Ma and Rockner (1992)]. D 

Define 

H1(s) - jf e L2(): 1 Aef(dA) < +oo 

H-lGs) - jf e L2X): 1 -ef(dA) < +i, 

where 

(33) ef (A) = (E(A)f, f)L2(X), 

with E(A) being the spectral resolution of -Ys, the symmetric part of Y cor- 
responding to the asymmetric form s (f , g) = 2 [(f , g) + 4'(g, f )] Observe 
that 99(4) = H1(jQs) E R, that is, f e 9(e) iff f e H1(_/s), where 

f=f-f, f= fdP0. 
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Denote by Hl(YIs) and H-l(-/s) the completions of Hl(jYs) and HU-l(-s) 
in the norms 

f ,_s = 62s(f, f)12 - (I Aef(dA)) f EH1 

ysf -i, = (f ef (dA)) = sup{(f, CP)L2(X): p E Ho(s), jj e jl,ys = 11, 

respectively. 
We can identify H-1(s) with the dual space of Hl(-Js) via the standard 

identification of any element f E Ho-lQ(s) with a continuous linear functional 
on Hl(QIs) given as the unique continuous extension to Hl(-/s) of 

(34) f (CP) = (f, P)L2(X) if E Hl(s) 

The proof of the weak convergence of the family {x,(t)}t,o is divided into 
the proof of tightness and the proof of the uniqueness of the weak limit. 

Proof of tightness. Following Olla (1994), we introduce the following linear 
space: 

Y= jq I L??( PO, d#): qf 2fdPo | C( f 11, Ys 1 f 11 L2(X), 

(35) 
for a certain Cq, > 0 and all f for which f E H'(-jGs)) 

REMARK 4. It is elementary to check that S c HUl(/s) Consider the test 
function f = c + g where c is any constant and g E Hl(-/s). Letting c t +oo, 
we have that f qdPo = O and f 4fDgdPo I C'tg- j,Ys. 

The following proposition has been proved by Olla (1994). 

PROPOSITION 8. For any q) E S, a E R, we have 

ME [exp j fD(7(s))ds}] s < exp j 4(t- s)} 

where the constant C, is the same as in (35). 

We now show b E Y. 

PROPOSITION 9. DpPq,.ESYforanyp,q,re{1,...,d}. 

PROOF. Fix p, q, r. For any f such that f E Hl(-Fs) n LO{(9), we write 

fDpTq, rf2dPo =2-2 tq, 7.Dpff dPo. 
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By the homogeneity of P0 and the Lebesgue dominant convergence theorem 
we get 

f Dpq, rf2 dPo = lim fPq,f r h 
(f 0 T-he + f) dPo p ~~hJ,O h ( Thpf)P 

= -2fq,rDpffdPo. 

Consequently we get 

(36) D pPq, rf2 dPo < 2 l L(X) f I i| f L2(X)' 

which, by Proposition 7, implies that 

(37) DpVq, rf2%dPo 
2 
21P L ) fl i,t YIf L2(X) 

C2 

Since 4s(., -) is a symmetric Dirichlet form fn E Hl(YIs) and 

lim [l f - f 
1L2()? + S(fn -f, f 7- f 0)] = 

for any f E Hl(-/s), where f 7 = -nV(f An) [see Fukushima (1980), page 25]. 
This allows us to extend (37) to the entire Hl(_/'s). E 

To prove tightness of {x,(t)}t,0, 8 > 0 it suffices to show tightness of 

tl 82 

(38) 8f bk(Qq(s)) d s, t> 0 8> 0 

on C([0, +oo); Rd). 
By Proposition 9, 

ME[( 8 / 2 bk(-q(Q)) d ) 

< 24ME [exp t2bk(q())de 

for s < t, 8> 0. 
Choosing a = +8/ t -s in Proposition 8, we get that the left-hand side of 

(39) is less than or equal to exp{C2b /4}. Thus, 

F , t/82 4i 
ME (?/ bkQr)())de) d < C(t - S)2, 

which implies tightness of the laws of (38) on C([0, +oo); Rd) by Kolmogorov's 
criterion [Billingsley (1968), page 95, Theorem 12.3]. 

The uniqueness of the law of a weak limit. The following lemma is crucial 
in establishing the uniqueness property. 
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LEMMA 3. Suppose that f E Hol(-Js) and A > 0. Then: 

(i) The equation 

(40) (A - _1)hA = f 

has a unique solution hA E H1(jQs). In addition 

(41) lim All hA 12()=. 

(ii) The family {hA}A>o C H1(_/s) converges strongly in H(l/s) as A4 0. 

We show first how to apply the lemma to establish the uniqueness of the 
weak limit. We denote by Q, x E X the configuration measures on (fQ, 4) 

corresponding to St. Let Q, Q, be the measures induced from P 0 Q and Q, 
e E 9 by the mapping 5?: fl x X- fl, where ,?(w, w)(-) = ij(., w, w). Denote 

by E, E, the respective expectations. 
Let c//2 be the space of all square integrable martingales M(t), t > 0 over the 

probability space (fl x X, v 0 X, P 0 Q) with respect to the filtration St, t > 0 
and such that M(O) = 0. Without loss of generality all martingales involved 
are assumed to be cadlags, that is, right continuous with the left-hand side 
limits. For any f E 9(y) define 

(42) Mf(t; -) = f (O(t)) - f (O(0)) - f -tf(-(s)) ds. 

Let 

f (t; W, w) := f (t; '0?(w, w)), 

t > 0. We have 

(43) ME f2 (t) = t 11 f 112 z 

and, hence, Mf E '/#2. 

Set fv = (v, b) E Hu'(k/s) for any v E Rd, by Remark 4. Let hA, A > 0 be 
the solutions of (40) with f = fv. Then hA converge as A -O 0 to /'v E Hl(_/s). 
We show 

(44) ((v, x,(tl)), . V. ,, x,(tN))), 

with tk = ktl, k = 1, ..., N, converges as 8 4, 0 the Brownian motion with 
variance at t = 1 being IV12 + IliqV12, ys. We write 

(V, X8(t; w, W)) = 8(V, W(t/?8)) + ? f (v, b(-q(s; w, w))) ds 

= Ns, h82 (t; w, w) + R8(t; ,2(c), w)), 

where 

(45) Ns, h2 (t; w, w) = 812K(v, W(t/82)) + 8Mh2 ( ; 0, w) 
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and 

R8(t; h) = -8h82((t/82)) + 8h82(2)(0)) + ? f he2(q(s)) ds. 

By (i) of Lemma 3 and (43), it immediately follows that lim4l0MER2(t) = 0. 
Then the proof reduces to establishing weak convergence of finite-dimensional 
distributions of N. h 2' as 84. 0. By part (ii) of Lemma 3, for any o- > 0, there 
exists 8o > 0 such that for 0 < 8 < oo, 

ME[N ,h2(t) - N,h 2(t)]2 < 11h,2 - h,2 
12 t < o-t. 

0 

Consequently, for any uniformly continuous function p: Rd -? R and o- > 0, 
there exists 8o > such that 

ME I (Ns, h82 (ti), ..., Ns, h82 (Ntl)) - ;(Ne, h82 (ti), , Ns, h82 (Nt1)) < o-. 

Define the partial sum process Sf ?(t) = 8 E 2] (p f, where 

f = M,f((p + 1)t1) - Mf(pt,) + (v, w((p + 1)t1)) - (v, w(pt1)). 
By Theorem 23.1, page 206 of Billingsley (1968) and Lemma 4 below, S8 h82 

tend weakly in the Skorohod space D[O, +oo), as 8 4 0, to a Brownian motion 
with variance at t = 1 being Iv12 + Ilho 2 S. Hence 

limsupjMEp(Ns,h2 2(ti)^ .. * Ns, h2 (N t )) - Weo cp(-(tl)^ * ** (N t ))| < o- 
?40 

where WSo is the expectation with respect to the Wiener measure on C[0, +oo) 
corresponding to the limit Brownian motion. Convergence in finite-dimen- 
sional distributions follows as 8o -> 0. We now prove the following. 

LEMMA 4. For any fixed f the sequence (P f, p > 0 is stationary and 
ergodic. 

PROOF. The case KI> 0 can be proved in Lemma 2. 
For K = O, it suffices to prove that the transformation Ot of the probability 

space (fQ, e, Q) is measure-preserving and ergodic for an arbitrary t > 0. 
Suppose A E e and 

(46) 0-7(A) = A. 

Hence Stg = g for g(x) = ERXAOq), . e X 
We show now that the only invariant functions for St, where t > 0 are 

constants. Suppose St%c = c, where = Xc - f Xc dPo. By Proposition 7 
the semigroup St, t > 0 is holomorphic [Ma and Rockner (1992), Corollary 2.21, 
page 25]. Thus SsJc E 9(y/), for all s > 0 and 

(47) L2d s 2 = 2 (- /SsjC, SsXc)TL2( ,,X < -2C2 S I (X|2T, 
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It follows that IISSJc IIf1() = 0, 0 < s < t and, by (T5), Xc, 0 < s < t and g(x) 
are constants. D 

PROOF OF LEMMA 3. Proof of (i). Since A > 0 is in the resolvent set of /, 
(40) can be uniquely solved in hA9(-/) C 9(4). Since hA = 0, we have that 
hA E H1(s). 

We construct the solutions hA in two steps. First we solve, by spectral cal- 
culus, for hs, the solutions of the resolvent equation for Ys with the desired 
properties as in Lemma 3. This is a standard argument essentially due to Kip- 
nis and Varadhan (1986). Then by a perturbation argument we solve for hA. 

Denote by MAf E H1(41s), for f E H-lQ(s) and A > 0, the unique element 
in the Hilbert space (H (-Is), -A(., .)) such that 

(48) fQp) O= (MA f, (P), E (YS) 

where A(,.) A(., )L2(Z) + (, ). Then Mof E Hl(_/s). Moreover, 

(49) f (Qp) = (MOf, 4P)1, ys, cp C Hl(J) 

Then hs := MAf solves the resolvent equation 

(50) (A - y2S)hS = f 

Now we show that hs := MAf have the desired properties. We state it as a 
lemma. 

LEMMA 5. Suppose A > 0 and f E H-l(-Js). Then: 

(i) 

(51) 11 MA f 11 , Ys < 1 f 11-1, Ys 

and 

(52) MAf = E(d)f. 
oA + /-c 

Suppose, additionally, that the family {fA}A>o C H-l(-/s) satisfies 

lim 11 f -f A II-l, Ys =O 

Then 

(53) limA 1MAfA 1L2() =0. 

(ii) 

(54) lim IMAf - Mof I,YS= 0. 
A~0 
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(iii) For A > 0 and {ff},,1 c H-1(-Is) satisfying 

(55) lim fl f- f II-1 YS = 0 
n1t+00 

we have 

(56) lir JIMAf1 - MAf |L2(X) = O 

PROOF. (i) Let A > 0. Substituting p = MAf into (48) we obtain 

1 A/lys -< f(MAf) < Ilf 11-1,Ys IlMAf111,Ys, 

which proves (51). This argument works for the case A = 0 also. By (34) and 
(48) we have that MAf = (A - sS)-lf. Then (52) and (53) follow from the 
spectral theorem. 

(ii) First we show that the family {MAf}A>O is strongly compact in Hl(-/s). 
It is weakly compact since it is bounded in 11 111 ys norm. We show now that any 
weakly convergent {MA f}A>,o to a limit f* E Hl(-/s) is strongly convergent 
to f *. Then (48) implies that 

(57) f (Qp) = A'(MA, f, OP)L2(X) + &S(MA, f (P), SD E HoG/s) 

Letting A' ; 0 and using (53), we conclude from (57) that 

(58) f(P) = (f1 *, S),ys for all SD EHl(s) 

Substituting SD = MA,f in (57) and letting A' ; 0 we get by (i) that 

jjf*j2 Y = f(f*) = liM MA/f l2 

which clearly proves the strong convergence of {M'Af}A,>O. Now (58) implies 
that f* = Mof . This completes the proof of (ii). 

(iii) By (48) we have 

A||MAfn - MAf 1L2() < (f7i - f)(MAf n - MAf) 

'i f- ffnl -1,?s MAf1i - MAf |, Ys < |f- fn _1, s 

for f n- f E H-l(Ys) and A > 0. This concludes the proof of the lemma. LI 

Finally we use a perturbation technique to solve for hA. 
Let MA,f jE Hl(-/s) be the unique element of Hl(-/s) such that 

(59) f(<F) = &' cS(MA 4f, (P), 5D E H1(.S) 

where &AA(.) A(., .) + 6&a(.,.) with &a(.,-) = 2[&(f, g) - &(g, f)], the 
antisymmetric part of the form &(f, g). The existence and uniqueness of MA ,5 
follows from the Lax-Millgram lemma. Again, for A = 0, MO j E Hl(s). 
Note that MA, of = MAf(= hs), for all A > 0 and MA.lf = hA. 
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Let KA,f jE H-l(-/s) be the unique continuous extension of 

(60) KA, f (p) = a (MA f, so), SD E HW(IS) 

to the entire Hl(-/s). 
The following lemma holds. 

LEMMA 6. 

(i) 

(61) 11 MA,,5f 11 , Y- ' 1 f 11 ,y 

for A > 0, 6 E R. 

(62) sup IIKA, 5 < K', 
A>O, a 

where K' is the same constant as in (28). Moreover, 

(63) MA, 50+ = MA,0(I + 5KA,5) 
for 11 < 1/K' A > 0 and 6 e R. 

(ii) Suppose that f E H-l(YIs). Then 

(64) limKA, f = Ko, 3f E Hl(YIs) '16. 
A{O 

(iii) Suppose that the family {fA}A>o C H-l(-/s) with limA{o | f-f A |1 = 

0. Then 

(65) lim|| MA, afA - Mo, f 1,0s = 0 

and 

(66) lim A || MA,S f A | L2() 

for V'1. 

PROOF. (i) The proof of (61) is the same as that of (i) of Lemma 5 and is 
left to the reader. 

By (28) we have that 

IIKA,S5f sup 1a(MAjf, CP)| < K' |MA,jf 1 11 K', f K_ll 

Let us observe that for any SD E Hl(s), 

eA, c0+c(MA 8 (I + 5KA, N0)lf, <p) 

= (I + 6KA,O) 1f(,p) + 6&a (MA, '0 (I + 6KA, N)01f, <) 
= (I + 6KA, 0)-lf(p) + 6KA, 50(I + 5KA, N0)lfQ() 

= fo(i ), 

which proves (i). 
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(ii) We first note that (64) holds for 6 = 0. Indeed 

KA,of - K0,0f | = sup &a(MAf - M0f, P) 
(67) klsDlll js=1 

< K'| MAf - Mof , 

Here a(,.) denotes the unique continuous extension of &a(., ) to Hl(-/s) x 
Hl(_/s). Then (64) follows from (52). We next show that if (ii) holds for a 
certain 60, then it also holds for all 6, 16 - o < 1/K'. The proof is complete 
in view of the result for 60 = 0. 

(iii) By (63), (65) and (66) immediately extend to the 1/K' neighborhood 
of 60. By the same calculation as (67), with 6 in place of 0, we have the result. 

The proof of (i) of Lemma 3 follows from (66) with 6 = 1. 
Part (ii) of Lemma 3 follows from (iii) of Lemma 6 since hA = MA, lf and 

(65). LI 

PROOF OF (9). By (L2), Hl(_4s) are continuously embedded in H1t(), for 
any K > O. More specifically, 

(68) lo < V E-- H1(_4s). 
C2 

By restoring the subscript K of the generator, we highlight its dependence 
on that parameter. For f E H-l(-4s), define Tf E H-l(-4s) as the unique 
continuous extension to Hl(-4s) of the functional Tf (p) = (MO, if, (o)ft1( ) 

DE H1(z2). Then (61) and (68) imply that 

K1T 11 < '-1 f|-1, ozs V f E H-'(s). 
C2K 

The limit qlv E Hl(Y$s) of hA, as A 4. 0, is given by 

(69) V(K) = Mo, (I + KT)lfv for |KI < C2. 

Now (9) follows from the Neumann series expansion of (I + KT)-1 and (i) of 
Lemma 6. LI 
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