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Abstract. We consider propagation and time reversal of wave pulses in a ran-

dom environment. The focus of our analysis is the development of an expression
for the two frequency mutual coherence function for the harmonic wave field.

This quantity plays a crucial role in the analysis of many wave propagation

phenomena and we illustrate by explicitly considering time reversal in the con-
text of time pulses with a high carrier frequency. In a time-reversal experiment

the wave received by an active transducer or antenna (receiver-emitter) array,

is recorded in a finite time window and then re-emitted into the medium time
reversed, that is, the tails of the recorded signals are sent first. The re-emitted

wave pulse will focus approximately on the original source location. We use

explicit expressions for the mutual coherence functions and their asymptotic
approximations in the regime of long or short propagation distance and a high

carrier frequency to analyze the refocusing of the wave pulse in the time reversal
experiment. A novel aspect of our analysis is that we are able to character-

ize precisely the decoherence length in temporal frequency. This allows us to

analyze for instance the time reversal experiment when the mirror has a finite
aperture in time.

1. Introduction. Wave propagation in a randomly layered medium is well under-
stood and is analyzed in for instance [1]. The core theoretical result in [1] is a
development of a family of equations that describe the hierarchy of moment equa-
tions for the harmonic wave field. In particular one obtains explicit expressions
for the second order cross-moments in the case with a constant mean wave speed.
These cross moments at nearby frequencies can be used to analyze for instance the
energy spectrum of the incoherent waves reflected from a random half-space and
also time reversal experiments in the context of a randomly layered half-space and
high frequency waves. The paper [1] has led to a series of papers that analyze for
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instance various time reversal and imaging problems using the framework set forth.
However, the analysis is restricted to randomly layered media.

In the present paper we consider a different regime corresponding to the paraxial
wave equation [15], [20] where the longitudinal scattering, which is the main mode
of scattering in the layered medium, is small and the main mode of scattering
is lateral scattering. The paraxial approximation describes a situation with long
range narrow angle propagation with relatively small fluctuations in the index of
refraction.

The main focus of our paper is the development of equations governing the cross-
moments of the harmonic wave field at nearby frequencies. As in the layered medium
these are in fact explicitly solvable. Again these moment equations allow us to
analyze a range of wave propagation phenomena and we consider in particular
the time reversal experiment. This analysis generalizes the results in for instance
[2, 7, 18] where a time reversal mirror that is constant in time is used which leads
to phase conjugation at the mirror.

With a finite temporal aperture mirror we are then led to consider the coherence
or wave field correlation at nearby frequencies. In the time reversal experiment
that we analyze it is clear from time reversibility of the wave equation that if
we capture, time reverse and re-emit a sufficient part of the wave field, the re-
emitted wave will approximately refocus on the target [11]. The surprising and
important fact is that the focusing resolution typically will be enhanced rather
than hampered by heterogeneity or “randomness” in the medium. The effect has
numerous applications. In the case of ultrasound, this process can be iterated to
pinpoint the wave beam in order to destroy kidney stones, detect defects in materials
and communicate with submarines. In the case of electromagnetic waves this effect
holds the potential of increasing imaging resolution and channel capacity. The
phenomenon has been studied in the literature, both from the experimental and
theoretical points of view [2, 11, 14].

The outline of this paper is as follows. In Section 2 we formulate the propagation
problem and introduce the paraxial approximation in the relevant scaling regime.
Next, in Section 3, we introduce the two frequency Wigner-Moyal equation, the
phase space formulation that will be useful for analyzing moments of the field. We
review the white noise limit for this in Section 4. The white noise limit takes on
a particular useful form in the high frequency or geometrical optics limit which we
discuss in Section 5. Then we use the two frequency Wigner-Moyal framework that
we have introduced to analyze respectively the time reversed wave field in Section
6 and the transmitted field in Section 7.

2. Paraxial White Noise Regime. We start by considering the wave equation

4′u− c−2ut′t′ = 0 ,

with the local speed c defined by

1
c2

=
1 + η

c̄2
,

for c̄ the constant effective medium speed and 4′ being the Laplacian in the space
coordinates (x′, z′). The centered random medium fluctuations are denoted by η:

η = η

(
z′

`z
,
x′

`x

)
,
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which gives the fluctuation in the refractive index field and is a homogeneous,
square-integrable random field. A relevant example is the generalized von Kármán
spectral density with H = 1/3 [20].

We shall refer to the dimensions x′ as the transversal coordinates and z′ as the
longitudinal or propagation direction. We let Lx and Lz be characteristic length
scales and 1/k0 represent a typical wavelength scale. The associated Fresnel number
is defined by

γ0 =
Lz

k0L2
x

,

and we introduce non-dimensionalized coordinates by

t = k0c̄t
′, x =

x′
√

γ0Lx
, z =

z′

Lz
.

In non-dimensionalized coordinates we then get

uzz + c−1
0 4u− c−2

0 (1 + η)utt = 0 ,

for

c0 :=
1

Lzk0
,

and with ∆ the Laplacian in the x coordinates. We shall consider narrow beam
propagation in the z direction and accordingly write

u(t,x, z) =
∫

e
ik(z/c0−t)

γ Ψ(k,x, z) dk , (1)

for k0k corresponding to a wave number in original coordinates and γ a small non-
dimensional parameter which here will determine the high frequency scaling. We
thus also have

Ψ(k,x, z) =
1

2πγ

∫
e
−ik(z/c0−t)

γ u(t,x, z) dt , (2)

and the decomposition (1) gives for the complex wave amplitude

Ψzz +
2ik

γc0
Ψz +

1
c0
4Ψ +

(
k

γc0

)2

ηΨ = 0.

The paraxial approximation corresponds to dropping the Ψzz term and with a slight
abuse of notation we shall henceforth let Ψ solve

iγΨz +
γ2

2k
4Ψ +

k

2c0
ηΨ = 0. (3)

We write
1
ε
V
( z

ε2
,x
)

:=
1

2c0
η

(
zLz
`z

,
x
√

γ0Lx

`x

)
, (4)

where

ε :=
√

`z
Lz

,

is a small parameter that gives a “white noise scaling” and in Section 4 we will
introduce the important white noise model that enables us to derive field moment
equations in the limit ε → 0. The normalized refractive index field fluctuations V
has a spectral density denoted by Φ.
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With this notation (3) becomes

iγΨz +
γ2

2k
4Ψ +

k

ε
V
( z

ε2
,x
)

Ψ = 0. (5)

2.1. Spatial Diversity Scaling. The scaling (4) corresponds to
√

γ0Lx

`x
=

√
Lz
k0

1
`x

= O(1) ,

ε

√
E[η2]
c0

= k0

√
`zLzE[η2] = O(1).

The scaling with lateral diversity, however, corresponds to
√

γ0Lx

`x
=

√
Lz
k0

1
`x

=
1
δ
� 1 , (6)

ε

√
E[η2]
c0

= k0

√
`zLzE[η2] = δ � 1.

The lateral diversity δ � 1 gives rise to various self-averaging scaling limits which
is important for statistical stability of time-reversal experiments. For a systematic
treatment of the self-averaging scaling limits see [4, 18].

2.2. The Initial Field. In original coordinates we write the initial condition on
the plane z′ = z′s for the paraxial field propagating in the positive z direction as

u(t′,x′, z′s) = Φ0

(
x′

√
γ0Lx

)
f(k0c̄(t′ − t′s)) cos

(
k0k̄c̄(t′ − t′s)

γ

)
.

Here k0k̄c̄/γ is the high carrier frequency. The parameter k̄ is assumed to be an
order one parameter that scales the carrier and it plays no essential role in the
analysis. The bandwidth of the source is of the order of k0c̄. In non-dimensionalized
coordinates the source becomes

u(t,x, zs) = Φ0 (x) f(t− ts) cos
(

k̄(t− ts)
γ

)
. (7)

The associated initial condition on the envelope Ψ is

Ψ(zs,x; k) =
Φ0 (x)

2γ

(
f̂

(
k + k̄

γ

)
+ f̂

(
k − k̄

γ

))
e−

ik(zs/c0−ts)
γ . (8)

In Sections 6 and 7 we will use initial fields of this particular type when analyzing
the properties of the transmitted and time reversed wave fields.

2.3. Two Frequency Formulation. In the paraxial approximation for the wave
the complex amplitude field at two different wavenumbers kj are denoted Ψj , j =
1, 2, and are given as the solutions of the parabolic wave equation (5) at the respec-
tive wavenumber kj . We explicitly indicate the dependence on the wavenumber and
write as

iγ
∂Ψε

j

∂z
+

γ2

2kj
∆Ψε

j +
kj
ε

V
( z

ε2
,x
)

Ψε
j = 0 , (9)

with the white noise limit ε → 0 of this equation being discussed in [8]. Rather than
taking the white noise limit at this level, we will follow an alternative route and take
the white noise limit at the level of the Wigner distribution as discussed below. Note
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that although we do not assume isotropic spectral densities, the spectral density Φ
of the fluctuations V always satisfies the basic symmetry:

Φ(ξ,k) = Φ(−ξ,k) = Φ(ξ,−k), ∀(ξ,k) ∈ Rd+1 , (10)

because the refractive-index field is real-valued. Observe that we will denote the
number of transversal spatial dimensions by d. We also assume that Vz(x) ≡ V (z,x)
is a centered, square-integrable, z-stationary and x-homogeneous process with the
(partial) spectral representation

Vz(x) =
∫

exp (ip · x)V̂z(dp) , (11)

where the process V̂z(dp) is the z−stationary orthogonal spectral measure satisfying

E
[
V̂z(dp)V̂z(dq)

]
= δ(p + q)

[∫
Φ(w,p)dw

]
dpdq. (12)

3. Wigner Distribution and Two-Frequency Wigner-Moyal Equation. We
introduce the two-frequency Wigner distributions

W ε(z,x,p) =
1

(2π)d

∫
e−ip·yΨε

1

(
z,

x√
k1

+
γy

2
√

k1

)
Ψε∗

2

(
z,

x√
k2

− γy
2
√

k2

)
dy , (13)

and its complex conjugate W ε∗ which are ideally suited for analyzing the two-
frequency problem.

The Wigner distribution has the following obvious properties.∫
W ε(z,x,p)eip·ydp = Ψ1

(
z,

x√
k1

+
γy

2
√

k1

)
Ψε∗

2

(
z,

x√
k2

− γy
2
√

k2

)
(14)

1
(2π)d

∫
Rd

W ε(z,x,p)e−ix·qdx

=
(√

k1k2

γ

)d
Ψ̂1

(
z,

p
√

k2

γ
+
√

k1q
2

)
Ψ̂ε∗

2

(
z,

p
√

k2

γ
−
√

k1q
2

)
.

Hence from W ε and W ε∗ one can recover all but an overall phase factor about Ψε
1

and Ψε
2.

Furthermore, the Wigner distribution W ε
z (·) = W ε(z, ·) satisfies the Wigner-

Moyal equation

∂W ε
z

∂z
+ p · ∇xW ε

z +
1
ε
LεzW ε

z = 0 , (15)

with the initial data

W0(x,p) =
1

(2π)d

∫
e−ip·yΨ1,0

(
z,

x√
k1

+
γy

2
√

k1

)
Ψ∗

2,0

(
z,

x√
k2

− γy
2
√

k2

)
dy , (16)

where the operator Lεz is formally given as

LεzW ε
z (17)

= i

∫
γ−1

[
eiq·x/

√
k1k1W

ε
z

(
x,p +

γq
2
√

k1

)
− eiq·x/

√
k2k2W

ε
z

(
x,p− γq

2
√

k2

)]
V̂
( z

ε2
, dq
)

.

The complex conjugate W ε∗(z,x,p) satisfies a similar equation

∂W ε∗
z

∂z
+ p · ∇xW ε∗

z +
1
ε
Lεz

∗W ε∗
z = 0 , (18)
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where

Lεz
∗W ε

z
∗ (19)

= i

∫
γ−1

[
eiq·x/

√
k2k2W

ε
z
∗
(
x,p +

γq
2
√

k2

)
− eiq·x/

√
k1k1W

ε
z
∗
(
x,p− γq

2
√

k1

)]
V̂
( z

ε2
, dq
)

.

Note that we use the following definition of the Fourier transform and inversion:

ĝ(p) = Fg(p) =
1

(2π)d

∫
e−ix·pg(x)dx ,

g(x) = F−1ĝ(x) =
∫

eip·xĝ(p)dp ,

for the lateral space variable and its dual and

f̂(k) = Ff(k) =
1
2π

∫
eiktf(t)dt ,

f(t) = F−1f̂(k) =
∫

e−iktf̂(k)dk ,

for the time variable and its dual in this wave propagation context.
When making a partial (inverse) Fourier transform on a phase-space function we

will write F1 (respectively F−1
1 ) and F2 (respectively F−1

2 ) to denote the (resp.
inverse) transform w.r.t. x and p.

For every realization of Vz the operator Lεz
∗ is defined as

LεzW ε
z (x,p) ≡ iγ−1F2

[
δγVz

( z

ε2
,x,y

)
F−1

2 W ε
z (x,y)

]
, (20)

with the difference operator δγ given by

δγV
( z

ε2
,x,y

)
≡ k1V

(
z

ε2
,

x√
k2

+
γy

2
√

k2

)
− k2V

(
z

ε2
,

x√
k1

− γy
2
√

k1

)
.(21)

The operator Lεz
∗ is defined similarly. In order to characterize the transmitted

and time reversed field below we will need the second order moment equations for
the time harmonic wave field. These equations will derive from the equations for
the Wigner distribution. The problem (15) is not explicitly solvable, however, we
consider next the narrow band white noise regime corresponding to γ → ∞ and
ε → 0 where we will obtain explicit expressions for the Wigner distribution which
will lead to expressions for the mutual coherence function that describe the second
order wave statistics.

Consider the simultaneous limit

γ → 0, k1, k2 → k 6= 0 , (22)

with

k1 = k − γβ/2 , (23)
k2 = k + γβ/2.

Here the parameter β < ∞ has the physical meaning of a normalized bandwidth.
In the narrow-band, geometrical optics limit Lεz becomes

lim
γ→0

LεzW ε
z (x,p) (24)

= −F2

[
∇xV ε

z (x) ·
[
iyF−1

2 W ε
z (x,y)

]]
= −

√
k∇V ε

z

(
x√
k

)
· ∇pW ε

z (x,p) + iβW ε
z (x,p)

[
V ε
z

(
x√
k

)
− x

2
√

k
· ∇V ε

z

(
x√
k

)]
.
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4. The White-Noise, Markovian model. The convergence of the weak solution
of the Wigner-Moyal equation, described in the preceding section, to the weak
solution of the two-frequency white-noise, Markovian model has been proved in [5],
[6]. Below we give only the essential feature of the two frequency Markovian model
which will be further analyzed later.

Formerly the model is governed by the Wigner-Itô equation

dWz + (p · ∇xWz −Q0Wz)dz = dBzWz , (25)

where the operator Q0 is given by

Q0Wz(x,p) (26)

=
∫

Φ(q)γ−2
[
k1k2e

−i(k−1/2
1 −k−1/2

2 )q·xWz

(
x,p−

(
k
−1/2
1 + k

−1/2
2

)
γq/2

)
+k1k2e

i(k
−1/2
1 −k−1/2

2 )q·xWz

(
x,p +

(
k
−1/2
1 + k

−1/2
2

)
γq/2

)
−
(
k2
1 + k2

2

)
Wz(x,p)

]
dq ,

with Φ being the spectrum of V and Bz is an operator-valued Brownian motion
(see [6] for details) which vanishes after ensemble-averaging:

∂W̄z

∂z
+ p · ∇xW̄z = Q0W̄z. (27)

For the narrow-band geometrical optics limit (22)-(23) we obtain

Q0W ≈ k∇p ·D · ∇pW + iβx ·D · ∇pW − β2

4k
x ·D · xW − β2D0W ,

which can be written as

Q0Wz(x,p) ≈ (28)

−k

(
−i∇p +

β

2k
x
)
·D ·

(
−i∇p +

β

2k
x
)

Wz(x,p)− β2D0Wz(x,p) ,

where

D =
∫

Φ(0,q)q⊗ qdq , (29)

D0 =
∫

Φ(0,q)dq. (30)

In the case of a power-law spectrum with the Hurst exponent H, inner scale
`0 and the outer scale L0 the diffusion matrix has the following asymptotics for
`0 � 1, L0 � 1

D = O(`2H−1
0 + L2H−1

0 ) ,

and hence has a finite limit as L0 →∞ for H < 1/2 and as `0 → 0 for H > 1/2.
The evolution equation for the two-frequency mutual coherence function

Γ12(z,x1,x2) = E[Ψ1(z,x1)Ψ∗
2(z,x2)] , (31)

as defined in [15] can using (14) be obtained by setting

x =
1
2
(
√

k1x1 +
√

k2x2) , (32)

y =
1
γ

(
√

k1x1 −
√

k2x2) , (33)

and applying F−1
2 to the mean field equation (27), that is

Γ12(z,x1,x2) =
∫

W̄ (z,x,p)eip·ydp ,
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for x and y defined by (32) and (33) respectively. The result then corresponds to
the one obtained for the two-frequency mutual coherence function in the literature
(see [15]). The advantage of working with the two-frequency Wigner distribution
lies in the ease of taking the geometrical optics limit (28).

5. Exact and Asymptotic Solutions for Narrow-Band Geometrical Op-
tics. Neither (27) nor the resulting equation for Γ12 is exactly solvable and various
approximations have been proposed (see [3], [10], [13],[16], [17], [19], [21]). However,
the geometrical optics limit

∂W̄z

∂z
+ p · ∇xW̄z = −k

(
−i∇p +

β

2k
x
)
·D ·

(
−i∇p +

β

2k
x
)

Wz(x,p)− β2D0Wz(x,p) ,

is exactly solvable. Let us construct the Green function.
For simplicity of notation, let us assume isotropy of the medium, namely Φ(0,p) =

Φ(0, |p|) and hence D = D, a scalar. In the case that the fluctuations are station-
ary with covariance C(∆x,∆z) we find that the correlation parameters have the
interpretation

D0 =
∫

C(z,0) dz ,

D = −
∫
4xC(z,x)|x=0 dz.

Taking the inverse Fourier transform F−1
2 in p we obtain

∂

∂z
Ŵ = i∇x · ∇yŴ − D

k

∣∣∣∣−ky +
β

2
x
∣∣∣∣2 Ŵ − β2D0Ŵ . (34)

Introducing the new variables

y1 = ky +
β

2
x , (35)

y2 = ky − β

2
x , (36)

we rewrite the above equation in the new coordinates as

∂

∂z
W̌ =

ikβ

2
(
∇2

1 −∇2
2

)
W̌ − D

k
|y2|2W̌ − β2D0W̌ , (37)

where ∇1,∇2 are the gradients with respect to y1,y2, respectively.
Consider the function

W̃ (z,p1,y2) = eβ
2D0zeikβ|p1|2z/2 1

(2π)d

∫
W̌

(
z,

y1 − y2

β
,
y1 + y2

2k

)
e−iy1·p1dy1 , (38)

which satisfies the equation

∂

∂z
W̃ = − ikβ

2
∇2

2W̃ − D

k
|y2|2W̃ . (39)

Equation (39) is just the Schrödinger equation with an imaginary, quadratic poten-
tial.

First we look for the Green function in the coordinates y1,y2. To this end, we
set

A(z) = −idkβ

∫ z

1

B(s)ds +
D

k

∫ z

∞
|C|2(s)ds, z > 0 ,
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with

B(z) =
−1

k(1 + i)

√
D

β
cot
[√

Dβ(1 + i)z
]
,

and C(z) given by the formula

C(z) = C(0) exp
[
−D

k

∫ z

0

B−1(s)ds

]
, C(0) = y′2.

We find that functions of the form

e−A(z)−B(z)|y2−C(z)|2 ,

in fact solves (39) and it follows that the Green function of (37) is given by

GW̌ (z,y1,y2,y′1,y
′
2; k, β) (40)

= c0e
−β2D0ze−A(z)−B(z)|y2−C(z)|2

∫
e−ikβ|p1|2z/2eip1·(y1−y′1)dp1

=
(

1
πkβz

)d/2( √
D(1 + i)

πk
√

β sin(
√

Dβ(1 + i)z)

)d/2
e−β

2D0z exp
[
i|y1 − y′1|2

2zkβ

]

× exp

[
− |y′2|2

(1 + i)k

√
D

β
tan(

√
Dβ(1 + i)z)

]

× exp

 1
k(1 + i)

√
D

β
cot
(√

Dβ(1 + i)z
) ∣∣∣∣∣y2 −

y′2
cos
(√

Dβ(1 + i)z
) ∣∣∣∣∣

2
.

The general solution for equation (34) can then be expressed as

Ŵ (z,x,y) = (kβ)d
∫

Ŵ0(x′,y′)GW̌

(
z, ky +

β

2
x, ky − β

2
x, ky′ +

β

2
x′, ky′ − β

2
x′
)

dx′dy′.

We thus find the expression

W̄z(x,p) = F2{Ŵ (z,x,y)} (41)

=
(

kβ

2π

)d ∫
e−ip·yeip

′·y′W̄0(x′,p′) (42)

×GW̌

(
z, ky +

β

2
x, ky − β

2
x, ky′ +

β

2
x′, ky′ − β

2
x′
)

dx′dy′dydp′ ,

for the mean Wigner transform.
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5.1. Coherence Function and Schrödinger Spectrum. From (13) and (41) we
obtain for the mutual coherence function the expression

Γ12(z,x1,x2) = F−1
2 {W̄ (z,x,p)} = Ŵ (z,x,y)

= (kβ)d
∫
F−1

2 {W̄}(0,x′,y′)

×GW̌

(
z, ky +

β

2
x, ky − β

2
x, ky′ +

β

2
x′, ky′ − β

2
x′
)

dx′dy′

= (kβ)d
∫

Ψ1,0

(
x
′

√
k1

+
γy

′

2
√

k1

)
Ψ∗

2,0

(
x′√
k2

− γy
′

2
√

k2

)

×GW̌

(
z, ky +

β

2
x, ky − β

2
x, ky′ +

β

2
x′, ky′ − β

2
x′
)

dx′dy′

=
(

βk
√

k1k2

γ

)d ∫
Ψ1,0 (x̃) Ψ∗

2,0 (ỹ)

×GW̌

(
z, ky +

β

2
x, ky − β

2
x, ky′ +

β

2
x′, ky′ − β

2
x′
)

dx̃dỹ

for

x =
1
2
(
√

k1x1 +
√

k2x2) , y =
1
γ

(
√

k1x1 −
√

k2x2) , x̃ =
x
′

√
k1

+
γy

′

2
√

k1

, ỹ =
x′√
k2

− γy
′

2
√

k2

,

so that

x′ =
1
2
(
√

k1x̃ +
√

k2ỹ) , y′ =
1
γ

(
√

k1x̃−
√

k2ỹ).

Here we have assumed that the source is given at zs = 0.
Let Gψ be the Green function associated with the Schrödinger equation (9).

Define the Schrödinger spectral function as

Λ̃(z,x1,x2, x̃, ỹ, k1, k2) = E [GΨ(z,x1, x̃; k1)G∗
Ψ(z,x2, ỹ; k2)] (43)

namely the two-point coherence function of Schrödinger Green functions of two
different frequencies.

In the high frequency limit γ � 1 we have the following asymptotic

Λ̃(z,x1,x2, x̃, ỹ; k1, k2) (44)

=
(

βk2

γ

)d
GW̌

(
z,

k3/2

γ
(x1 − x2),

√
k

γ
(k1x1 − k2x2),

k3/2

γ
(x̃− ỹ),

√
k

γ
(k1x̃− k2ỹ)

)
≡ Λ(z,x1,x2, x̃, ỹ, k1, β).

Recall that

k1 = k − γβ/2 , k2 = k + γβ/2 ,

so that we have
√

k

γ
(k1x1 − k2x2) ∼

k3/2

γ

(
(x1 − x2)− (x1 + x2)

(
γβ

2k

))
. (45)
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We can now express the mutual coherence function in terms of the Schrödinger
spectral function as follows.

Γ12(z,x1,x2) =
∫

E [GΨ(z,x1, x̃; k1)G∗
Ψ(z,x2, ỹ; k2)]Ψ1,0 (x̃) Ψ∗

2,0 (ỹ) dx̃dỹ

∼
∫

Λ̃(z,x1,x2, x̃, ỹ, k1, k2)Ψ1,0(x̃)Ψ∗
2,0(ỹ)dx̃dỹ.

5.2. Long Distance Asymptotics. We have assumed a scaling with the distance
of propagation z being an order one quantity and with the source being located at
the origin so that zs = 0. Since we are interested in narrow beam long distance
propagation we will next evaluate the expression for the mutual coherence function
in the limit that z is large. To this effect we note the following asymptotics in the
limit z →∞ for fixed D > 0:

sin
(√

Dβ(1 + i)z
)

∼ −e
√
Dβ(1−i)z

2i
,(

cos
(√

Dβ(1 + i)z
))−1

∼ 0 ,

tan
(√

Dβ(1 + i)z
)

∼ i ,

cot
(√

Dβ(1 + i)z
)

∼ −i.

Therefore, the Green function has the long distance asymptotics

GW̌ (z,y1,y2,y′1,y
′
2) ∼

(
1

πkβz

)d/2(2
√

D(1− i)
πk
√

β

)d/2
e−β

2D0z exp
[
−1− i

2
d
√

βDz

]

× exp
[
i|y1 − y′1|2

2zkβ

]
exp

[
−1 + i

2k

√
D

β

(
|y2|2 + |y′2|2

)]
, (46)

from which it follows that the long distance asymptotics for the mutual coherence
function Γ12 is:

Γ12(z,x1,x2)

∼
(

βk2

γ

)d( 1
πkβz

)d/2(2
√

D(1− i)
πk
√

β

)d/2
e−β

2D0z exp
[
−1− i

2
d
√

βDz

]

×
∫

exp
[

ik2

2γ2βz
|x1 − x2 − x′1 + x′2|2

]
exp

[
−1 + i

2γ2

√
D

β

(
|k1x1 − k2x2|2 + |k1x′1 − k2x′2|

2
)]

×Ψ1,0 (x′1)Ψ∗
2,0 (x′2) dx′1dx

′
2.

We now evaluate this expression for Ψj,0 having spatial point support:

Ψj,0(x) = δ(x)f(kj) , (47)
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and find that

Γ12(z,x1,x2) ∼ Λ(z,x1,x2, 0, 0, k1, β)f(k1)f∗(k2)

=
(

βk2

γ

)d( 1
πkβz

)d/2(2
√

D(1− i)
πk
√

β

)d/2
e−β

2D0z exp
[
−1− i

2
d
√

βDz

]

× exp
[

ik2

2γ2βz
|x1 − x2|2

]
exp

[
−1 + i

2γ2

√
D

β
|k1x1 − k2x2|2

]
f(k1)f∗(k2).

One sees from the above expression that the coherent bandwidth βc is given by

βc ∼ 1
Dz2

, (48)

so that the wave field at nearby frequencies decorrelate rapidly in the regime of
large propagation distance and strong medium fluctuations. The two-frequency
coherence length `c is given by

`c ∼ γ

k

(
β

D

)1/4

, (49)

which determine the lateral spatial scale at which the wave field decorrelate. Note
that this coherence length depends on the frequency separation β. At the limit of
the coherence bandwidth, for β = βc, we find

`c ∼ γ

k

1√
zD

, (50)

with k/γ being the carrier wavenumber.

6. Time Reversal Operation and Refocusing. The time reversal operation
is illustrated in Figure 6 and can be described as follows. In the plane z = L a
pulse traveling in the negative z direction is being emitted. The transmitted field is
recorded, stored and time reversed at the time reversal mirror located in the plane
z = 0, and then sent back toward the source point.

The initial condition is as in (7)

ub(t,x, L) = u0(t,x) = Φ0 (x) f(t− ts) cos
(

k̄(t− ts)
γ

)
.

This gives the following initial condition for the backpropagating modulation Ψ:

Ψb(k,x, L) =
1

2πγ

∫
e

ik(L/c0+t)
γ u0(t,x) dt (51)

=
Φ0 (x)

2γ

(
f̂

(
k + k̄

γ

)
+ f̂

(
k − k̄

γ

))
e

ik(L/c0+ts)
γ ,

with the associated wave field being

ub(t,x, z) =
∫

e
−ik(z/c0+t)

γ Ψb(k, x, z) dk.

We then find that the field transmitted to the plane z = 0 is

ub(t,xm, 0) =
uI(t,xm) + u∗I(t,xm)

2
, (52)

with

uI(t,xm) =
∫

GL(xs;xm, k)Φ0 (xs) f̂

(
k − k̄

γ

)
1
γ

e
ik(L/c0+(ts−t))

γ dxsdk.
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r∗

x

z L

A

Figure 1. The time reversal procedure. A source emits a pulse
in the plane z = L. The transmitted field is recorded and time
reversed at the mirror of size A at z = 0, and then sent back toward
the source point. There it refocuses on a spot with the lateral size
r∗. Medium heterogeneity typically enhances the refocusing resolution.

In the derivation we have used the reciprocity of the Green function GH of the
Helmholtz equation:

GH(x2, L;x1, 0, k) = GH(x1, 0;x2, L, k) ,

with parabolic approximations

GH(x2, L;x1, 0, k) ∼ GL(x2;x1, k)eikL/γ , GH(x1, 0;x2, L, k) ∼ GL(x1;x2, k)eikL/γ .

The time reversal operation now corresponds to a re-emission at the mirror with
the “new source” at the mirror being

utr,I(t,xm) = uI(−t,xm)IA(xm)g(−t) ,

with IA being the spatial aperture function with characteristic dimension A and g
being a temporal window aperture function that we assume is compactly supported.
We then find

utr,I(t,xm) = IA(xm)
∫

GL(xs;xm, k̄ + γβ)f̂(β)ĝ∗(β̃)Φ0 (xs)

×eiβ(L/c0+ts)ei(β−β̃)tdxsdβdβ̃e
ik̄(L/c0+ts+t))

γ

= IA(xm)
∫

GL(xs;xm, k̄ + γβ)f̂(β)ĝ(β̃ − β)Φ0 (xs)

×eiβ(L/c0+ts)e
ik̄(L/c0+ts)

γ dxsdβe−
i(−(k̄+γβ̃)t)

γ dβ̃.

From (1) it now follows that the associated modulation field in the mirror plane is

Ψtr,I(0,xm,−(k̄ + γβ̃))

= IA(xm)
∫

GL(xs;xm, k̄ + γβ)f̂(β)ĝ(β̃ − β)Φ0 (xs) eiβ(L/c0+ts)e
ik̄(L/c0+ts)

γ dxsdβ/γ.
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This gives the expression for the wave field in the original source plane z = L:

utr,I(t,x, L) =
∫

GL(xs;xm, k̄ + γβ)G∗
L(x;xm, k̄ + γβ̃)f̂(β)ĝ(β̃ − β)IA(xm)Φ0 (xs) dxsdxm

×eiβ(L/c0+ts)eiβ̃(−L/c0+t) dβdβ̃e
ik̄(t+ts)

γ ,

where we used the fact that Gz(·; ·, k) = G∗
z(·; ·,−k). The corresponding refocused

mean signal is

E[utr,I(t,x, L)] =
∫

Λ(L,xs,x,xm,xm, k̄ + γβ, β̃ − β)f̂(β)ĝ(β̃ − β)IA(xm)Φ0 (xs) dxsdxm

×eiβ(L/c0+ts)eiβ̃(−L/c0+t) dβdβ̃e
ik̄(t+ts)

γ .

We now use the expression for the Schrödinger spectral function in (44) to obtain
a characterization of the mean back-propagated field E[utr] in the narrow-band
geometrical optics limit.

We let the original source emission time ts be chosen so that the pulse reaches
the origin approximately at time zero:

ts = −L/c0 ,

and observe the back-propagated pulse in a window centered at the deterministic
(background) travel time to depth L from the origin:

t = L/c0 + τ.

We then find

E[utr,I(L/c0 + τ,x, L)]e
−ik̄τ

γ

∼
∫

Λ(L,xs,x,xm,xm, k̄ + γβ, β̃ − β)f̂(β)ĝ(β̃ − β)IA(xm)Φ0 (xs) dxsdxmeiβ̃τ dβdβ̃

=
∫

Λ(L,xs,x,xm,xm, k̄ + γ(β̃ − β), β)f̂(β̃ − β)ĝ(β)IA(xm)Φ0 (xs) dxsdxmeiβ̃τ dβdβ̃.

We now scale the source support and observation point by γ as:

xs = γx′s , x = γx′.

and then

E[utr,I(L/c0 + τ, γx′, L)]e
−ik̄τ

γ (53)

∼ γd
∫

Λ(L, γx′s, γx′,xm,xm, k̄ − γβ/2, β)f̂(β̃ − β)ĝ(β)IA(xm)Φ0 (γx′s) dx′sdxmeiβ̃τ dβdβ̃.

The associated Green function coordinates according to the expression (44) for the
Schrödinger spectral function are then to leading order:

y1 = (x′s − x′)k̄3/2 , y2 = (x′s − x′)k̄3/2 , y′1 = 0 y′2 = −β
√

k̄xm ,
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and it follows that the refocused pulse then can be characterized by

E[utr,I(L/c0 + τ, γx′, L)]e
−ik̄τ

γ

∼
∫ (

k̄2

π2L

)d/2( (1 + i)
√

βD

sin(
√

Dβ(1 + i)L)

)d/2
e−β

2D0L e
ik̄2|x′s−x′|2

2βL

× exp

[
(1− i)
2
√

β

√
Dk̄2 cot (

√
Dβ(1 + i)L)

∣∣∣∣x′s − x′ +
βxm

k̄ cos (
√

Dβ(1 + i)L)

∣∣∣∣2
]

× exp
[
(i− 1)

2

√
Dβ3/2|xm|2 tan (

√
Dβ(1 + i)L)

]
f̂(β̃ − β)ĝ(β)

×IA(xm)Φ0 (γx′s) dx′sdxmeiβ̃τ dβdβ̃.

Remark 1. In the above expression the spectrum for β < 0 is found by: evaluating
it at |β| and then taking its complex conjugate.

We now use the long distance asymptotical approximation for this expression to
characterize the mean refocused signal in that regime.

6.1. Long Propagation Limit. For large propagation distances L � 1 we have
the following asymptotic

E[utr,I(L/c0 + τ, γx′, L)]e
−ik̄τ

γ

∼
∫ (

2(1− i)k̄2
√

Dβ

π2L

)d/2
f̂(β̃ − β)ĝ(β)IA(xm)Φ0 (γx′s) e−(1−i)d

√
DβL/2e−β

2D0L

×e
ik̄2|x′s−x′|2

2βL exp
[
−(i + 1)

2
√

β

√
Dk̄2

(
|x′s − x′|2 + |βxm/k̄|2

)]
dx′sdxmeiβ̃τ dβdβ̃.

We simplify this expression further by assuming a point mirror and source:

Φ0(x′) = γdδ(x′) , IA(x′) = δ(x′). (54)

The scaling of the source is chosen so that the refocused signal is of order one and
from linearity of the problem this choice plays no essential role. We then obtain

E[utr,I(L/c0 + τ, γx′, L)]e
−ik̄τ

γ (55)

∼
∫ (

2(1− i)k̄2
√

Dβ

π2L

)d/2
e−(1−i)d

√
DβL/2e−β

2D0Le
ik̄2|x′|2

2βL e
−(i+1)

√
Dk̄2|x′|2

2
√

β

×f̂(β̃ − β)ĝ(β) eiβ̃τ dβdβ̃

= f(−τ)
∫ (

2(1− i)k̄2
√

Dβ

π2L

)d/2
e−(1−i)d

√
DβL/2e−β

2D0Le
ik̄2|x′|2

2βL e
−(i+1)

√
Dk̄2|x′|2

2
√

β

×ĝ(β) eiβτ dβ.

This gives the following result

Theorem 1. In the high frequency (γ → 0) limit the ensemble-averaged backprop-
agated pulse of the white-noise model has the following large distance (L � 1)
asymptotic for D > 0:

E[utr,I(L/c0 + τ, γx′, L)]e
−ik̄τ

γ ∼ f(−τ) {fg(·) ∗ fD0(·) ∗ fD(·;x′)} (−τ) ,(56)
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with

fg(τ) =
1
2π

(
2
√

D(1− i)k̄2

π2L

)d/2 ∫
βd/4ĝ(β)e−iβτ dβ ,

fD0(τ) =
1√

4πD0L
e−τ

2/(4D0L)

and

fD(τ ;x′) =
∫

e−(1−i)
√
DβdL/2e

ik̄2|x′|2
2βL e

−(i+1)
√

Dk̄2|x′|2

2
√

β e−iβτ dβ. (57)

Thus, the original source pulse shape is modified via multiplication with a pulse
modulation function that depends on the lateral offset x′ of the observation point.
In fact, this function is the convolution of three functions. The function fg contains
the signature of the temporal aperture function g. We have assumed that this
function is compactly supported. In the case that the whole time trace is recorded
at the mirror, so that g ≡ 1, we cannot factorize as in (56). In fact, in this case
the above analysis simplifies since we do not have to consider nearby frequency
correlations.

The second function fD0 is the Gaussian pulse of variance 2D0L with D0 char-
acterizing the magnitude of the medium fluctuations. A large magnitude D0 does
not lead to a temporal spread-out of the refocused signal in the high frequency limit
γ → 0 of the parabolic approximation. This is contrary to the situation with strong
longitudinal scattering in a layered medium which leads to temporal spreading of
the pulse [12].

The third function fD(·,x′) has a support that depends on the correlation pa-
rameter D and also on the lateral observation point x′. We shall see that large
values for D and large offset leads to a diminishing magnitude for this function and
hence to spatial refocusing of the back-propagated signal. Consider first the case
x′ = 0. We have

fD(τ ; 0) =
∫

e−(1−i)
√
DβdL/2e−iβτ dβ.

The support of the function fD(τ ; 0) is of the order DL2, and increases rapidly
with the propagation distance L and the magnitude of this function is of the order
1/(DL2). On the other hand the support of fg is independent of D and L, and its
magnitude is of the order Dd/4L−d/2. Also the support of fD0 is of the order

√
D0L

and has the magnitude (D0L)−1/2 . Thus, we conclude

Remark 2. The amplitude of the refocused signal has the long distance asymptotic

1
L2+d/2

.

The lateral refocusing of the back-propagated signal depends on the lateral sup-
port scale for the function f(·,x′) and we next identify this scale. We rewrite (57)
as

fD(τ ;x′) = D−1L−2

∫
e−(1−i)

√
βd/2e

iDLk̄2|x′|2
2β e

−(i+1)DLk̄2|x′|2

2
√

β e−iβτ dβ ,

which leads to the following observations
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Remark 3. The refocused pulse has the following lateral scale

4x = γ4x′ ∼ γ

k̄
√

DL
.

Note that this is the coherence length at the coherence bandwidth as introduced
in (50).

Remark 4. In the case that the Brownian field B in (25) decorrelate rapidly in
the lateral dimension as in the scaling (6) the time reversed field will actually be
self-averaging, meaning that the random fluctuations in the refocused wave field are
small, see [9].

7. Application to Transmitted Field. In this section we analyze the spreading
and decorrelation of the transmitted field in the case that the initial field is specified
at zs = 0, ts = 0 so that (8) becomes

Ψ(k,x, 0) = Φ0 (x)
f̂
(
k+k̄
γ

)
+ f̂

(
k−k̄
γ

)
2γ

.

The transmitted envelope field can then be expressed as

Ψ(k,x, z) =
∫

Gz(x;xs, k)Φ0 (xs)
f̂
(
k+k̄
γ

)
+ f̂

(
k−k̄
γ

)
2γ

dxs ,

and the wavefield by

u(t,x, z) =
∫

Gz(x;xs, k)Φ0 (xs)
f̂
(
k+k̄
γ

)
+ f̂

(
k−k̄
γ

)
2γ

e
ik(z/c0−t)

γ dxsdk

=
uI(t,x, z) + u∗I(t,x, z)

2
,

with

uI(t,x, z) =
∫

Gz(x;xs, k)Φ0 (xs) f̂

(
k − k̄

γ

)
1
γ

e
ik(z/c0−t)

γ dxsdk

=
∫

Gz(x;xs, k̄ + γβ)Φ0 (xs) f̂ (β) eiβ(z/c0−t) dxsdβe
ik̄(z/c0−t)

γ .

7.1. The Transmitted Cross-moment. The quantity of interest we will examine
here is the cross-moment defined by

C(z,x, t;∆x,∆t) = E [u(t,x, z)u(t + ∆t,x + ∆x, z)] . (58)
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In order to analyze this moment we consider

CI(z,x, t;∆x,∆t) = E [uI(t,x, z)u∗I(t + ∆t,x + ∆x, z)]

=
∫

E
[
Gz(x;xs, k̄ + γβ)G∗

z(x + ∆x; x̃s, k̄ + γβ̃)
]

×Φ0 (xs) Φ∗
0 (x̃s) f̂ (β) f̂∗(β̃)eiβ(z/c0−t)e−iβ̃(z/c0−t−∆t) dxsdβdx̃sdβ̃e

ik̄∆t
γ

=
∫

E
[
Gz(x;xs, k̄ + γ(β + β̃))G∗

z(x + ∆x; x̃s, k̄ + γβ̃)
]

×Φ0 (xs) Φ∗
0 (x̃s) f̂

(
β + β̃

)
f̂∗(β̃)eiβ(z/c0−t)eiβ̃∆t dxsdβdx̃sdβ̃e

ik̄∆t
γ

∼
∫

Λ
(
z,x,x + ∆x,xs, x̃s, k̄ + γ(β + β̃),−β

)
×Φ0 (xs) Φ∗

0 (x̃s) f̂
(
β + β̃

)
f̂∗(β̃)eiβ(z/c0−t)eiβ̃∆t dxsdβdx̃sdβ̃e

ik̄∆t
γ ,

with Λ defined in (44). We are interested in this cross-moment at the arrival time
for the coherent front when t = z/c0 and when

∆x = γ∆x′ ,

we then find that

CI(z,x, z/c0; γ∆x′,∆t)e−
ik̄∆t

γ

∼
∫

Λ
(
z,x,x + γ∆x′,xs, x̃s, k̄ + γ(β + β̃),−β

)
Φ0 (xs) Φ∗

0 (x̃s)

×f̂
(
β + β̃

)
f̂∗(β̃)eiβ̃∆t dxsdβdx̃sdβ̃

=
∫

Λ
(
z,x,x + γ∆x′;xs, x̃s, k̄ − γβ/2,−β

)
Φ0 (xs)Φ∗

0 (x̃s) dxsdx̃s

×
∫

f(τ)f(τ + ∆t)eiτβ dτdβ/(2π) ,

as γ → 0. Note that the decorrelation in the time lag parameter is determined by
source pulse shape f rather than the random effects captured by the Λ. This is
consistent with the fact that we consider the parabolic regime where lateral rather
than longitudinal scattering is important. We simplify the expression further by
assuming a unit point source located at the origin as in (54) and that ∆t = 0 and
for x = 0, then

CI(z, 0, z/c0; γ∆x′, 0) ∼ γd
∫

Λ
(
z, 0, γ∆x′, 0, 0, k̄ − γβ/2,−β

)
f̂?f̂(β) dβ ,

with ? indicating the convolution. We consider a long propagation distance regime
and use (43)- (46) for the arguments

y1 = −∆x′k̄3/2 , y2 = −∆x′k̄3/2 , y′1 = 0 y′2 = 0 .

We then obtain the following.

Theorem 2. In the high frequency and long propagation limit for the white noise
model, the forward propagating pulse has the following asymptotic for D > 0:

CI(z, 0, z/c0; γ∆x′, 0) ∼
∫ (

2(1− i)
√

βDk̄2

π2z

)d/2
e−(1−i)d

√
Dβz/2 (59)

×e−β
2D0ze

ik̄2|∆x′|2
2βz e

−(i+1)
√

Dk̄2|∆x′|2

2
√

β f̂ ? f̂(β) dβ.
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Remark 5. The expression (59) is exactly the same type of expression as (55).
Hence the lateral decoherence length in the forward propagation is on the scale of
the lateral size of the refocal spot in the time reversal experiment. In particular the
lateral decoherence length has the asymptotic

4x = γ4x′ ∼ γ

k̄
√

Dz
,

with the carrier frequency being k̄/γ.
This extends a similar duality relation discovered in [7] for monochromatic waves

to multi-frequency waves.
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