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Phase retrieval with random phase illumination

Albert Fannjiang* and Wenjing Liao

Department of Mathematics, University of California, Davis, California 95616, USA
*Corresponding author: fannjiang@math.ucdavis.edu

Received June 7, 2012; accepted July 3, 2012;
posted July 10, 2012 (Doc. ID 169979); published August 15, 2012

This paper presents a detailed numerical study on the performance of the standard phasing algorithms with ran-
dom phase illumination (RPI). Phasing with high resolution RPI and the oversampling ratio ¢ = 4 determines a
unique phasing solution up to a global phase factor. Under this condition, the standard phasing algorithms
converge rapidly to the true solution without stagnation. Excellent approximation is achieved after a small number
of iterations, not just with high resolution but also low resolution RPI in the presence of additive as well multi-
plicative noises. It is shown that RPI with ¢ = 2 is sufficient for phasing complex-valued images under a sector
condition and ¢ = 1 for phasing nonnegative images. The error-reduction algorithm with RPIis proved to converge
to the true solution under proper conditions. © 2012 Optical Society of America

OCIS codes:  100.5070, 170.1630, 340.7430.

1. INTRODUCTION

Fourier phase retrieval is the problem of reconstructing an
unknown image from its Fourier magnitude data. Phase retrie-
val is fundamental in many applications such as X-ray crystal-
lography [1], astronomy [2], coherent light microscopy [3],
quantum state tomography, and remote sensing.

Because of the absence of the phase information, phase re-
trieval does not have a unique solution. Phase retrieval litera-
ture has long settled with the notion of uniqueness modulo the
trivial ambiguities of spatial shift, conjugate inversion, and
global phase [4,5] and focused on circumventing the stagna-
tion problem associated with the standard phasing algorithms.
The numerical stagnation problem is often attributed to
the nonconvex constraint imposed by the Fourier magnitude
data [6-9].

In this paper, we explore a phasing method based on ran-
dom phase modulator that randomly modifies the phases of
the original image by a mask. As proved in [10], phasing with
random (phase or amplitude) illumination often leads to a un-
ique solution up to a global phase factor. In what follows, we
show that phasing with random phase illumination (RPI) also
leads to superior numerical performances, including rapid
convergence, much reduced data, and noise stability of the
standard algorithms. We show that under proper conditions
the error-reduction (ER) algorithm with RPI converges to
the true solution (Theorem 4).

Consider the discrete version of the phase retrieval
problem: Let n = (ny,...,ny) € Z% and z = (24, ...,24) € C%
Define the multi-index notation z" = 2y'23?...2*. Let C(\) de-
note the set of finite complex-valued functions on Z¢ vanish-
ing outside

N ={0<n<N}, N = (N{,Ns,....,Ny).

Here m < n if m; <n;, V j. Denote |N| =[], N,.
The z-transform of a d-dimensional finite array f (n) € C(NV)
is given by
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F(z) =) f(nz™

n

The Fourier transform can be obtained from the z-transform
as

F(eiZ;m)) — Zf(n)e—Zm'm-n D

for = (01, w3, ...,04), 0 w; < 1.
From the calculation

N
|F(ei2nw)|2 — Z Z f(m_*_nme—i&m-w’
n=-Nm+neN

we see that the Fourier magnitude measurement is equivalent
to the standard discrete Fourier measurement of the correla-
tion function

Cr(m) = > f(m + n)f (m) @)
meN

if sampled at the lattice

1 2 2N ;
E:{a)z(wl,,wdﬂw]: J },

0 : -
2N, +1'2N; +1'""2N; + 1
3)

which is 2¢ times of the grid of the original image. The stan-
dard phasing problem is to recover the array f(n) from its
Fourier intensity measurement Y (w) = |F(e"?™)| for @ € L
or smaller sampling sets.

Clearly the correlation function C; and the Fourier magni-
tude data are invariant under spatial translation

f() = f(-+t) for some t € Z¢,

conjugate inversion
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SO =S(N=2),

and constant global phase change
) = €f ().

These trivial associates all share the same global geometric
information as the original object. The classical results of un-
iqueness given in [4,5,11] say that for almost all objects in
dimension two or higher, the trivial associates are the only
ambiguities there are with phase retrieval. When none of
the ambiguities arise, we say that the phasing problem has
an absolutely unique solution [10].

On the other hand, by dimension counting, Miao et al. [12]
have argued that overall 2 times oversampling, independent
of the dimension d, uniquely determines a unique phasing
solution up to spatial shift, conjugate inversion, and global
phase factor. To measure the degree of oversampling, we
use the oversampling ratio

Fourier magnitude data number
o =
unknown-valued image pixel number

introduced in [12]. As we demonstrate below, Miao et al.’s
conjecture can be realized by using RPIL, but not uniform
illumination (UI).

As shown in [10], random illumination (RI) can help remove
the phasing ambiguities of spatial shift and conjugate inver-
sion. An illumination amounts to replacing the original image

JS(m) by
g(m) = A(m)f (m),

where 1(n) is a known array representing the incident wave.
In the case of UI, A(n) = 1. In the case of RPI [13],

A(m) = '™, @

where ¢(n) are random variables on [0, 27], and in the case of
random amplitude illumination [14,15], A(n) is an array of real
random variables. RI can be facilitated by random phase/
amplitude modulators or random masks.

The paper is organized as follows. We review the absolute
uniqueness of phasing with RPI in Section 2 and standard
phasing algorithms in Section 3, where convergence of the
ER iteration to the true solution is presented (Theorem 4).
We present the numerical phasing results in Section 4. We
conclude in Section 5.

For the rest of the paper, we use the following notation: For
a complex number 2z, R(2) and §(2) denote the real and ima-
ginary part of 2. £z € [0,27) denotes the phase (angle) of z.
When 2z =0, £z is taken to be 0 unless specified other-
wise. [a] = a(mod(2x)).

2. UNIQUENESS

In the following, we recall several uniqueness results from [10]
relevant to phasing with RPL

First we define the rank of an array. The support of the ar-
ray consists of the set of nonzero pixels. The rank of the array
is the dimension of its support’s convex hull in R¢.
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Theorem 1. Let {A(n)} be independent, continuous ran-
dom variables on S'. Let f € C(N) be a real-valued array
of rank >2. Then, with probability 1, f is determined abso-
lutely uniquely up to the =+ sign by the Fourier magnitude
measurement on L.

A more general, practical constraint is to restrict the image
values within a certain sector of the complex plane. For in-
stance, when the incident X-rays are low energy photons (soft
X-rays), the electron density is complex. The real part repre-
sents the effective number of electrons that diffract the X-rays
in phase and is usually positive but becomes negative only
when the energy of the incident X-rays is near an absorption
edge. The imaginary part represents the absorption of the

X-rays by the specimen and thus is always positive.

Theorem 2. Let {A(n)} be independent, continuous ran-
dom variables on S'. Let f be a complex-valued array of rank
>2 such that £f(n) € [a,f], V n. Let S denote the sparsity of
the image and let LS/ ZJ be the greatest integer less than or
equal to S/2.

Suppose that the phases {¢p(n)} of RPI are independent,
uniform random variables on [0, 2x]. Then with probability

|s2] -1s2]
no less than 1 - |N|(f - a) (27) , the object f is un-
tquely determined, up to a global phase, by the Fourier mag-
nitude measurement on L.

The global phase is uniquely determined if the angular
sector [a, ] is tight in the sense that no proper subset of
[a, B] contains all the phases of the object.

For general complex-valued images without any constraint,
we use two independent RPIs to collect data.

Theorem 3. Let {1;(n)} and {1;(n)} be two independent ar-
rays of continuous random variables on S'. Let f € C(N) be
any complex-valued array of rank >2. Then almost surely f is
uniquely determined, up to a constant phase factor, by the
Fourier magnitude measurement on L with two illumina-
tions A1 and Ay. If the second illumination Ay is deterministic
while 11 is random as above, then the same conclusion holds.

3. PHASING ALGORITHMS

To find the true object satisfying both the object-domain con-
straint, which is usually convex, and the frequency-domain
constraint, which is nonconvex, most phasing algorithms
are based on the idea of alternating projections from the
convexity literature [8].

A. Projections
Defintion 1. Let D be a subset of C(N); the orthogonal pro-
Jection of f € C(N) on D is argmingepllg - f1I.

If the minimizer is not unique, one of them is arbitrarily
selected. When D is a closed convex subset of C(N), the mini-
mizer is unique.

Proposition 1. Let D denote any closed convex subset of
C(N) and let f be any element in C(N'). Then there exits a
unique h € D such that

infyepllg - Sl = Ik - S1I.

Let I' be the set of functions satisfying the object-domain
constraint, such as a known support or positivity, and  be
the set of functions satisfying the frequency-domain con-
straint imposed by the known Fourier magnitude data.
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A solution of phase retrieval is a function belonging to I'NQ.
Let P, and P, be the orthogonal projection on I" and Q,
respectively.

Let A be the diagonal matrix with diagonal elements A(n),
and set g = Af. Let @ be the discrete Fourier transform, and
set Y = |®Pg]|.

Given the Fourier intensity data Y, we define the intensity
fitting operator 7 as

Y (@)e45@ i |G(@)| > 0

Y(w) if |G(w)] =0 )

G'(w) = T{G}(w) = {

When G(w) = 0, £G(w) is not uniquely defined and £G(®) is
set to 0 in Eq. (5). In this case,

Py = ALOITOA.

Indeed £G (@) can be arbitrarily chosen at the zero set of G,
and we define

PI = A I TIDA, 6)
where
_ [Y@)§e @ it |G@)| >0
TQ{G}(“’)_{ Y@@ it [Gw)=0

The object-domain projection P, can take a varied form
depending on the problem.

e When I' is the set of images with a given phase a,

P,{h}(m) = P,{h(n)}
=max{J(k(n)) sin a + R(k(n)) cos a, 0}

e When I' is the set of images with phases in [a,f]
for 0 < a < ff < 2,

- ifp-ac<n, P,{h}(n)
h(n) if a<£h(n)<p
Pty i p<ARm)<[B + /2]
) R(PLLRhM)}) if [a - 2/2]<Ah(m)<a’
0 else

where P is defined similarly to P,,.

- ifp-a>n, Py{h}(n)

h(n) if a<zh(n)<p

= Pylhm)} if p<gh(m)<[(a+ f)/2 + 7],
P ihm)} if [(a + B)/2 + 2]<Ah(m)<a

where a<6<b means 6 is between a and b such that

a<f<b ifa<b
a<0 <2z or 0<0<b ifa>b’

e  When I' is the set of real-valued images,

Poihim) = R (h(m).
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Fig. 1. Error reduction algorithm with random illumination.

e  When I' is the set of nonnegative real-valued images,

Poth}(n) = max{Si(h(n)),0}.

e  When I is the set of complex-valued images with non-
negative real and imaginary parts,

R(P,{h}(m)) = max(R(k(n)).0).
3 (P, thi(m)) = max(J(h(n)),0).

e  When I' is the set of images with support S,

P = {o® Ga <.

Two error metrics ¢, and ¢ defined by
go(h) = |Poth} - hll. £r(R) = |Py{h} - Rl|

play an important role of our studies. When @A is unitary, as
in the case of RPI,

gr(h) = Pk} =kl = |TPAR - PAR|| = ||Y - |DAR]||.

B. Oversampling

The oversampling method has proven to be an effective, flex-
ible way of implementing various phasing algorithms by con-
verting Fourier magnitude data more finely sampled than
demanded by the original image grid into zero padding, i.e.,
P,{h}(m) = 0,Vn in the padding region, which then acts as
a support constraint of the original image [4,16-18]. In this set-
up, the oversampling ratio is given by

oo image pixel number + zero-padding pixel number
N image pixel number ’

(b)

Fig. 2. Test images of loose support: (a) 269 x 269 cameraman,
(b) 200 x 200 phantom, where the dark borders represent loose support.
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C. Error Reduction (ER)

The ER algorithm [19] is based on the Gerchberg—Saxton al-
gorithm [20] and is the most basic phasing algorithm. ER is the
plain version of the alternated projection method

Sk+1 = PoPrfrs ®)

which can be conveniently represented by the diagram
in Fig. 1.

ER enjoys the error-decreasing property following the same
argument in [19].

Proposition 2. Let I" be a closed convex subset of C(N). Let
O and A be unitary matrices. Then the array {f;} produced
in Eq. (8) satisfies

e (frr1) < (i) ®

The equality holds if and only if [ 1 = fk-

relative residual at each iteration

200 400 600 800 1000 1200 1400 1600
iteration

(b)

relative residual at each iteration

relative residual
°
&

0.1

oosL

200 400 600 800 1000 1200 1400
iteration

(f)

relative residual at each iteration

relative residual
°
8

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
iteration

()
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Proof.

e (i) = e =S5l 2 w1 =il = 1Gry1 - Gl
2 |Giyr = Gyl = W1 =i ll = & (Frgn)-

The equality holds only if [|fy —f}Il = [fx+1 -S4, where
Sis1 = Polf}). Since I' is a closed convex subset,
Sr+1 =Sk according to Proposition 1.

Remark 1. Proposition 2 holds for the f. .1 = POPjef © With
arbitrary ().

Proposition 2 shows that the error &;(f)) decreases strictly
until it reaches a fixed point of P,P;, implying that the ER
iteration converges to a fixed point.

Proposition 3. Let f},; = P, Pyfy. Let I be a closed convex
subset of C(N) and @, A be unitary matrices. Then every con-
vergent subsequence of {f;} converges to some h such that

L. if ®Ah(w) 0, Yo € L, h is a fixed point of P,P.
2. if DAnr(w) = 0 for some w € L, h is a fixed point of
P, P} for some 6.

relative residual at each iteration

relative residual
°
8
5

100 200 300 400 500 600 700 800 900 1000 1100
iteration

(d)

relative residual at each iteration

0.2

relative residual
°
&

5 10 15 20 25 30 35 40 45 50 55
iteration

(h)

relative residual at each iteration

relative residual
°
&

20 40 60 80 100 120 140
iteration

(k) Q)

Fig. 3. (Color online) (a) Recovery by 1651 ER iterations with UI and ¢ = 4; (b) r(f}) versus k with r(f ) = 5.49%; (c) recovery by 1000 HIO +
103 ER with Ul and 6 = 4; (d) 7(f},) versus k with r(f ) = 0.49%; (e) recovery by 1587 ER steps with one low resolution RPI with ¢ = 2; (f) »(f},) versus
k with r(f ) = 0.52% and e()/‘\ ) = 2.561%; (g) recovery by 33 HIO + 24 ER steps with low resolution RPI with ¢ = 2; (h) »(f}) versus k with T(f ) = 0.056%
and e(f\ ) = 0.32%; (i) recovery by 5512 ER steps with high resolution RPI with ¢ = 1; (j) r(f}.) versus k with r(f ) = 0.19% and e(f ) = 3.27%; (k) recovery
by 77HIO + 67 ER steps with high resolution RPI with ¢ = 1; (1) r(f},) versus k with r(f) = 0.10% and e(f\) = 1.39%.
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The proof of Proposition 3 is given in Appendix A. The ques-
tion is, “Is a fixed point of ER necessarily a phasing solution?”
With the UI, however, this is generally not true [21]. When a
fixed point fails to be a phasing solution, it is called a trap and
can plague the reconstruction procedure [cf. Figs. 3(a), 4(a),
and 4(c)].

Below, we answer this question in the affirmative under
certain assumptions for the case of RPIL The difficulty is that
ER may converge to a fixed point of P,P?, which fails to sa-
tisfy the Fourier magnitude data. In other words, the limiting
point 2 may not be a fixed point of P?

In the following main theoretical result of the paper, we
prove that if P% satisfies the zero-padding condition, then
it must be the phasing solution.

Theorem 4. Let f € C(N) be an array with £(0) = 0 and of
rank 2. Let A(n) be i.i.d. continuous random variables on S!.
Let the Fourier magnitude be sampled on L. Let h be a fixed
point of P,P} such that Plh satisfies the zero-padding
condition.

(@) Iff is real-valued, h = L£f with probability 1.

relative residual at each iteration

ol
o

0.45

o
IS

0.35

o
w

hed
o

N

relative residual
°
N
&

0.15

0.1

0.05

500 1000 1500 2000 2500 3000 3500 4000
iteration
relative residual at each iteration

0.45

0.4

T 0.35
3

2 o3
o

=025
2

= 02
<

© 0.15

0.1

0.05

0

50 100 150 200 250 300 350 400 450
iteration

(f)

relative residual at each iteration

0.45

)
w 2
IS

relative residual
°
o % o
o e

o
o I <
B

0.05

100 200 300 400 500 600 700 800 900
iteration

(i) ()
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(b) If f satisfies the sector condition of Theorem 2, then

h =éevf, for some v, with probability at least 1-|N|
Llszll — -llsr2]]

B-a) (2r) .

D. Hybrid Input-Output (HIO)

The HIO algorithm is a widely used, better-performing phasing
method than ER’s [19]. HIO differs from ER in how to update
the image in the object domain in order to avoid the trapping
and stagnation.

Below we present a modified version of Fienup’s HIO that
performs better than the original version. We refer to Fig. 1 for
the notation. In HIO, the last step P, of ER iteration is re-
placed by the following.

e  When I' is the set of real-valued images,

R k1 () = R (m)), 10)

S k1) = F(fm)) - - 3(f(m)). an

relative residual at each iteration

o
o

0.45

14
=

0.35

relative residual
°
o R o
[

0.15
0.1
0.05
0
200 400 600 800 1000 1200 1400
iteration
05 relative residual at each iteration
0.45
0.4
T 035
3
2 o3
o
=025
g
= 02
K
© 0.15
0.1
0.05
0

10 20 30 40 50 60 70 80 90 100 110
iteration

(h)

05 relative residual at each iteration

0.45

14
=

0.35

4
w

relative residual
°
i
&

°
© L 9 j
S o N

0.05

10 20 30 40 50 60 70 80 90 100 110
iteration

(k) 1)

Fig. 4. (Color online) (a) Recovery by 4140 ER iterations with UI with ¢ = 4; (b) r(f},) versus k with 7(f) = 14.71%; (c) recovery by 1000 HIO +
421 ER steps with one Ul with ¢ = 4; (d) r(f}) versus k with T(f ) = 3.94%; (e) recovery by 460 ER with one low resolution RPI with ¢ = 2; (f) r(f)
versus k with r(f ) = 0.03% and e(f ) = 0.09%; (g) recovery by 103 HIO + 11 ER steps with one low resolution RPI with ¢ = 2; (h) r(f},) versus k with
r(f) = 0.03% and e(f) = 0.12%; (i) recovery by 966 ER steps with one high resolution RPI with ¢ = 1; (j) r(f;) versus k with r(f) = (0.06% and
e(f ) = 0.40%; (k) recovery by 94 HIO + 16 ER steps with one high resolution RPI with ¢ = 1; (1) r(f},) versus k with r(f” ) = 0.04% and e(f) = 0.19%.
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If, in addition, the nonnegativity constraint is assumed, then

R(Fss(m) = {

R, ) i R(L) 20 (o
R ) - - RG@) i R(G ) <0
§(xs1m) = SEum) - - 3¢ ). (13)

e  When [ is the set of complex-valued images with non-
negative real and imaginary parts,

R(f 41 () = {

S(i () = {

S xm) -f-3(fm) if 3(f},(m)) <0

R(fi,(m) if R(f,(m))20 (14)
R () - - R () if R(f(n)) <0’
3(fp(m) if 3(f,(m)) 20 (15)

In addition, the zero-padding condition is replaced by the
relaxed padding condition f},;(n) =f;(n) - 4f,.(n), Vn in

the padding region.

relative error versus oversampling rate
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E. Algorithms with Two Illuminations

Let 4, and A, be two arrays representing two illuminating
fields. Two sets of Fourier magnitude data Y, = |DAf]
and Y| = |®A,f] are collected, each with an oversampling ra-
tio 6. Let 7; and 7, be the intensity fitting operators corre-
sponding to Y; and Yy, respectively, as in Eq. (5). Thus the
projections onto the set of images satisfying the Fourier mag-
nitude data Y, and Y, are, respectively,

Pl = AII(D_ITI (I)Al

7)2 = A§1¢7172¢A2.

The corresponding ER algorithm with two sets of Fourier
magnitude data Y; and Y is given by

Jir1 = PoPoPify. (16)

relative error versus oversampling rate

T T T
—6— high resolution & noise free
—#— low resolution & noise free
é g —¥— high resolution & 5% gaussian noise
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Fig. 5. (Color online) (a) Relative error with one RPI for nonnegative-valued phantom; (b) relative error with one RPI for complex-valued phantom
with phases randomly distributed in [0, z/2]; (c) relative error by 200 HIO + 300 ER with one RPI and UI for complex-valued phantom with phases

randomly distributed in [0, 27].
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The corresponding HIO is obtained by replacing P, in Eq. (16)
by Egs. (10)-(15) plus the relaxed padding condition.

4. NUMERICAL SIMULATIONS

In this section, we perform numerical phasing from the Four-
ier intensity measurement with Ul or RPL

Our test images are the 256 x 256 cameraman and the 138 x
184 phantom (Fig. 2). We surround both images by a dark

. -fII/
o) = {Ilf S/
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total. For phantom the dark margin is such that the resulting
image has 200 x 200 pixels.

For the oversampling ratio o, we zero pad the images to
generate a 269./6 x 269./c cameraman and 200,/¢ x 200./c
phantom. We synthesize the Fourier magnitude data by apply-
ing the fast Fourier transform (FFT) to the array.

A. Error, Residual, and Noise
Let f be the recovered image. The relative error is defined as

if absolute uniqueness holds

min )|[f - ei”f [I7IIf]] if uniqueness holds only up to a global phase*

veE[0.27

(i.e., zero-valued) border to create images of loose support.
Images of loose support are typically more challenging to re-
construct. For cameraman the border is 13 pixels wide in each
dimension and the resulting image has 269 x 269 pixels in
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Fig. 6.
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and the relative residual is defined as

Y - |OAP,
="
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(Color online) Phasing with ¢ = 2 and one high resolution RPI: (a) recovery by 18 HIO + 10 ER with 5% Gaussian noise; (b) r(f}) versus k

with r(f) ~ 2.62% and e(f) = 4.20%; (c) recovery by 19HIO + 10 ER with 5% Gaussian noise; (d) 7(f};) versus k with r(f) = 2.85% and e(f) = 3.51%;
(e) recovery by 16 HIO + 10 ER with 5% Poisson noise; (f) (f},) versus k with r(f) = 3.71% and e(f) ~ 5.89%; (g) recovery by 17 HIO + 10 ER with 5%
Poisson noise; (h) 7(f}) versus k with r(f ) = 4.05% and e(f ) = 4.84%; (i) recovery by 14 HIO + 10 ER with 5% illuminator noise; (j) 7(f};) versus k with
r(f) ~ 5.28% and e(f) ~ 7.75%; (K) recovery by 16 HIO + 10 ER with 5% illuminator noise; (I) 7(f;) versus k with r(f) ~ 5.48% and e(f) ~ 6.35%.
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where P, is introduced if f may not strictly satisfy the object-
domain constraint as in the case of HIO.

We consider three types of noise: Gaussian, Poisson, and
illumination noise, the last of which is defined as follows.
Suppose the illumination field is noisy Z(n) = exp(i(%(n)) with
J)(n) = ¢(n) + 1(6,n), where £(6,n) are independent, uniform
random variables in [-76/100, z6/100], 6 > 0.

We also test phasing with low resolution illumination,
which does not consist of independently distributed pixel va-
lues but independently distributed blocks of deterministic
(indeed, uniform) values. In our experiments, illumination
of independent 40 x 40 blocks works well for real-valued non-
negative images and, for complex images, illumination of
independent 4 x 4 blocks works well.

B. Convergence Test

The reconstruction of the real-valued nonnegative images
cameraman and phantom with one Ul or RPI is shown
in Figs. 3 and 4, respectively. For Figs. 3 and 4, we terminate
the pure ER when k1 =S/ Ikl < 0.01%. For HIO + ER,
HIO is stopped when |fi 1 —fill/Ifkll <1% with a
maximal 1000 iterations and ER is terminated when
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k1 =Sill/Ifell < 0.01%. In Figs. 3 and 4, |If = P, PefII/If Il
is as small as 0.01%, implying that f is near a fixed point
of P, Ps.

As commented before, the pure ER iteration always con-
verges to a fixed point of P,P,. But with one UI and ¢ = 4,
the fixed point of P, P, is not a phasing solution as the relative
residual stagnates at 5.49% in Fig. 3(b) and at 14.71% in
Fig. 4(b). HIO followed by ER improves the recovery over
pure ER, but the recovered cameraman in Fig. 3(c) displays
the well-known artifact of stripe pattern, and the recovered
phantom in Fig. 4(c) is severely blurred and distorted.

With one low resolution RPI (block size: 40 x 40) and 6 = 2,
the recovered images in Figs. 3(e), 3(g), 4(e), and 4(g) are
excellent approximation to the true images, even though
absolute uniqueness is not guaranteed for low resolution
RPIL HIO + ER is superior to pure ER in significant speed-
up in convergence [Fig. 3(f) versus Fig. 3(h), Fig. 4(f) versus
Fig. 4(h)].

With one high resolution RPI, high quality reconstruction
can still be achieved with the oversampling ratio equal to 1;
cf. Figs. 3(i), 3(k), 4(i), and 4(k). Notice the rapid convergence

of HIO + ER in Figs. 3(1) and 4(1).
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(Color online) Phasing with ¢ = 2 and one low (40 x 40) resolution RPIL: (a) recovery by 27 HIO + 10 ER with 5% Gaussian noise; (b) 7(f})

versus k with r(f ) = 2.50% and e(f ) = 7.37%; (c) recovery by 35HIO + 10ER with 5% Gaussian noise; (d) r(f;) versus k with r(f) 2 85% and
e(f) = 4.18%; (e) recovery by 22 HIO + 10 ER with 5% Poisson noise; (f) r(f}) versus k with r(f) = 3.77% and e(f) = 6.27%; (g) recovery by 100 HIO +
10 ER with 5% Poisson noise; (h) 7(f},) versus k with r(f) ~ 4.24% and e(f) ~ 5.09%; (i) recovery by 20 HIO + 10 ER with 5% illuminator noise; (j) (%)
versus k with 7(f) = 4.00% and e(f) ~ 13.14%; (k) recovery by 34 HIO + 10 ER with 5% illuminator noise; (1) 7(f, ) versus k with T(f) 5.48% and

e(f) = 9.46%.
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C. Oversampling Ratio Test
To systematically test the oversampling ratio required for
phasing with RPI, we introduce 5% different types of noise
(Gaussian, Poisson, illumination), use low (block size:
40 x 40) as well as high resolution RPI, and let ¢ vary. We
use an adaptive version of HIO + ER: HIO and ER are termi-
nated if the residual increases in five consecutive iterations.
The relative error of reconstruction for the nonnegative image
phantom is averaged over five trials and shown in Fig. 5(a).
Clearly the relative error steadily decreases as the oversam-
pling ratio increases. Without noise, low resolution RPI can
achieve near zero error with ¢ = 1.1. With 5% noise, the relative
error stabilizes after ¢ = 2 to a level comparable to the noise.
Next we consider the complex-valued phantom with phases
randomly distributed in the sector [0, z/2]. Figure 5(b) shows
the average relative error e(f ) with one high resolution or low
resolution (block size: 4 x 4) RPI and three kinds of noise.
Again the relative error stabilizes after 6 = 2 to a level com-
parable to the noise. Note that for 1.8 < ¢ < 2, there are more
free variables in the complex-valued image than in the Fourier
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intensity data and yet the reconstructions are still of good
quality.

Finally, we consider the complex-valued phantom with
phases randomly distributed in [0,2z]. Figure 5(c) shows
the average relative error e(f) with one high resolution or
low resolution (block size: 4 x 4) RPI plus one Ul. Excellent
recovery is achieved for ¢ > 1.8.

D. Stability Test

For images with positivity constraint and with one RPI,
we terminate HIO when the relative residual increases for
five consecutive steps and apply 10 steps of ER afterward.
The maximal HIO iteration is set to be 100. For complex-
valued images with two illuminations, we apply 200 steps
of HIO and 300 steps of ER.

Figure 6 shows the recovery for the nonnegative-valued
images with one high resolution RPI and 5% Gaussian
[(@)-(d)], Poisson [(e)—(h)], and illuminator noise [(i)—(1)]. Mul-
tiplicative noise such as Poisson and illumination noises are
generally more debilitating than the additive Gaussian noise.
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Fig. 8. (Color online) (a) Relative error for nonnegative-valued phantom and ¢ = 2; (b) relative error for complex-valued phantom with phases
randomly distributed in [0, z/2] and ¢ = 4; (c) relative error for complex-valued phantom with phases randomly distributed in [0, 2z] and ¢ = 3.
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With a low resolution RPI (block size: 40 x 40), the quality
of reconstruction suffers slightly as shown in Fig. 7 for non-
negative-valued images. The deterioration is most visible in
the case of Poisson noise with the blocky pattern in Figs. 7(e)
and 7(g).

Figure 8 shows the average relative error e(f ) versus noise
for (a) nonnegative-valued phantom and ¢ = 2, (b) phantom
with phases randomly distributed in [0, z/2] and ¢ = 4, and
(¢) phantom with phases randomly distributed in [0, 27] and
o = 3. One high or low (40 x 40) resolution RPI is used in (a),
while one high or low (4 x 4) RPI and one UI are used in (b)
and (c). The adaptive HIO + 50 ER is used for (a) and (b),
while 200 HIO 4 300 ER is used for (c).

Relative error increases almost linearly with respect to the
relative noise level with the noise amplification constant at
worst 2. Clearly the illumination noise is most debilitating, fol-
lowed by the Poisson noise. Nevertheless, the noise stability is
achieved with even the low resolution RPI for all three types
of noise.

5. CONCLUSION

We have given a proof of convergence of ER with RPI (The-
orem 4) and demonstrated that the stagnation problem of
standard phasing algorithms such as ER and HIO can be alle-
viated if the ambiguities associated with spatial translation
and conjugate inversion are removed by RPI. In addition,
phasing with RPI has the following advantages: (i) it is stable
with respect to additive as well as multiplicative noises with a
moderate noise amplification constant; (ii) it reduces the over-
sampling ratio by more than a factor of 2; (iii) it reduces the
number of iterations by more than an order of magnitude. We
have also shown that phasing with RPI performs well with low
resolution illumination and can tolerate a high level of illumi-
nation error, adding assurance that the RI needs not be cali-
brated exactly.

The lower bound ¢ 2 2 for phasing of [12] was never actu-
ally achieved, but we have achieved the lower limit in phasing
with RPI for complex-valued images under a sector constraint.
For nonnegative-valued images, phasing with one high resolu-
tion RPI reduces the oversampling ratio to unity, the minimum
level by the dimensional count.

APPENDIX A: PROOF OF PROPOSITION 3
Proof. By Proposition 2, limy_,.&(f;) =5, for some 7 > 0.
Since fiy1 = P,if}}, we have [l < If}ll = Gyl = 1Y
and that {f} } is a bounded sequence. Every bounded sequence
in C(\V) has a convergent subsequence, so {f;} has at least one
convergent subsequence. Without loss of generality, we as-
sume lim,,_..f;, = f*. Next, we prove that f* must be a fixed
point of P, P, or P,/ for some 6.

Since @ and A are unitary matrices, lim;_,,®Af), = ®Af*
in || - ||, and thus

EI?OCI)Afk(w) = DA™ (w), YV 0.

e If ®Af*(w) vanishes nowhere in £, then
}gjm;«.d)Afk = ADAf*,

implying
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%LIEG;C = Eﬂfquk = TOAf*.
Therefore,
E_{Efk-%—l =P, Pif*.

which along with the convergence of &¢(f},) and f, implies that
g (f *) = er(PyPrf *). By Proposition 2, we have

X = PP

o If ®Af*(w) =0 at some w € L, TPAf,(w) may not
converge. However, since 7®Af, is bounded in view of
I7PAfll = IY]], there exists a subsequence {f } and some
0(f*) such that limy_..7PAf, (@) = T*OAf* (@), where T*
is defined in Eq. (7). Therefore

EmP, AP ITDAS), = P, AR ITIOAS*;  (AD

Jooo

namely
}lﬂfqu+1 = }i_{gpopffk,- =P, P,

which along with the convergence of e, (f) and f}, implies that
& (f*) = (P, Pif*). By Proposition 2, it follows that

*
I* = P,PIU*.

APPENDIX B: PROOF OF THEOREM 4
Define

Smi () =fm+2), [ () =f(m--).

Let

F(z) =) f(nz™

n

be the z-transform of f. According to the fundamental theo-
rem of algebra, F'(z) can be written uniquely as

F(z) = az™ ﬁFk(z),
k=1

where n, is a vector of nonnegative integers, « is a complex
coefficient, and F';,(z) are nontrivial irreducible monic polyno-
mials in z1.

Definition 2 (conjugate symmetry). A polynomial X (z) in
z7! is said to be conjugate symmetric if, for some vector k of
positive integers and some 0 € [0, 2r),

X(z) = 775X (z7").

A conjugate symmetric polynomial may be reducible, irre-
ducible, trivial, or nontrivial. If A(z) is an arbitrary polynomial
in z'!, then
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X(z) = A(z) - zNA@zZ ™)

is conjugate symmetric. Any monomial azX is conjugate
symmetric.

The uniqueness of recovering a real-valued object from its
Fourier magnitude or phase only data is discussed in [4] and
can be easily generalized to the case of complex-valued
objects.

Proposition 4. Let f € C(N) be a finite array whose z-
transform is irreducible up to a power of z-L. If the Fourier
transform G of g € C(N) satisfies |G(e2™)| = |F (%),
VYw€L, then 30 €][0,2r) and m such that either g =
fmy 07 g ="f .

Proposition 5. Let f € C(N) be a finite array whose z-
transform has mno conjugate symmelric factors. If g €
C(N) satisfies AF (e"®) = £G(e*"®), YV w € L, then g = fff
Jor some real positive number p.

Proof. Consider the array h defined by

h(n) = f(n)*g(-n)

whose z-transform is

H(z) = F()G(z™).
Since the phase of the Fourier transform of i(n) is equal to
AH(@Z”W) — AF(eZ”i’w) _ AG(ez”i"’),

it follows that if XF (") = XG(€**®), then £H (¢*"?) = (.
Thus the Fourier transform of & is real-valued, implying that

H(z) = H@E@).
Therefore,
F@G@z"') = F@)G(@). (BD)

Multiplying both sides of Eq. (B1) by z™N results in the follow-
ing polynomial equation in z!:

F(@)Gz Nz N = Fz )Gz Y. (B2)

Since F'(z) does not have trivial factors or nontrivial conju-
gate symmetric factors, we have

F(2) = a [Fr(@, (B3)
k

where F(z) are nontrivial irreducible nonconjugate sym-
metric monic polynomials in z!. Thus

2NF@ ) = az [ [Fu(@). (B4)
k

where F(z) are the nontrivial irreducible nonconjugate
symmetric monic polynomials in z™! of the form F(z) =
z NP F(z71) for some vector p, of positive integers.
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Writing
G(z) = bz [ [Gu(@), (B5)
3

where Gy(z) are nontrivial irreducible monic polynomials in
z!, we have

NG@ ) = v | [Gi(@). (B6)
t

where Gg(z) are the nontrivial irreducible monic polynomials
in z~! of the form Gy(z) = 2z NT9G,(z!) for some vector q; of
positive integers.

Plugging Egs. (B3), (B4), (B5), and (B6) in (B2) yields

ab'z™ l:[Fk(z)l:[ég(z) = a’bz‘m""l:[ﬁ’k(z)l;[Gt(z). (B7)

Each nontrivial irreducible factor F;(z) must be equal to some
Fk/ (z) or some Gy(z). However, if F,(z) = i”k(z), then F(z)
itself is conjugate symmetric. If, on the other hand, F,(z) =
Fy(z) for some k' #k, Fy(2)F) (z) = F},(2)Fy (z) becomes a
conjugate symmetric factor. Both cases, however, are ex-
cluded by the assumption that the z-transform of f does
not have conjugate symmetric factors. Thus each F(z) must
be equal to Gy (z) for some {' and F(z) so that G(z) must be
related by

66) = Q[ [Fi2) = 2 Q@)@ (B8)
k

However, G(z) and F(z) are both polynomials in z"!, and since
F(z) contains no trivial factors, so @(z) must be a polynomial
of z-1. Furthermore, plugging Eq. (BS) into Eq. (Bl) yields

%00 = Q6.

Therefore, Q(z) is a constant and then G(z) = fF(z) for some
positive # by noting that £F(w) = £G(w).

We next show that the z-transform of {A(n)f(n)} is almost
surely irreducible up to a power z! and not conjugate
symmetric.

Lemma 1. Let f € C(N) be a complex-valued array. Let
{A(m)} be independent and continuous random variables
on S'. Then, ¥V t =0, the z-transform of (Af)y, and (Af). is
almost surely not conjugate symmetric.

Proof. Let

S (m) = A(t + n)f (t + n)

whose z-transform is
Fo(2) =) At+n)f(t+mn)z™ (B9)
FH (z) is conjugate symmetric if

Fi(2) = e027%F, (27 (B10)

for some vector k of positive integers and some 6 € [0, 2x).
Plugging Eq. (B9) into Eq. (B10) yields



1858 J. Opt. Soc. Am. A / Vol. 29, No. 9 / September 2012
Z/I(t +n)f(t+n)z™ = ewz’kz At+n)f(t+n)z",
n n

which implies

At +n)f(t+n) =e?At +k-n)f(t+k-n), Vn
(B11)

However, f is deterministic, and {i(n)} are independent and
continuous random variables on S!, so Eq. (B11) fails with
probability one for any k. There are finitely many choices
of k, so the z-transform of (4f),, is almost surely not conjugate
symmetric.

Similarly, the z-transform of (4f)._ is also almost surely not
conjugate symmetric.

Lemma 2. Let f € C(N) be a complex-valued array of rank
>2. Let {A(n)} be independent and continuous random vari-
ables on S'. Then, the z-transform of {A(n)f (n)} is irreducible
up to a power of z1 with probability 1.

For the proof of Lemma 2, see Theorem 2 of [10].

Lemma 3. Let f and h be two complex-valued arrays.
Let ® be the discrete Fourier operator such that
DOf () = Y e 2" @kf (k). Then ADf,, = ADh implies that
A@f - A®h(_t)+.

Proof. Note that

Of 4 (w) = " Of (),
which implies
2nt - @ + LDf (w)(mod 27) = ADh(w)
by the assumption £®f,, = ADh. Thus
ADf (w) = ADh(w) - 2at - w(mod 27),
which is equivalent to

A@f - A(Dh(_t)_',.

Let us now turn to the proof of Theorem 4.

Proof. Let f be the true image and & be a fixed point of the
ER iteration. Suppose that i’ = P}’h satisfies the zero-padding
condition. Then the following three equations hold:

P =h, (B12)
|PAR| = |DAS], (B13)
ADAN = ADAR. (B14)

According to Lemma 2, the z-transform of Af is irreducible up
to a power of z'! with probability 1, so there exists some
integer-valued vector m with -N < m < 0 and some v € [0, 27)
such that

K =e"A1An St

or
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B =e"ATAL fm

In the case of b’ = e A~'Ay,fms, the third equation in
(B14) becomes

AVPA iy = £DAR.

By Lemma 3,
Aei’”q)/\f = A¢A(,m)+h(,m)+. (B15)

Lemmas 1 and 2, together with the assumption that
f(0) =0, imply that the z-transform of Af is an irreducible,
nontrivial, and nonconjugate symmetric polynomial of z~!
with probability 1.

Next, we apply Proposition 5 to Eq. (B15). Both Af and
A(my+Pm)+ are supported on a subset of {n| - N<n<N}.
By Proposition 5, we obtain

re" Nf = Amy Pomo)+
or equivalently

s, AMm+m)
lm) =yl == o+ m)

for some positive number 7.

(a) If the true image f(-) is real-valued, then h = Pk’ is
real-valued, which by the proof of Theorem 1 (see Corrolary 1
of [10]) implies that v = 0, 7 and m = 0 or equivalently

h=+yf (B16)

with probability 1. Plugging Eq. (B16) into P, Psh = h yields
y = 1 and thus kh = £f with probability 1.

(b) If f satisfies the sector condition of Theorem 2, then
h = P,h' satisfies the same sector condition, which by the
proof of Theorem 2 (see Theorem 4 (i) of [10]) implies that
m = 0 and

h = yel'f (B17)

. . szl -llsr2]]
with probability at least 1-|N|(f-a) (2n) :

Plugging Eq. (B17) into P,Psh =h yields y =1 and thus
h = éef.

By the similar argument, one reaches the same conclusion
in the case of ' = e* A 1Ay fim.
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