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Introduction
A monochromatic wave u propagating in a heterogeneous medium is governed by 
the following Helmholtz equation:

 Δu(r) + ω2(1 + ν(r))u(r) = 0, r ∈ !d, d = 2, 3 (3.1)

where ν ∈ " describes the medium heterogeneities. For simplicity, we choose the 
physical units such that the wave velocity is unity and the wavenumber equals the 
frequency ω.

The data used for imaging are the scattered field us = u − ui governed by

 Δus + ω2us = −ω2vu, (3.2)

or equivalently the Lippmann–Schwinger integral equation:
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is the Green function for the background propagator (Δ + ω2)−1, where H0
1( ) is the 

zeroth-order Hankel function of the first kind.
We consider two far-field imaging geometries: paraxial and scattering. In the 

former, both the object plane and the image plane are orthogonal to the optical 
axis, while in the latter emission and detection of light can take any directions. 
We take us as the measured data in the former and the scattering amplitudes (see 
Equation 3.7) as the measured data in the latter (Figure 3.1).

• Paraxial geometry: For simplicity, let us state the 2D version. Let {z = z0} be 
the object line and {z = 0} the image line. With r = (x, z0), r′ = (x′, 0), we have
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 where C is a complex number.
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• Scattering geometry: The scattered field has the far-field asymptotic 
(Born and Wolf 1999)
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where the scattering amplitude A has the dimension-independent form
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Note that since u in (3.5) and (3.7) is part of the unknown due to multiple scat-
tering, the inverse problem is a nonlinear one. To deal with multiple scattering 
effects in compressive sensing, it is natural to split the inverse problem into two 
stages: In the first stage, we recover the masked objects
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with the Fourier-like integrals in (3.5) and (3.7) as the sensing operators. In the 
second stage, we recover the true objects from the masked objects.

For most of this chapter, however, we will focus on the first stage or make the 
Born approximation to linearize the imaging problem and turn to the multiple 
scattering effect only in the “Inverse Multiple Scattering” section.

Outline
In the “Review of Compressive Sensing” section, we review the basic elements of 
compressive sensing theory including basis pursuit (BP) and greedy algorithms 
(orthogonal matching pursuit [OMP], in particular). We place greater emphasis 
on the incoherence properties than on the restricted isometry property because 
the former is much easier to estimate than the latter, even though the latter can 
also be established in several settings as we will see throughout this chapter. 
One thing to keep in mind about incoherence is that it is far beyond the standard 
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Figure 3.1 Two imaging geometries: (a) diffraction and (b) scattering.
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notion of coherence parameter, which is the worst case metric (see Equation 
3.17). The incoherence properties are fully expressed in the Gram matrix of the 
sensing matrix, also known as the coherence pattern. The second thing notewor-
thy about incoherence is that the standard performance guarantees expressed in 
terms of the coherence parameter often underestimate the actual performance of 
algorithms. Its usefulness primarily lies in providing a guideline for designing 
measurement schemes.

In the “Fresnel Diffraction with Pixel Basis” section, we consider the 
Fresnel diffraction with the pixel basis. The pixel basis, having a finite, defi-
nite size, is emphatically not suitable for point-like objects. Indeed, in order to 
build incoherence in the sensing matrix, it is imperative that the wavelength be 
shorter than the grid spacing. In other words, the pixel basis is suitable only for 
objects that are decomposable into “smooth” parts relative to the wavelength. 
The sparsity priors then come in two kinds: (1) there are few such parts with 
1-norm as proxy and (2) there are few changes from part to part with the total 
variation as proxy (the “Total Variation Minimization” section). In the context 
of Fourier measurement, we introduce the notion of constrained joint sparsity 
to connect these two sparse priors and discuss basis pursuit (the “BPDN for 
Joint Sparsity” section) and orthogonal matching pursuit for joint sparsity (the 
“OMP for Joint Sparsity” section).

In contrast to the pixelated objects, point objects naturally do not live on grids. 
Such a problem arises in applications, for example, discrete spectral estima-
tion among others. There is this fundamental tradeoff in using a grid to image 
point objects with the standard theory of compressive sensing: the finer the grid, 
the better the point objects are captured but the worse the coherence parameter 
becomes. In the “Fresnel Diffraction with Point Objects” section, we use the 
notion of coherence band to analyze the coherence pattern and design new com-
pressive sensing algorithms for imaging well separated, off-grid point objects. In 
addition to off-grid point objects, the coherence-band techniques are also use-
ful for imaging objects that admit a sparse representation in highly redundant 
dictionaries. One celebrated example is the single-pixel camera (SPC) discussed 
briefly in the “Redundant Dictionaries” section.

In the “Fresnel Diffraction with Littlewood–Paley Basis” section, we discuss 
Fresnel diffraction with sparse representation on the Littlewood–Paley basis, 
which is a slowly decaying wavelet basis in stark contrast to the pixel basis and 
the point-like objects. In this basis, the sensing matrix has hierarchical structures 
completely decoupled over different scales. In the “Near-Field Diffraction with 
Fourier Basis” section, we discuss near-field diffraction in terms of angular spec-
trum, which works out nicely with the Fourier basis.

In the “Inverse Scattering” section, we consider inverse scattering with the pix-
elated as well as point objects. Here, we focus on the design of sampling schemes 
(the “Sampling Schemes” section) and various coherence bounds for different 
schemes (the “Coherence Bounds” section).

In the “Inverse Multiple Scattering” section, we discuss multiple scattering 
of point objects and the appropriate techniques for solving the nonlinear inverse 
problem. The keys are the combination of the coherence-band and the joint spar-
sity techniques developed earlier.

In the “Inverse Scattering with Zernike Basis” section, we discuss inverse 
scattering with extended objects sparsely represented in the Zernike basis. 
In the “Interferometry with Incoherent Sources” section, we discuss interferom-
etry with incoherent sources in astronomy. As a consequence of the celebrated 
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van Cittert–Zernike theorem, the resulting sensing matrix has a similar struc-
ture to that for scattering with multiple inputs and outputs. The difference 
between them lies in the fact that for interferometry the inputs and outputs are 
necessarily correlated while for scattering the inputs and outputs can be inde-
pendent. As a result, the (in)coherence properties of interferometry are more 
subtle and it is an ongoing problem to search for the optimal sensor arrays in 
optical interferometry in astronomy.

Review of Compressive Sensing
A distinctive advantage of compressive sensing is accounting for the finite, 
discrete nature of measurement by appropriately discretizing the object domain.

By a slight abuse of notation, we use ǁ · ǁp to denote the p-norm (p ≥ 1) of func-
tions as well as vectors, that is,
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and ǁfǁ0 (the sparsity) denotes the number of nonzero components in a vector f.
By discretizing the right-hand side of (3.5) or (3.7) and selecting a discrete 

set of data on the left-hand side, we rewrite the continuous models in the form of 
linear inversion

 g = Φf + e, (3.10)

where the error vector e ∈ "M is the sum of the external noise n and the discreti-
zation error d due to model mismatch. By definition, the discretization error d is 
given by

 d = g − n − Φf. (3.11)

Consider the principle of basis pursuit denoising (BPDN) convex program

 min ǁhǁ1, s.t. ǁg − Φhǁ2 ≤ ǁeǁ2 = ϵ. (3.12)

When ϵ = 0, (3.12) is called basis pursuit. With the right choice of the parameter λ, 
BPDN is equivalent to the unconstrained convex program that is called Lasso 
(Tibshirani 1996)
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Both BPDN (3.12) and Lasso (3.13) are convex programs and have numerically 
efficient solvers (Chen et  al. 2001, Boyd and Vandenberghe 2004, Bruckstein 
et al. 2009).

A fundamental notion in compressed sensing under which BP yields a unique 
exact solution is the restrictive isometry property (RIP) due to Candès and 



34 Compressive Sensing Theory for Optical Systems Described by a Continuous Model

Tao (2005). Precisely, let the restricted isometry constant (RIC) δs be the smallest 
nonnegative number such that the inequality

 k - d k d( ) || || || || ( ) || ||1 12
2

2
2

2
2

s sh h h£ £ +FF

holds for all h ∈ "N of sparsity at most s and some constant κ > 0. RIP means a 
sufficiently small δ2s (see Equation 3.14).

Now we recall a standard performance guarantee under RIP.

Theorem 3.1 (Candès 2008) Suppose the RIC of Φ satisfies the inequality

 d2 2 1s < -  (3.14)

with κ = 1. Then the solution f* of BPDN (3.12) satisfies

 ǁf* − fǁ2 ≤ C1 s−1/2 ǁf − f(s)ǁ1 + C2ϵ (3.15)

for some constants C1 and C2. where f (s) consists of the s largest components, in 
magnitude, of f.

Remark 3.1 For general κ ≠ 1, we consider the normalized version of (3.10)
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Note however that neither BPDN nor Lasso is an algorithm by itself and there 
are many different algorithms for solving these convex programs. Some solvers 
are available online, for example, YALL1 and the open-source code L1-MAGIC 
(http://users.ece.gatech.edu/~justin/llmagic/).

Besides convex programs, greedy algorithms are an alternative approach to 
sparse recovery. A widely known greedy algorithm is the OMP (Pati et al. 1993, 
Davis et al. 1997).

Algorithm 3.1 Orthogonal Matching Pursuit (OMP)

Input: Φ, g.

Initialization: f0 = 0, r0 = g and S0 0= /
Iteration: For j = 1, …, s

 (1) imax = arg maxi |〈rj−1, Φi〉|, i ∉ Sj−1

 (2) Sj = Sj−1 ∪ {imax}

http://users.ece.gatech.edu/~justin/llmagic/
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 (3) fj = arg minh ǁΦh − gǁ2 s.t. supp(h) ⊆ Sj

 (4) rj = g − Φfj

Output: fs.

OMP has a performance guarantee in terms of the coherence parameter 
defined by

 
m m m F F
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where Φk is the kth column of Φ, μ(k, l) is the pairwise coherence parameter and 
the totality [μ(k, l)] is the coherence pattern of the sensing matrix Φ. Here and in 
the following, † denotes the conjugate transpose.

Theorem 3.2 (Donoho et al. 2006) Suppose that the sparsity s of the signal vec-
tor f satisfies
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where fmin = mink|fk|. Denote by f*, the output of the OMP reconstruction. Then

f* has the correct support, that is, supp(f*) = supp(f) where supp(f) is the sup-
port of f.

f* approximates the object vector in the sense that
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Incoherence or RIP often requires randomness in the sensing matrix, which 
can come from the randomness in sampling as well as in illumination. Between 
the two metrics, incoherence is far more flexible and easier to verify for a given 
sensing matrix. However, performance guarantees in terms of the coherence 
parameter such as (3.18) of Theorem 3.2 tend to be conservative.

Fresnel Diffraction with Pixel Basis
As a first example, we consider the imaging equation (3.5) for Fresnel diffrac-
tion. We shall write (3.5) in the discrete form (3.10) by discretizing the right-
hand side of (3.5) and selecting a discrete set of scattered field data for the 
left-hand side.

We approximate the masked object

 V x v x u x ei x z( ) ( ) ( , ) /( )= 0
2

02w  (3.20)
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by the discrete sum on the scale ℓ
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is the localized pixel “basis.” We assume that Vℓ is a good approximation of the 
masked object for sufficiently small ℓ in the sense that limℓ→0 ǁV − Vℓǁ1 = 0.

Moreover, we assume that Vℓ is sparse in the sense that relatively few compo-
nents V(kℓ) are significant compared to the number of grid points N. Note that 
sparse objects in the pixel basis are not point-like. Point objects typically induce 
large gridding errors and require techniques beyond standard compressive sens-
ing reviewed in the “Review of Compressive Sensing” section (cf. the “Fresnel 
Diffraction with Point Objects” section).

To proceed, we make the Born approximation and set ui(x, 0) = 1 (i.e., normal 
incidence of plane wave).

Let xj, j = 1, …, M be the sampling points on the image/sensor line and define
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Set the discretized, unknown vector f ∈ "N as
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and the data vector g ∈ "M as
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As a result, (3.5) can be expressed as (3.10) with the sensing matrix

 FF FF= Î = = ¼´
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A sensing matrix whose columns have the same 2-norm (as in (3.25)) tends to 
enjoy better performance in compressive sensing reconstruction.

When ξ j are independent uniform random variables on [−1/2, 1/2], (3.25) is 
the celebrated random partial Fourier matrix that is among a few examples with a 
relatively sharp bound on the RIP as given in the following.
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Theorem 3.3 (Rauhut 2008) Suppose

 

M
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for given sparsity k where c is an absolute constant. Then the restricted isometry 
constant of the matrix (3.25) satisfies the bound

 δk < δ

with probability at least 1 − ε.

Remark 3.2 To apply Theorem 3.3 in the context of Theorem 3.1, we can set 
k = 2s and d = -2 1. Equation 3.26 then implies that it would take roughly O  (s), 
modulo some logarithmic factors, amount of measurement data for BPDN to suc-
ceed in the sense of (3.15).

On the other hand, the coherence parameter μ typically scales as O  (M−1/2) as we 
will see in Theorem 3.5; therefore, in view of the condition (3.18) in Theorem 3.2, 
the amount of needed data is O  (s2), significantly larger than O  (s) for 1 ≪ s ≪ N.

While this observation is usually valid in the case of OMP, it needs not apply to 
other greedy algorithms such as subspace pursuit (BP) whose performance guarantee 
requires O  (s), up to logarithmic factor, amount of data (Dai and Milenkovic 2009).

The fact that ξ j are independent uniform random variables on [−1/2, 1/2] implies 
that xj are independent uniform random variables on [−A/2, A/2] with
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in view of (3.23). Viewing ℓ as the resolution length of the imaging setup, we 
obtain the resolution criterion
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which is equivalent to the classical Abbe or Rayleigh criterion.
Now let us estimate the discretization error vector d in (3.11). Define the trans-

formation T  by
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For ξ ∈ [−1/2, 1/2], min | | /ˆ( )b x p= 2  and max | |ˆ( )b x = 1. Hence
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which can be made arbitrarily small by setting ℓ sufficiently small while holding 
M fixed and maintaining the relation (3.28).

Total Variation Minimization
If the masked object V is better approximated by a piecewise (beyond the scale ℓ) 
constant function Vℓ, then the sparsity prior can be enforced by the discrete total 
variation
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Instead of (3.12), we consider a different convex program, which is called total 
variation minimization (TV-min)

 min ǁhǁtv, s.t. ǁg − Φhǁ2 ≤ ε. (3.31)

cf. (Rudin et  al. 1992, Rudin and Osher 1994, Chambolle and Lions 1997, 
Chambolle 2004, Candès et al. 2006).

For 2D objects h(i, j), i, j = 1, …, n, let h = (hp) be the vectorized version with 
index p = j + (i − 1)n. The 2D discrete (isotropic) total variation is given by
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 Δ1h(i, j) = (h(i + 1, j) − h(i, j), Δ2h(i, j) = h(i, j + 1) –h(i, j)).

Figures 3.2 and 3.3 are a numerical demonstration of TV-min reconstruction of 
the 2D object (the phantom). Figure 3.2 shows the original image and its gradient, 
which is sparse compared to the original dimensionality. Figure 3.3 shows the 
reconstruction with BPDN (a) and TV-min (b). TV-min performs well as expected 
because the TV-sparsity is the correct prior for the object. On the other hand, 
BPDN performs poorly because the L1-sparsity is the wrong prior.

BPDN for Joint Sparsity
The close relationship between (3.31) and (3.12) can be seen from the following 
equation for the 1D setting:
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same sensing matrix as for BPDN. Clearly, | , , ,%e e j Mj j| | |£ = ¼2 1 . Moreover, if ej 
are independently and identically distributed, then %ej are also independently and 
identically distributed with variance

 E E E E| | | | | | | |e e e ej
i

j j
j2 2 2 2 21 2= ´ =p x -

when ξ j is the uniform random variable over [−1/2, 1/2]. Hence, for large M, the 
new noise magnitude is %e e

2 2
2» . Here and in the following, E denotes the 

expected value.
A similar relationship exists in the 2D case. Let fj = Δjf that satisfies the linear 

constraint

 Δ1f2 = Δ2f1. (3.32)

(a) (b)

Figure 3.2 The original 256 × 256 Shepp–Logan phantom (a), the Shepp–Logan 
phantom and the magnitudes of its gradient with sparsity s = 2184 (b). (From 
Fannjiang, A., Math. Mech. Complex Syst., 1, 81, 2013a. With permission.)

(a) (b)

Figure 3.3 BPDN reconstruction without external noise (a) and TV-min recon-
struction with 5% noise (b). (From Fannjiang, A., Math. Mech. Complex Syst., 1, 
81, 2013a. With permission.)
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where ξ j, ηj, j = 1, …, M are independent uniform random variables over [−1/2, 
1/2]. Then F = [f1, f2] ∈ "N´2, G = [g1, g2] ∈ "M´2, and E = [e1, e2] are related 
through

 G = [Φf1, Φf2] + E

subject to the linear constraint (3.32). This formulation calls for the L1-minimization 
(Fannjiang 2013a)

 min ǁ[h1, h2]ǁ2,1, s.t. ǁG − [Φh1, Φh2]ǁF ≤ ǁEǁF, (3.33)

subject to the constraint

 Δ2h1 = Δ1h2 (3.34)

where
ǁ · ǁF is the Frobenius norm
ǁ · ǁ2,1 is the mixed (2, 1)-norm (Benedek and Panzone 1961, Kowalski 2009)

 
X X

2 1 2,
( ) .= å row j

j

 (3.35)

The reason for minimizing the mixed (2, 1)-norm in (3.33) is that f1 and f2 share 
the same sparsity pattern, which should be enforced.

To get a more clear idea about ǁEǁF, we apply the same analysis as mentioned 
earlier and obtain

 e e ei i2
2

2
2

2
22» =E E , i = 1, 2,

for sufficiently large M.
The convex program (3.33) through (3.34) is an example of BPDN with con-

strained joint sparsity. More generally, suppose that the columns of the unknown 
multivectors F ∈ "N J´  share the same support and are related to the data multivec-
tors G ∈ "M m´  and the noise multivectors E ∈ "M J´  via

 G = [Φ1f1, Φ2f2, …, ΦJfJ] + E (3.36)

subject to the linear constraint LF = 0.
For this setting, the following formulation of BPDN with joint sparsity is 

natural

 min ǁHǁ2,1, s.t. ǁG − [Φ1hl, Φ2h2, …, ΦJhJ]ǁF ≤ ε,  s.t. LH = 0, (3.37)

with ε = ǁEǁF.
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OMP for Joint Sparsity
Next, we present an algorithmic extension of OMP for joint sparsity (Cotter et al. 
2005, Chen and Huo 2006, Tropp et al. 2006) to the setting with multiple sensing 
matrices (3.36) (Fannjiang 2013a).

Algorithm 3.2 OMP for joint sparsity

Input: {Φj}, g, ε > 0

Initialization: f0 = 0, R0 = G and S 0 0=
Iteration: For k = 1, 2, 3, …

 (1) imax = arg maxi | |,F j i j
k

j

J
R† -

=å 1

1
, where F j i,

†  is the conjugate transpose of ith 
column of Φj,

 (2) S k = S k−1 È {imax}

 (3) Fk = arg min ǁ[Φ1h1, …, ΦJhJ] − GǁF s.t. supp(H) Í Sk

 (4) R G f fk k
J J

k= ¼– [ , , ]FF FF1 1 ]

 (5) Stop if Rj
k

j
2 £å e.

Output: Fk.

Note that the linear constraint L is not enforced in Algorithm 3.2. The idea is to 
first find the support of the multivectors without taking into account of the linear 
constraint, and, in the second stage, follow the support recovery with least squares

 
F G h h H F H

H
* arg min [ , , ] , ( ) ( ),= ¼ Í =|| || . .- ¥FF FF1 1 0J J F s t supp supp L  (3.38)

where F∞ is the output of Algorithm 3.2.
For more discussion and applications of constrained joint sparsity, the reader 

is referred to Fannjiang (2013a) where the performance guarantees similar to 
Theorems 3.1 and 3.2 are proved for constrained joint sparsity.

Fresnel Diffraction with Point Objects
A major problem with discretizing the object domain shows up when the objects 
are point-like. In this case, it is unrealistic to assume that the objects are located 
exactly on the grid as the forceful matching between the point objects and the grid 
can create detrimental errors. Without additional prior information, the gridding 
error due to the mismatch between the point object locations and the grid points 
can be as large as the data itself, resulting in a low signal-to-noise ratio (SNR).

We call the grid spacing ℓ given in (3.28), the Resolution length (RL), which 
is the natural unit for resolution analysis. In the RL unit, the object domain grid 
becomes a subset of the integer grid &.

In the case of point objects, to refine the standard grid and reduce discretiza-
tion error, we consider a fractional grid

 &/F = {j/F: j ∈ &} (3.39)
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where F ∈ ' is called the refinement factor. The random partial Fourier matrix 
(3.25) now takes the form

 
FF = é

ë
ù
ûe i Fkj- px2 / , (3.40)

where ξ j ∈ [–1/2,1/2] are independent uniform random variables. In the following 
numerical examples, we shall consider both deterministic (see Equation 3.45) as 
well as random sampling schemes.

As shown in Figure 3.4, the relative gridding error ǁdǁ/ǁΦfǁ is roughly 
inversely proportional to the refinement factor F.

Figure 3.5 shows the coherence pattern [μ( j, k)] of a 100 × 4000 matrix (3.40) 
with F = 20 (Figure 3.5a). The bright diagonal band represents a heightened cor-
relation (pairwise coherence) between a column vector and its neighbors on both 
sides (about 30). Figure 3.5b shows a half cross section of the coherence band 
across two RL, averaged over 100 independent trials. In general sparse recovery 
with large F exceeds the capability of currently known algorithms as the condi-
tion number of the 100 × 30 submatrix corresponding to the coherence band in 
Figure 3.5 easily exceeds 1015. The high condition number makes stable recovery 
impossible. While Figure 3.5 is typical of the coherence pattern of 1D sensing 
matrices, the coherence pattern for two or three dimensions is considerably more 
complicated depending on how the objects are vectorized.

Band-Excluded, Locally Optimized Orthogonal Matching Pursuit
To overcome the conundrum of a highly coherent sensing matrix due to a refined 
grid, we have to go beyond the coherence parameter and study the coherence pat-
tern of the sensing matrix.

The coherence pattern of a sensing matrix can be described in terms of 
the notion of coherence band defined in the following. Let η > 0. Define the 
η-coherence band of the index k as
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Figure 3.4 The relative gridding error is roughly inversely proportional to the 
refinement factor. (From Fannjiang, A. and Liao, W., SIAM J. Imaging Sci., 5, 
179, 2012a. Copyright © 2012 Society for Industrial and Applied Mathematics. 
Reprinted with permission.)
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 Bη(k) = {i | μ(i, k) > η}, (3.41)

and the double coherence band as

 B k B B k B jj B kh h h hh
( )

( )( ) ( ( )) ( )2 º = È Î  (3.42)

The first technique for taking advantage of the prior information of well separated 
objects is called band exclusion (BE) and can be easily embedded in the greedy 
algorithm, OMP.

To imbed BE into OMP, we make the following change to the matching step

 
i i B S n

i

n
i

n
max

( )arg min | , |, ( ), , , .= á ñ Ï = ¼r -
h

-1 2 1 1 2FF

meaning that the double η-band of the estimated support in the previous iteration is 
avoided in the current search. This is natural if the sparsity pattern of the object is 
such that Bη(j), j ∈ supp(f) are pairwise disjoint. We call the modified algorithm as 
the band-excluded orthogonal matching pursuit (BOMP), as stated in Algorithm 3.3.

Algorithm 3.3 Band-Excluded Orthogonal Matching Pursuit (BOMP)

Input: Φ, g, η > 0

Initialization: f0 = 0, r0 = g, and S0 0= /
Iteration: For j = 1, …, s

 (1) imax = arg maxi | , |á ñr j
i

-1 FF , i B S jÏ -
h
( )( )2 1

 (2) Sj = Sj−1 È{imax}
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Figure 3.5 Coherence pattern [μ( j, k)] for the 100 × 4000 matrix with F = 20 (a). The off-diagonal 
elements tend to diminish as the row number increases. The coherence band near the diagonals, 
however, persists and has the average profile shown in panel (b) where the vertical axis is the pair-
wise coherence averaged over 100 independent trials and the horizontal axis is the distance between 
two object points. (From Fannjiang, A. and Liao, W., SIAM J. Imaging Sci., 5, 179, 2012a. Copyright 
© 2012 Society for Industrial and Applied Mathematics. Reprinted with permission.)
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 (3) f j = arg minh ǁΦh − gǁ2 s.t. supp(h) ⊆ S j

 (4) r j = g − Φfj

Output: f s.

The following theorem gives a (pessimistic) performance guarantee for BOMP.

Theorem 3.4 (Fannjiang and Liao 2012a) Let f be s-sparse. Let η > 0 be fixed. 
Suppose that

 B i B j i jh h( ) ( ) , , ( )( )Ç = / " Î2 0 supp f  (3.43)

and that

 
h( ) max

min min

5 4
5

2
12s

f
f f

- + <
e

 (3.44)

where

 
f f f f

k
k

k
kmax minmax , min .= =| | | |

Let fs be the BOMP reconstruction. Then supp(fs) Í Bη (supp(f)), and moreover 
every nonzero component of fs is in the η-coherence band of a unique nonzero 
component of f.

Remark 3.3 Condition (3.43) means that BOMP guarantees to resolve 3 RLs. In 
practice, BOMP can resolve objects separated by close to 1 RL when the dynamic 
range is nearly 1.

Remark 3.4 A main difference between Theorems 3.2 and 3.4 lies in the role 
played by the dynamic range fmax/fmin and the separation condition (3.43).

Another difference is approximate recovery of support in Theorem 3.4 versus 
exact recovery of support in Theorem 3.2(a). In contrast to the F-independent 
nature of approximate support recovery, exact support recovery would probably 
be highly sensitive to the refinement factor F. That is, as F increases, the chance 
of missing some points in the support set also increases. As a result, the error of 
reconstruction ǁf s − f  ǁ2 tends to increase with F (as evident in Figure 3.7).

A main shortcoming with BOMP is in its failure to perform even when the 
dynamic range is even moderately greater than unity. To overcome this problem, 
we introduce the second technique: the local optimization (LO) that is a resid-
ual-reduction technique applied to the current estimate Sk of the object support 
(Fannjiang and Liao 2012a).

Algorithm 3.4 Local Optimization (LO)

Inputs: Φ, g, η > 0, S0 = {il, …, ik}.

Iteration: For j = 1, 2, …, k.
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 (1) f j = arg minh ǁΦh − gǁ2, supp(h) = ( \ { }) { }, ({ }).S i i i B ij
j j j j

- È ¢ ¢ Î1
h

 (2) S j = supp(f j).

Output: Sk.

In other words, given a support estimate S0, LO fine-tunes the support estimate by 
adjusting each element in S0 within its coherence band in order to minimize the 
residual. The object amplitudes for the improved support estimate are obtained 
by solving the least-squares problem. Because of the local nature of LO, the com-
putation is efficient.

Embedding LO in BOMP gives rise to the band-excluded, locally optimized 
orthogonal matching pursuit (BLOOMP).

Algorithm 3.5 Band-excluded, Locally Optimized Orthogonal Matching Pursuit 
(BLOOMP)

Input: Φ, g, η > 0

Initialization: f0 = 0, r0 = g and S0 0= /
Iteration: For j = 1, …, s

 (1) imax = arg maxi | , |, ( )( )á ñ Ïr j
i

ji B S-
h

-1 2 1FF

 (2) S j = LO (S j–1 È {imax}), where LO(S j–1 ∪ {imax}) is the output of Algorithm 3.4 
with (S j–1 ∪ {imax}) as input.

 (3) f j = arg minh ǁΦh − gǁ2 s.t. supp(h) ∈ S j

 (4) r j = g − Φf j

Output: f s.

The same BLO technique can be used to enhance the other well-known iterative 
schemes such as SP, CoSaMP (Needell and Tropp 2009), and compressed itera-
tive hard thresholding (IHT) (Blumensath and Davies 2009, 2010), and the result-
ing algorithms are denoted by BLOSP, BLOCoSaMP, and BLOIHT, respectively, 
in the following numerical results. We refer the reader to Fannjiang and Liao 
(2012a) for the details and descriptions of these algorithms. MATLAB code of 
Algorithm 3.5 is available on-line at https://www.math.ucdavis.edu/~fannjiang/
home/codes/BLOOMPcode.

Band-Excluding Thresholding
A related technique that can be used to enhance BPDN/Lasso for off-grid objects 
is called the band-excluding, locally optimized thresholding (BLOT).

Algorithm 3.6 Band-Excluding, Locally Optimized Thresholding (BLOT)

Input: f = ( fl, …, fN), Φ, g, η > 0.

Initialization: S0 0= / .

https://www.math.ucdavis.edu/~fannjiang/home/codes/BLOOMPcode
https://www.math.ucdavis.edu/~fannjiang/home/codes/BLOOMPcode


46 Compressive Sensing Theory for Optical Systems Described by a Continuous Model

Iteration: For j = 1, 2, …, s.

 (1) ij = arg max | |f k B Sk
j, ( )( )Ï -

h
2 1 .

 (2) S j = S j−1 È {ij}.

Output: f s = arg min ǁΦh − gǁ2, supp(h) ⊆ LO(Ss), where LO is the output of 
Algorithm 3.4.

Numerical Examples
For numerical demonstration in Figures 3.6 and 3.7, we use deterministic, equally 
spaced sampling with

 
x j

j
M

j M= - + =1
2

1, , ,…  (3.45)
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Figure 3.6 Reconstruction by (a) OMP, (b) BLOOMP, (c) BPDN, and (d) BPDN-BLOT of the real 
part of 20 randomly phased spikes with F = 50, SNR = 20. (From Fannjiang, A. and Liao, W., 
Super-resolution by compressive sensing algorithms, in IEEE Proceedings of Asilomar Conference 
on Signals, Systems and Computers, 2012b. With permission.)
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and Φ ∈ "M FM´  with M = 150, F = 50 to recover 20 randomly distributed and 
randomly phased point objects (spikes) separated by at least 4 RL.

Figure 3.6a and b shows how the BLO technique corrects the error of OMP 
due to the unresolved grid. In particular, several misses are recaptured and false 
detections removed. Figure 3.6c and d shows how the BLOT technique improves 
the BPDN estimate. In particular, BLOT has the effect of “trimming the bushes” 
and “growing the real trees.” Figure 3.7a through c shows the relative error of 
reconstruction as a function of F by OMP, BPDN, BLOOMP, and BPDN-BLOT 
with the same setup and three different SNRs. For all SNRs, BLOOMP and 
BPDN-BLOT produce drastically fewer errors compared to OMP and BPDN.

The growth of relative error with F reflects the sensitivity of the reconstruction 
error alluded to in Remark 3.4. Note that the reconstruction error in the discrete 
norm cannot distinguish how far off the recovered support is from the true object 
support. The discrete norm treats any amount of support offset equally. An easy 
remedy to the injudicious treatment of support offset is to use instead the filtered 

error norm f fh h
s - 2, where fη and fh

s are, respectively, f and fs convoluted with an 

approximate delta-function of width 2η.
Clearly the filtered error norm is more stable to support offset, especially if the 

offset is less than η. If every spike of fs is within η distance from a spike of f and 
if the amplitude differences are small, then the η-filtered error is small. As shown 
in Figure 3.7d through f, averaging over η = 5% RL produces acceptable filtered 
error for any refinement factor relative to the external noise. This suggests that both 
BPDN-BLOT and BLOOMP recover the object support on average within 5% of 
1 RL, a significant improvement over the theoretical guarantee of Theorem 3.4.

Next, we consider the unresolved partial Fourier matrix (3.40) with ran-
dom sampling points to demonstrate the flexibility of the techniques. Let ξ j ∈ 
[−1/2, 1/2], j = 1, …, M be independent uniform random variables with M = 100, 
N = 4000, and F = 20. The test objects are 10 randomly phased and distributed 
objects, separated by at least 3 RL. As in Theorem 3.4, a recovery is counted as a 
success if every reconstructed object is within 1 RL of the object support.

Figure 3.8 compares the success rates (averaged over 200 trials) of the BLO-
enhanced schemes (BLOOMP, BLOSP, BLOCoSaMP, and BLOIHT) and the 
BLOT-enhanced scheme (Lasso-BLOT). Lasso-BLOT is implemented with the 
regularization parameter (Chen et al. 2001)

 l = 0 5. log N (black curves with diamonds) (3.46)

or

 l = 2 log N (black curves with stars) (3.47)

The empirically optimal choice (3.46) (labeled as Lasso-BLOT (0.5)) has a much 
improved performance over the choice (3.47). Clearly, BLOOMP is the best per-
former in noise stability and dynamic range among all tested algorithms.

Highly Redundant Dictionaries
Our discussion in the “Fresnel Diffraction with Point Objects” section so far is 
limited to point-like objects. But the methods presented earlier are also applicable 
to a wide variety of cases where the objects have sparse representations by redun-
dant dictionaries, instead of orthogonal bases.
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Suppose that the object is sparse in a highly redundant dictionary, which by 
definition tends to represent an object by fewer number of elements than a nonre-
dundant one does. For example, one can combine different orthogonal bases into 
a dictionary that can sparsify a wider class of objects than any individual base 
can. On the other hand, a redundant dictionary tends to produce a larger coher-
ence parameter and be ill suited for compressive sensing. This is the same kind of 
conundrum about off-grid point-like objects.

One of the most celebrated examples of optical compressive sensing is the SPC 
depicted in Figure 3.9. In the single-pixel camera (SPC), measurement diversity 
comes entirely from the digital micromirror device (DMD) instead of the sensor 
array. The DMD consists of an array of electrostatically actuated micromirrors. 
Each mirror can be positioned in one of the two states (±12°). Light reflected from 
mirrors in the +12-state only is then collected and focused by the lens and subse-
quently detected by a single optical sensor. For each and every measurement, the 
DMD is randomly and independently reconfigured. The resulting measurement 
matrix A has independently and identically distributed entries.
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Figure 3.8 Success probability versus (a) SNR for dynamic range = 1 and (b) dynamic range for 
SNR = 33. Here, LOOMP is a simplified version of BLOOMP and has nearly identical performance 
curves. (From Fannjiang, A. and Liao, W., SIAM J. Imaging Sci., 5, 179, 2012a. With permission.)
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Figure 3.9 Single-pixel camera block diagram. (Courtesy of Rice Single-Pixel 
Camera Project, http://dsp.rice.edu/cscamera.)
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Suppose that the object is sparse in terms of a highly redundant dictionary. 
For simplicity of presentation, consider an 1D object sparse in an overcomplete 
Fourier frame (i.e., a dictionary that satisfies the frame bounds [Daubechies 
1992]) with entries

 
Yk j

i k j RF

R
e k R j RF,

(( )( )/ ), , , , , , ,= = =- - -1
1 12 1 1p … …  (3.48)

that includes harmonic as well as nonharmonic modes as its columns, where F 
is the redundant factor and R is a large integer. In other words, the object can be 
written as Ψf with a sufficiently sparse vector f. The final sensing matrix then 
becomes

 Φ = ΑΨ. (3.49)

The coherence bands of Ψ and Φ are shown in Figure 3.10 from which we see 
that, as in Figure 3.5, the coherence radius is less than 1 RL. The same BLO- 
and BLOT-based techniques can be applied to (3.49); see Fannjiang and Liao 
(2012a) for numerical results and performance comparison with other tech-
niques for off-grid objects (Candès et al. 2011, Candès and Fernandez-Granda 
2013, 2014, Duarte and Baraniuk 2013, Tang et al. 2013).

Fresnel Diffraction with Littlewood–Paley Basis
Opposite to the localized pixel basis, the Littlewood–Paley basis is slowly decay-
ing nonlocal modes based on the wavelet function

 ψ(x) = (πx)−1(sin (2πx) − sin(πx)), (3.50)
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Figure 3.10 The coherence bands of the redundant Fourier frame Ψ (a) and Φ = ΑΨ (b), the latter 
being averaged over 100 realizations of A. (From Fannjiang, A. and Liao, W., SIAM J. Imaging Sci., 
5, 179, 2012a. Copyright © 2012 Society for Industrial and Applied Mathematics. Reprinted with 
permission.)
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which has a compactly supported Fourier transform
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0 otherwise
 (3.51)

The following functions

 ψp,q(x) = 2−p/2ψ(2−px − q), p, q ∈ & (3.52)

form an orthonormal wavelet basis in L2(!) (Daubechies 1992). Expanding the 
masked object V (3.20) in the Littlewood–Paley basis, we write

 
V x V xp q p q

p q

( ) ( )., ,

,

=
Î

å y
Z

 (3.53)

The main point of the subsequent discussion is to design a sampling scheme such 
that the resulting sensing matrix has desirable compressive sensing properties 
(Fannjiang 2009).

Let {2p: p = –p*, −p* + 1, …, p*} be the dyadic scales present in (3.53), {q: |q| ≤ 
Np} the modes present on the scale 2p, and 2Mp + 1 the number of measurements 
corresponding to the scale 2p. Let
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be the index for the sampling points. Throughout this section, k is determined by 
p′, q′ by (3.54). Let xk be the sampling points and set the normalized coordinates
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where, as shown in the following, ℓ is a resolution parameter and ξk ∈ [−1/2, 1/2] 
are determined in the following; cf. (3.23). This means that the aperture (i.e., the 
sampling range of xk) is again given by (3.27).

Let g = (gk) be the data vector with

 g C u x z ek k
i x zk= - -1

0
22

0s( , ) ./( )w

Direct calculation with (3.5) and (3.55) then gives
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Let f = ( fl) be the object vector with

 fl = (−1)q2p/2Vp,q

where the indices are related by
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Suppose that

 ℓ £ - -2 1p*  (3.57)

That is, 2ℓ is less than or equal to the smallest scale in the wavelet presenta-
tion (3.53).

Let z ¢ ¢p q,  be independent, uniform random variables on [−1/2, 1/2] and let
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where k is determined by (3.54). By the assumption (3.57), we have

 ξk ∈ [–/2, 1/2],  ∀p′ ≥ –p*.

More specifically, by (3.55), we have
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that is, the sampling regions for different dyadic scales indexed by p′ are disjoint 
with the ones for the smaller scales on the outer skirt of the aperture, taking up 
a bigger portion of the aperture. The resulting sampling points are geometrically 
concentrated near (but not exactly at) the center of the aperture.

Let the sensing matrix elements be

 FFk l
q

k
p i qe k

p

,
/( ) ( )= - y x - - px1 2 1 2 2ˆ ℓ ℓ. (3.59)

We claim that Φk,l = 0 for p ≠ p′. This is evident from (3.58) and the following 
calculation:
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For p ≠ p′, the absolute value of (3.60) is either greater than 1 or less than 1/2 and 
hence (3.60) is outside the support of ŷ.

On the other hand, for p = p′, (3.60) is inside the support of ŷ and so

 Fk l
i q

p pe q M q Np q
,

, , | | , | |= ¢ £ £- ¢2p z , (3.61)

which constitute the same random partial Fourier matrix that we have seen 
before. In other words, under the assumption (3.57) the sensing matrix Φ = [Φk,l] 
∈ "M N´ , with N N p

p p
= +

£å ( )
| | *

2 1  and M Mp
p p

= +
£å ( )

| | *

2 1 , is block diagonal 

with each block (indexed by p) in the form of the random partial Fourier matrix, 
representing the sensing matrix on the dyadic scale 2p.

Near-Field Diffraction with Fourier Basis
Consider near-field diffraction by a periodic, extended object (e.g., diffraction 
grating) where the evanescent modes as well as the propagation modes are taken 
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into account. Since we cannot apply the paraxial approximation, we resort to the 
Lippmann–Schwinger equation (3.3).

Suppose the masked object function is sparse in the Fourier basis
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where L is the period and only s modes have nonzero amplitudes. Suppose that 
V̂j = 0 for j ≠ 1, …, N.

The 2D Green function can be expressed by the Sommerfeld integral formula 
(Born and Wolf 1999)

 
G

i
e

d
z xi z x( )

( )
, ( , )(| | ( ) )r r= =+ò4p

a
b a

w b a a  (3.63)

where

 
b a a a

a a
( )

, | |

, | |
= - <

- >

ì
í
ï

îï

1 1

1 1

2

2i
. (3.64)

The integrand in (3.63) with real-valued β (i.e., |α| < 1) corresponds to the homo-
geneous wave, and that with imaginary-valued β (i.e., |α| > 1) corresponds to 
the evanescent (inhomogeneous) wave, which has an exponential-decay factor 

e z- -w a| | 2 1 . Likewise, the 3D Green function can be represented by the Weyl inte-
gral formula (Born and Wolf 1999).

The signal arriving at the sensor located at (0, x) is given by the Lippmann–
Schwinger equation with (3.63)
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where
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The subwavelength structure is encoded in V̂j with αj > 1 corresponding to the 
evanescent modes.

Let (0, xk), xk = ξkL, k = 1, …, M be the coordinates of the sampling points 
where ξk ∈ [−1/2, 1/2]. In other words, L is also the aperture (i.e., the sampling 
range for xk). To set the problem in the framework of compressed sensing, we set 
the vector f = ( fj) ∈ "N as

 
f

ie
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j
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2
ˆ . (3.67)

To avoid a vanishing denominator in (3.67), we assume that αj ≠ 1 and hence 
βj, ≠ 0, ∀j ∈ &. This is the case, for instance, when Lω/(2π) is irrational.



54 Compressive Sensing Theory for Optical Systems Described by a Continuous Model

This gives rise to the sensing matrix Φ with the entries

 Fkj
i x i je e k M j Nj k k= = = =wa p x2 1 1, , , , , ,… …  (3.68)

which again is the random partial Fourier matrix.
A source of instability lurks in the expression (3.67) where βj may be com-

plex valued, corresponding to the evanescent modes. Stability in inverting 
the relationship (3.67) requires limiting the number of the evanescent modes 
involved in (3.67). Here, the transition is however not clear-cut. For example, if 
we demand that

 | |e ei z jw b p0 2³ -  (3.69)

as the criterion for stable modes, then the stable modes include |αj| ≤ 1 as well as 
|αj| > 1 such that

 ω|βj|z0 ≤ 2π (3.70)

or equivalently

 

| |j
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2

2
0
24

1
 (3.71)

In other words, the number of stably resolvable modes is proportional to the probe 
frequency and inversely proportional to the distance z0 between the sensor array 
and the object. As z0 drops below the wavelength, the subwavelength Fourier 
modes of the object can be stably recovered. This is the idea behind the near-field 
imaging systems such as scanning microscopy.

Inverse Scattering
In the inverse scattering theory, the scattering amplitude is the observable data, 
and the main objective then is to reconstruct ν from the knowledge of the scatter-
ing amplitude.

Pixel Basis
To obtain a sensing matrix with compressive sensing properties, we first make the 
Born approximation in (3.7) and neglect the scattered field us on the right-hand 
side of (3.7). Our purpose here is to demonstrate how to coordinate the incidence 
direction and the sampling direction and create a favorable sensing matrix.

Consider the incidence field

 u eii ( )r r= ×w d̂ (3.72)

where d̂ is the incident direction. Under the Born approximation, we have from 
(3.7) that
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(3.73)

where s r d= -ˆ ˆ  is the scattering vector.
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We proceed to discretize the continuous system (3.73) as before. Consider the 
discrete approximation of the extended object ν:
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is the pixel basis.

Define the target vector f = ( fj) ∈ "N with fj, = ν(ℓp), p = Î( , )p p N1 2
2Z , 

j p N p= +( )1 21– . Let ωl and d̂l  be the probe frequencies and directions, respec-
tively, and let r̂l  be the sampling directions for l = 1, …, M. Let g be the data 
vector with
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Then the sensing matrix takes the form

 Flj
i

Ne q q j q N ql l l= = Î = - +× -w ℓq q( ) , ( , ) , ( ) .d rˆ ˆ
1 2

2
1 21Z  (3.76)

Sampling Schemes
Our strategy is to construct a sensing matrix analogous to the random partial Fourier 
matrix. To this end, we write the (l, j)-entry of the sensing matrix in the form

 e j j N j j j N l Mi j jl lp x z( ), ( ) , , , , , , ,1 2
1 2 1 21 1 1+ = - + = =… …

where ξl, ζl are independently and uniformly distributed in [−1, 1]. We write (ξl, ζl) 
in the polar coordinates ρl, ϕl as

 ( , ) (cos ,sin ),x z r f f r x zl l l l l l l l= = + £2 2 2  (3.77)

and set

 w q q r f1 2(cos cos ) cosl l l l- =% W

 w q q r f1 2(sin sin ) sinl l l l- =% W

where Ω is a parameter to be determined later (3.91). Equivalently, we have

 
- - + =2
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- - + =2

2 2
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l l l l
l lsin cos sin .

% %
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This set of equations determines the single-input-(θl, ωl)-single-output-%ql mode 
of sampling.
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The following implementation of (3.78) through (3.79) is natural. Let the sam-
pling angle %ql be related to the incident angle θl via

 q q f pl l l+ = +% 2 , (3.80)

and set the frequency ωl to be

 
w r

q q
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W
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 (3.81)

Then the entries (3.76) of the sensing matrix Φ have the form

 e l n j j Ni j l j l2
1 2

1 2 1 1Wℓ … …( ), , , , , , , .x x+ = =  (3.82)

By the square symmetry of the problem, it is clear that the relation (3.80) can be 
generalized to

 q f hp hql l l+ = + Î% 2 , Z. (3.83)

On the other hand, the symmetry of the square lattice should not play a significant 
role and hence we expect the result to be insensitive to any fixed η ∈ !, independent 
of l, as long as (3.81) holds. Indeed, this is confirmed by numerical simulations.

Let us focus on two specific measurement schemes.

Backward Sampling
This scheme employs Ω—band limited probes, that is, ωl ∈ [–Ω, Ω]. This and 
(3.81) lead to the following constraint:

 
sin .

q q rl l l- ³
%

2 2
 (3.84)

The simplest way to satisfy (3.80) and (3.84) is to set

 f q q pl l l= = +% , (3.85)

 
w r

l
l= W
2

 (3.86)

l = 1, …, n. In this case, the scattering amplitude is always sampled in the back-
scattering direction. This resembles the synthetic aperture imaging, which has 
been previously analyzed under the paraxial approximation in Fannjiang et al. 
(2010). In contrast, the forward scattering direction with %q ql l=  almost surely vio-
lates the constraint (3.84).

Forward Sampling
This scheme employs single frequency probes no less than Ω:

 ωl = γΩ, γ ≥ 1, l = 1, …, n. (3.87)
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To satisfy (3.83) and (3.81), we set
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with η ∈ & . The difference between the incident angle and the sampling 
angle is
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2

arcsin , (3.90)

which diminishes as γ → ∞. In other words, in the high frequency limit, the 
sampling angle approaches the incident angle. This resembles the setting of x-ray 
tomography.

In summary, let ξl, ζl be independently and uniformly distributed in [−1, 1] and 
let (ρl, ϕl) be the polar coordinates of (ξl, ζl), that is,

 (ξl, ζl) = ρl (cos ϕl, sin ϕl).

Then with

 
Wℓ = p

2
, (3.91)

both forward and backward samplings give rise to the random partial Fourier 
sensing matrix.

Coherence Bounds for Single Frequency
As in the “Fresnel Diffraction with Point Objects” section, we let the point 
scatterers be continuously distributed over a finite domain, not necessarily 
on a grid. Any computational imaging would involve some underlying, how-
ever refined, grid. Hence, let us assume that there is an underlying, possibly 
highly refined and unresolved, grid of spacing ℓ ≪ w-

l
1 (the reciprocal of probe 

frequency).
We shall focus on the monochromatic case with ωl = ω, l = 1, …, M. We recall 

that the sensing matrix is continuous of the form (3.76), which now becomes

 f w
lj

i
Ne j p N pl l= = - + Î× -ℓ

⌢ ⌢
p d r p( ), ( ) , .1 2

21 Z  (3.92)

In other words, the measurement diversity comes entirely from the variations of 
the incidence and detection directions. We assume that the n incident directions 
and the m detection directions are each independently chosen according to some 
distributions with the total number of data M = nm fixed.
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Theorem 3.5 (2D case) Suppose the incident and sampling angles are ran-
domly, independently, and identically distributed according to the probability 
density functions f i(θ) ∈ C1 and f s(θ) ∈ C1, respectively. Suppose
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with probability greater than (1 − ε)2, where
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with a constant c.

In 3D, the coherence bound can be improved with a faster decay rate in terms of 
ωL ≫ 1 as stated in the following.

Theorem 3.6 (3D case) Assume (3.93). Suppose the incidence and sampling 
directions, parameterized by the polar angle θ ∈ [0, π] and the azimuthal angle 
ϕ ∈ [0, 2π], are randomly, independently, and identically distributed. Let fi(θ) ∈ 
C1 and f s(θ) ∈ C1 be the marginal density functions of the incident and sampling 
polar angles, respectively.

Let L = ℓ p p- . Then the sensing matrix satisfies the pairwise coherence 
bound
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with probability greater than (1 − ε)2, where
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Remark 3.5 The original statements of the theorems (Fannjiang 2010b, Theorems 
1 and 6) have been adapted to the present context of off-grid objects. The original 
proofs, however, carry over here verbatim upon minor change of notation.

Remark 3.6 When the sampling directions are randomized and the incidence 
directions are deterministic, then the coherence bounds (3.94) and (3.97) hold 
with the first factor on the right-hand side removed.

According to Remark 3.6, we have the pairwise coherence bound:
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which is an estimate of the coherence pattern of the sensing matrix. Hence, if L 
is unresolvable (i.e., ωL ≤ 1), the corresponding pairwise coherence parameter is 
high, and if L is well resolved (i.e., ωL ≫ 1), the corresponding pairwise coher-
ence parameter is low. A typical coherence band has a coherence radius O(ω−1) 
according to (3.100) and (3.101).

Therefore, if the point objects are well separated in the sense that any pair 
of objects are larger than ω−1, then the same BLO- and BLOT-based techniques 
discussed in the “Fresnel Diffraction with Point Objects” section can be used 
to recover the masked object support and amplitudes. For a simple illustration, 
Figure 3.11 shows two instances of reconstruction by BOMP. The recovered 
objects (blue asterisks) are close to the true objects (red circles) well within the 
coherence bands (yellow patches).

Inverse Multiple Scattering
In this section, we present an approach to compressive imaging of multiply scat-
tering point scatterers. First consider the multiple scattering effect with just a 
single illumination, that is, n = 1 and M = m.
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Figure 3.11 Two instances of BOMP reconstruction: red circles are the exact locations, blue aster-
isks are recovered locations, and the yellow patches are the coherence bands around the objects.
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Note that the original object support is the same as the masked object support. 
With the support accurately recovered, let us consider how to unmask the objects 
and recover the true objects.

Define the incidence and full field vectors at the locations of the objects:

 

u r r

u r r

i i i= Î

= Î

( ( ), , ( ))

( ( ), , ( )) .

u u

u u

s
T s

s
T s

1

1

…

…

C

C

Let Γ be the s × s matrix

 Γ = [(1 − δjl)G(rj, rl)]

and  the diagonal matrix

  = diag(v1, …, vs).

The full field is determined by the Foldy–Lax equation (Mishchenko et al. 2006)

 u = ui + ω2Γu (3.102)

from which we obtain the full field

 u = (I − ω2Γ)−1ui (3.103)

and the masked objects
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(3.104)

provided that ω−2 is not an eigenvalue of Γ.
Hence, by solving (3.104) we have

 (I − ω−2Γ)f = ui. (3.105)

The true objects ν can then be recovered by solving (3.105) as

 
v i= f

f uw2GG +
 (3.106)

where the division is carried out entrywise (Hadamard product).

Joint Sparsity
With the total number of data M = nm fixed, the coherence bounds (3.94) and 
(3.97) are optimized with n m M~ ~ . To take advantage of this result, we 
should deploy multiple incidence fields for which the formula (3.106) is no lon-
ger valid.

Multiple illuminations give rise to multiple data vectors g j, and multiple 
masked object vectors fj, j = 1, …, n, each of which is masked by an unknown 
field uj. However, all masked object vectors give rise to the same sensing 
matrix

 Flj
i l

Ne j p N p= = - + Î- ×wℓp r pˆ , ( ) , .1 2
21 Z
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Since every masked object vector shares the same support as the true object 
vector, this is a suitable setting for the application of joint sparsity techniques 
discussed in the “BPDN for joint sparsity” and “OMP for joint sparsity” 
sections.

Compiling the masked object vectors as F = [f1, …, fn] ∈ "m n´  and the data 
vectors as G = [g1, …, gn] ∈ "m n´ , we obtain the imaging equations

 G = ΦF + E (3.107)

where E accounts for noise. When the true objects are widely separated, we have 
two ways to proceed as follows.

BPDN-BLOT for Joint Sparsity
In the first approach, we use BPDN for joint sparsity (3.37) with Φj = Φ, ∀j, L = 0 
to solve the imaging equation (3.107). Let F f f* * *, , )= ( 1 … n  be the solution. We then 
apply the BLOT technique (Algorithm 3.5) to improve F* (i.e., trim the bushes 
and grow the trees). In order to enforce the joint sparsity structure, we modify 
Algorithm 3.5 as follows.

First, we modify the LO algorithm to account for joint sparsity.

Algorithm 3.7 LO for Joint Sparsity

Inputs: Φ1, …, Φn, G, η > 0, S0 = {i1, …, is}.

Iteration: For k = 1, 2, …, s.

 (1) Fk = arg min ǁ[Φ1h1, …, Φnhn] − GǁF s.t. È Í È ¢-
j , supp( ) ( )h j

k
k kS i i1 \ { } { },

¢ Îi B ik kh({ }).

 (2) Sk = supp(Fk).

Output: Ss.

Next, we modify the BLOT algorithm to account for joint sparsity.

Algorithm 3.8 BLOT for Joint Sparsity

Input: f1, …, fn, Φ1, …, Φn, G, η > 0.

Initialization: S0 0= / .

Iteration: For k = 1, 2, …, s.

 (1) ik = arg maxj ǁfjǁ2, k B SkÏ -
h
( )( )2 1 .

 (2) Sk = Sk−1 È {ik}.

Output: F* = arg min ǁ[Φ1h1, …, Φnhn] − GǁF, È Íj
sSsupp( ) JLO( )h j , where 

JLO(Ss) is the output of Algorithm 3.7 with the sth iterate Ss of BLOT as input.
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BLOOMP for Joint Sparsity
In the second approach, we propose the following joint sparsity version of 
BLOOMP.

Algorithm 3.9 BLOOMP for Joint Sparsity

Input: Φ1, …, Φ1, G, η > 0

Initialization: F0 = 0, R0 = G and S0 0= /
Iteration: For k = 1, …, s

 (1) imax = arg maxi | |, ( ),
( )F -
h

-
j i j

k k

j

J
i B S† r 1 2 1

1
Ï

=å , where F j i,
†  = conjugate trans-

pose of coli (Φj).

 (2) S k = JLO(S k−1 ∪ {imax}), where JLO is the output of Algorithm 3.7.

 (3) [f f H1
k

n
k, , ] arg min… = ǁ[Φ1h1, …, Φnhn] − GǁF s.t. Èjsupp(hj) ⊆ S k

 (4) [ , , ]r r G f f1 1
k

n
k k

n n
k… …= -[ , , ]1FF FF

Output: F* = [ , , ]f f1
s

n
s… .

After the first stage of either approach, we obtain an estimate of the object support 
as well as the amplitudes of masked objects. In the second stage, we estimate the 
true object amplitudes. If we use the formula (3.106) for each incident wave u j

i , 
we end up with n amplitude estimates

 

f
f u

j

j j

j n* , , ,
w2 1

GG * +
= ¼i

that are typically inconsistent. Least squares is the natural way to solve this over-
determined system and obtain the object estimate.

 
v

j

n

j j j* * *arg || ( ) || .= +
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f u v f
1

2
2
2w -GG i

Inverse Scattering with Zernike Basis
In this section, we discuss a basis for representing extended objects in the scatter-
ing geometry and its application to compressive inverse scattering. We shall make 
the Born approximation.

A well-known orthogonal basis for representing an extended object with a 
compact support (e.g., the unit disk) is the product of Zernike polynomials Rn

m  
and trigonometric functions

 V x y V R e x yn
m

n
m

n
m im( , ) ( cos , sin ) ( ) ,= = + £r q r q r q 2 2 1 (3.108)

where m ∈ &, n ∈ ', n ≥ |m|, and n − |m| are even. We refer to Vn
m  as the Zernike 

functions of order (m, n) (Born and Wolf 1999). These Zernike functions are 
very useful in optics because the lowest few terms of a Zernike expansion have a 
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simple optical interpretation (Dai and Milenkovic 2008). In addition, a Zernike 
expansion usually has a superior rate of convergence (hence sparser) compared 
with other expansions such as a Bessel-Fourier or Chebyshev-Fourier expansion 
(Boyd and Yu 2011; Boyd and Petschek 2014).

We show now that the Zernike basis also results in a better coherence param-
eter (hence better resolution) than the pixel basis. The Zernike polynomials are 
given explicitly by the formula
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which are nth degree polynomials in ρ and normalized such that Rn
m( )1 1=  for 

all permissible values of m, n. The Zernike polynomials satisfy the following 
properties:
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where Jn+1 is the (n + 1)-order Bessel function of the first kind. As a consequence 
of (3.110), the Zernike functions satisfy the orthogonality property
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Writing s = s(cos ϕ, sin ϕ), let us compute the matrix element for the scattering 
amplitude (3.73) as follows:
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(3.113)

by the definition of Bessel function
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Using the property (3.111), we then obtain from (3.113) that
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(3.114)

which are the sensing matrix elements with all permissible m, n. Note that the 
columns of the sensing matrix are indexed by the permissible m ∈ &, n ∈ ' with 
the constraint that n ≥ |m| and n − |m| are even.

Let the scattering vector s r d= ˆ – ˆ  be parameterized as

 s jk j k ks j k M= =(cos , sin ), , , ,f f 1 …

such that {ϕk} are independently and identically distributed uniform random vari-
ables on [0, 2π] according to the uniform distribution and that {sj} are indepen-
dently distributed on [0, 2ω] according to the linear density function f(r) = r/2. As 
a result, zj = ωsj are independently and identically distributed on [0, 2ω] according 
to a linear density function.

Calculation of the coherence parameter between the columns corresponding to 
(m, n) ≠ (m′, n′) gives the following expression:
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We recall that for p, q ∈ ' (Abramowitz and Stegun 1972, formula 11.4.6)
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For M ≫ 1, we have by the law of large numbers
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and

 

1

1 0

2

M
e e e g d

k

M
i m m k i m m i m m

mm

=

¢ - ¢ ¢

¢

å ò=

=

( ) ( ) ( )~ ( )

.

- f f
p

- f f f

d

E
 

(3.117)

When m ≠ m′, the two columns are orthogonal and the pairwise coherence param-
eter is zero. When n ≠ n′, the right-hand side of (3.116) becomes O(ω−3) in view of 
(3.115) and the fact that the Bessel functions Jn(z) decay like z−1/2 for z ≫ 1. From 
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(3.115) and (3.116) with n = n′, we see that the 2-norm of the columns is O(ω−2). 
After dividing (3.116) with n ≠ n′ by the 2-norm of the columns, the coherence 
parameter scales at worst like ω−1 (for m = m′, n ≠ n′).

Notice that this decay date of the coherence parameter is faster than the ω−1/2 
behavior in (3.94) through (3.95). Hence, imaging with the Zernike basis pos-
sesses better resolution capability than with the pixel basis, all else being equal.

Interferometry with Incoherent Sources
In this last section, we discuss the compressive sensing application to optical 
interferometry in astronomy, which has a similar mathematical structure to that 
of the inverse scattering (3.92) under the Born approximation.

In astronomy, interferometry often deals with signals emitted from incoherent 
sources. In this section, we present the compressive sensing approach to such a 
problem. With the help of the van Cittert–Zernike theorem, the sensing matrix 
has a structure not unlike what we discussed earlier.

Suppose the field of view is small enough to be identified with a planar patch of 
the celestial sphere P  ⊂ !2, called the object plane. Let I(s) be the radiation inten-
sity from the point s on the object plane P . Let n antennas be located in a square 
of size L on the sensor plane parallel to P  with locations Lrj, j = 1, …, n, where 
rj ∈ [0, 1]2. Then by the van Cittert–Zernike theorem (Born and Wolf 1999), the 
measured visibility v(rj − rk) is given by the Fourier integral
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Consider the discrete approximation of the extended object I with the pixel basis 
on the grid ℓZN

2 :
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where b is given in (3.75) and

 ZN p p p p N2
1 2 1 2 1= = ={ ( , ) : , , , }.p …  (3.120)

Substituting (3.119) into (3.118), we obtain the discrete sum
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where l, p are related by l p N p= - +( )1 21  and
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For every pair (j, k) of sensors, we measure and collect the interferometric datum 
v(rj − rk) and we want to determine I from the collection of n(n − 1) real-valued 
data.
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Let us rewrite Equation (3.121) in the form (3.10). In contrast to (3.28), we set

 
ℓ = p

wL
 (3.122)

to account for the “two-way” structure in the imaging equation (3.121). Note that 
ℓ is the resolution length on the celestial sphere and hence dimensionless.

Let f = ( fi) ∈ !N be the unknown object vector, that is, fi = ℓ2Ii. Let g = (gl) ∈ !M , 
M = n(n − 1)/2
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be the data vector where ℜ and ℑ stand for, respectively, the real and imaginary 
parts. The sensing matrix Φ ∈ ℝM×N now takes the form
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(3.123)

which is no longer the simple random partial Fourier matrix for 2D as the base-
lines rj − rk are related to one another. Nevertheless, (3.123) has a similar structure 
to that of the inverse scattering (3.92) when the transmitters and receivers are 
colocated. Note that as (rk − rj)/2 ∈ [−1/2, 1/2]2, the denominator ˆ(( ) )b k jr r- /2  in 
the definition of gl does not vanish.

Next, we give an upper bound for the coherence parameter. For the pairwise 
coherence for columns i, i′ corresponding to p p, Î! N

2 , we have the following 
calculation:
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This follows from the calculation
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Some modification of the arguments for Theorems 3.5 and 3.6 leads to the follow-
ing coherence bound.

Theorem 3.7 Assume that the total number of grid point N satisfies the bound

 
N eK£ e
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with some constants δ and K. Suppose that the sensor locations rj, j = 1,…,n are 
independent uniform random variables on [0, 1]2. Then the coherence parameter 
μ satisfies the bound
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with probability greater than 1 − 2ε.

In other words, with high probability, the coherence parameter for the uniform 
distribution decays as n−1. A central problem in interferometry is the design of 
an optimal array, see Fannjiang (2013b) for a discussion from the perspective of 
compressed sensing.
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