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CONVECTION ENHANCED DIFFUSION FOR PERIODIC FLOWS* 

ALBERT FANNJIANGt AND GEORGE PAPANICOLAOUt 

Abstract. This paper studies the influence of convection by periodic or cellular flows on the 
effective diffusivity of a passive scalar transported by the fluid when the molecular diffusivity is small. 
The flows are generated by two-dimensional, steady, divergence-free, periodic velocity fields. 

Key words. diffusion, homogenization, convection 
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1. Introduction. The temperature T of a weakly conducting fluid in JR2 satisfies 
the heat equation 

(1l .1l ) ct = ? i\AT+ u VT, 

with T(0, x, y) = To(x, y) given. Here u(x, y) = (u(x, y), v(x, y) ) is the fluid velocity, 
which we assume incompressible, 

V u = 0, 

and E > 0 is the molecular diffusivity, which we assume small. We are interested 
in velocity fields that represent convective flow, for example, in Benard convection. 
Since u is incompressible, there is a stream function H(x, y) such that 

(1.2) V'L H = (-Hy, Hx) = U. 

A typical convective or cellular flow is given by 

(1.3) H(x, y) = sin x sin y. 

Figure 1.1 shows the stream lines of this periodic flow, which are given by H(x, y) 
constant. We are interested in the effective diffusivity of the fluid and its behavior as 
the molecular diffusivity E tends to zero. 

In ?2 we briefly review the definition and basic properties of the effective diffu- 
sivity. In this introduction, we may simply define it as 

(1.4) cE = lim I I 2 + ( y2) T(t, x, y) dx dy, 
ttoo tJJ 
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FIG. 1.1. Cellular flow. 

when the initial function To is the delta function at the origin. With this initial 
function, T(t, x, y) is the probability density of a test particle diffusing in the flow, 
and (1.4) states that, when t is large, the mean square displacement of the particle 
behaves like aot. 

We are interested in the behavior of a, as e -* 0. In [1] Childress showed by a 
boundary layer analysis that, when H is given by (1.3), then 

(1.5) 7? C W 

as E tends to zero, and he also characterized the constant c*. The same problem 
was reconsidered in [2] and [3], and the constant c* was evaluated analytically by 
Soward [4]. The asymptotic relation (1.5) is the simplest example of convection en- 
hanced diffusion because the effective diffusivity a, is much larger than the molecular 
diffusivity E. The enhancement is due to the convective flow with the stream function 
(1.3) (see Fig. 1.1). Flows with stream functions 

(1.6) H(x,y) = sinxsiny + 6cosxcosy, 

with 0 < 6 < 1, are considered in [5], along with discussion of the associated dynamo 
problem (see Fig. 1.2). In [6] Soward and Childress study diffusion and dynamo action 
in flows with nonzero mean motion. 

Our aim in this paper is to study in detail the effective diffusivity of a passive 
scalar in a convective flow by variational methods, thus avoiding direct boundary layer 
analysis. This is important because boundary layer analysis becomes too complicated 
to be useful when the flow u is more complex than simple cellular flow or cellular flow 
with channels (see Fig. 1.2). 



CONVECTION ENHANCED DIFFUSION FOR PERIODIC FLOWS 335 

3 

1 

-1 

-3 -2 -1 0 1 2 3 

FIG. 1.2. Cat's-eye flow with 6=0.2. 

In ?2 we review the various definitions of effective diffusivity for periodic flows. In 
?3 we introduce a Hilbert space formulation for the effective diffusivity. With a simple 
symmetrization transformation, we can obtain variational principles for the effective 
diffusivity. The Hilbert space formulation follows the general framework introduced 
in [7]. The variational principle suitable for upper bounds of the effective diffusivity 
was noted by Avellaneda and Majda [8]. Another form of this variational principle was 
given by Cherkaev and Gibiansky and is presented by Milton in [12]. The relations 
between the various variational principles are analyzed in Appendix A. The variational 
principle for lower bounds is new and is one of the main contributions in this paper. 
In ?4 we show how to use the variational principles to prove result (1.5), including the 
characterization of the constant c*. In ?5 we use the variational principles to study 
the effective diffusivity for cellular flows in point-contact, for which a corner layer 
theory is developed. In ?6 we study the effective diffusivity of cellular flows with open 
channels, in particular, the cat's-eye flow with stream function (1.6). In ?7 we study 
general periodic flows with zero mean drift. In these problems, we clearly see the 
power of the variational methods. The only section in which variational methods are 
not used in an essential way is ?8, where we study general periodic flows with nonzero 
mean drift. In Appendix B, we derive variational principles for time-dependent flows. 

We treat only periodic flows in this paper. Convection-enhanced diffusion for 
random flows is studied in [14]-[16] and in the second part of this work [17]. 

2. The effective diffusivity. We consider the periodic case [13] and for time- 
independent flows with mean zero. For d-dimensional flows u(x) that are incompress- 
ible and have mean zero, there exists a skew-symmetric matrix H = (Hij (x)) such 
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that V H = u. The flow u has the Fourier representation 

(2.1) u (x) = Zeikxi p(k) 

k0O 

and 

(2.2) H1q(u) = 

j 
eik 

x 

kpitq(k) 

- 

kqiip(k) 
(2.2) ~~~Hpq (U) = 

From the fact that V* u = 0, it follows that V . H = u. Equation (1.1) for T can now 
be written in divergence form 

(2.3) Ot = V. (EI + H)VT at 
with initial conditions T(O, x) To(x). To recall the basic facts in homogenization 
[13], we write (2.3) in the form 

(2.4) t E Z a ( (ax) j) 

where 

aij (x) = E 6ij + Hij (x) 

Note that the diffusivity matrix (aij) is not symmetric but that, for E > 0, the right 
side of (2.4) is uniformly elliptic. In homogenization, we seek the large time, long- 
distance behavior of solutions of (2.4). This is expressed in terms of a small parameter 
6 > 0 by replacing t by t/62 and x by x/E in (2.4). We then have 

(2.5) at _El azi ( ij (xaTO d 
a O at i,j=1 Ox 6 axj) 

and we assume now that the initial conditions do not depend on 6 

(2.6) T(0, x) = To(x) 

This is equivalent to the statement that the initial data for (2.4) are slowly varying. 
For periodic diffusivity coefficients in (2.5) that are uniformly elliptic but not nec- 

essarily symmetric, it is not difficult to show [13] that T(t, x) = T6(t, x), the solution 
of (2.5), converges to T(t, x), the solution of an equation with constant coefficients 

(2.7) at Z i 
i,j=1 

T(0, x) =To (x) 

The convergence is in L2 

(2.8) sup J T3(t, ,x T )2dx 0 
a,;, 2 
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as 6 -* 0, for any to < oo. The effective diffusivity matrix (aij) is obtained by solving 
a cell problem as follows. For each unit vector e, let X = x(x; e) be the unique (up 
to a constant) periodic solution of 

(2.9) E a_aij(x), +ej 0 

Then 

(2.10) ae e (a(VX + e) . (VX + e)), 

where ( ) denotes normalized integration (averaging) over the torus. 
The cell problem for the convection-diffusion equation (2.3) has the form 

(2.11) V * [(EI + H)(VX + e)] = 0, 

which, in view of the relation V . H = u, is equivalent to 

(2.12) cAX+u VX+u e = 0. 

The effective diffusivity matrix in this case is denoted by o,,, as in ?1, and (2.10) 
becomes 

(2.13) o,(e) = oae * e = o(e) = c((VX + e) (7X + e)) 

We see, therefore, that in the periodic case the small diffusion limit (e -* 0) of the 
effective diffusivity oa, reduces to the analysis of the singularly perturbed diffusion 
equation (2.12) on the torus. 

The fact that the cell problem (2.9), or (2.11), determines the effective diffusivity 
can be understood physically from the following. Let {ej} be a basis of orthogonal 
unit vectors in Rd, let Xj be the solution of the cell problem (2.11), and let 

(2.14) Ej = VXj + ej. 

Then Ej is the concentration or heat intensity, and 

(2.15) Dj = (EI+H)Ej 

is the flux. Since H is skew symemtric, the intensity-flux relationship is similar to 
that of a Hall medium [14], [15]. From (2.11) and (2.14), we see that 

(2.16) V x Ej = O , V * Dj = O , (Ej) = ej, 

and 

(2.17) -"F(Ej) = (Dj). 

Relation (2.15) is the linear constitutive law relating intensity and flux. Relations 
(2.16) tell us that Ej is a gradient, that there are no sources or sinks, and that the 
mean or imposed intensity is a unit vector in the direction e3. The effective diffusivity 
o,, is defined by (2.17), which is the linear constitutive law relating mean intensity 
and mean flux. It is generally a nonsymmetric matrix given by 

(2.18) ei ej = o(ei,ej) = (Di 
? ej) 

= _(E 
T 

H. E 
TT 

TEjTE 
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In this paper, we require the effective diffusivity matrix to be symmetric, as this makes 
it easier to apply the variational principles that are introduced in the next section. 
It is shown in Appendix A.3 that, if the effective diffusivity matrix is the same when 
the stream function H is changed to -H, then it is a symmetric matrix. The same 
is true in any number of dimensions if u is changed to -u. If in particular, for two- 
dimensional periodic flows, the stream functions have one of the following forms of 
antisymmetry, then the effective diffusivity tensors are symmetric: 

(a) Translational antisymmetry: H(x + r) =-H(x), for all x and for some r; 
(b) Reflectional antisymmetry with respect to an axis, for example, the x-axis: 

H(x,,X2) -H(xj,-X2), for all xl, X2; 
(c) 1800-rotational antisymmetry or reflectional antisymmetry with respect to a 

point, say, the origin: H(x) =-H(-x) for all x. 
There are flows that may not have any of these properties; nevertheless, they have 

symmetric effective diffusivity tensors, such as shear layer flows. It is not clear as to 
what are the most general flows that have symmetric effective diffusivity tensors. All 
flows considered in this paper are either shear layer flows or have one of the above 
antisymmetries so the effective diffusivity tensors are symmetric. 

From the skew symmetry of H and (2.16), we conclude that (2.18) reduces 
to (2.13), 

0'6 (ei ei) = oa6 (ei) = ((cI - H)Ei ei) 

(2.19) = ((I + H)Ej Ej) 
= E (E El). 

The full diffusivity matrix in the general nonsymmetric case is considered again 
in Appendix A. 

The V behavior of the effective conductivity for the cellular flow (1.5) (see 
Fig. 1.1) can be understood by the following simple scaling argument. The con- 
centration of the diffusing substance is nonnegligible only in a small neighborhood 
of the separatrices of the flow. Let 6 be the width of this boundary layer around 
the separatrices. Since the molecular diffusivity is c, the time to traverse diffusively 
the boundary layer is tD 62/E. The time to go around a flow cell by convection is 
tc - 1, since the flow speed is of order 1 and the flow cell size is of order 1. Convection 
and diffusion balance to set up the boundary layer so that tD tc or 6 , which 
determines the width of the boundary layer. The effective diffusivity is now estimated 
by o, E 6-2 6 = ,/ since in (2.13) the concentration gradient is of order 8-1 in 
the boundary layer and negligible elsewhere. 

This simple scaling argument does not consider the stagnation points of the flow 
near which it slows down. However, the analysis of ?4 shows that the stagnation points 
do not alter the scaling behavior of ar. Only the proportionality constant is affected. 
An interesting example where the stagnation points of the flow affects the scaling is 
the following [2]. Consider a one-dimensional array of cellular flows that stick to the 
lateral walls. Let 6 be again the width of the boundary layer near the walls. Here again 
tD , 62/c, but since the speed vanishes on the lateral boundaries and is smooth, we 
have tc - 1/6, where 6 is the speed near the walls. Thus tc- tD gives 6 8 1/3 

and hence ar _ E c-2 6 = c2/3. We do not treat this case in detail here, but we have 
given the scaling argument so that the influence of stgnation points and surfaces can be 
appreciated. More applications of the scaling argument can be found in [16]. 

3. Hilbert-space formulation and variational principles. In this section, 
we set E 1 and study the cell problem (2.15)-(2.17) that defines the effective 
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diffusivity Cr. We give a variational formulation for this problem, which is partic- 
ularly useful in the asymptotic analysis of u, as E -* 0. Let H be the Hilbert space of 
square integrable, periodic vector functions 

(3.1) KH {F(x) , (IFI2) < oo}, 

where, as before, ( ) denotes integration over the unit period cell (the unit torus). Let 
Kg be the subspace of irrotational (gradient) fields. The orthogonal projection onto 
Kg is denoted by Fg and has an explicit expression in terms of Fourier series. If 

(3.2) F(x) = eik xF(k) 
kEZd 

then 

FgF VAV1V . F 

(3.3) Zk(k F(k)) eikx 

k$O 

Let Ko be the subspace of constants in H and Fo orthogonal projection onto it. 
Clearly, 

(3.4) FOF = (F) = F(O). 

Also, let KH be the subspace of divergence free vector functions, with F, its orthogonal 
projection. Then 

F,F =-V x A-1V x F 

k x (k x F(k))etk-x 
(3.5) kfo JkJ2 

- Ej (1 -Ikk) F(k)etk x, 

from which we deduce that 

(3.6) ro + rg + rC = 1 

or, equivalently, the well-known fact that 

(3.7) KH =Ho K e. -Hc 

The cell problem (2.15)-(2.17) (with E = 1) can be expressed through Fg in a 
very convenient way, 

(3.8) E = e-FgHE 

with 
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Here we have written the quadratic form ae- e as a(e). The fact that E satisfying 
(3.8) also satisfies V x E = 0 and (E) = e is clear. Taking divergence of both sides 
in (3.8) gives 

(3.10) V E=-V HE, 

and hence (2.15) (with E = 1) is satisfied. Note that, in addition to being a convenient 
way to define E, (3.8) is also a good way to define E mathematically, since it is an 
integral equation formulation. 

3.1. Variational principle for the upper bound. We want to find a way to 
express a(e) as the minimum of a functional. However, since H is skew symmet- 
ric, (3.8) is not the Euler equation of a quadratic functional. To obtain a suitable 
variational formulation, we must first symmetrize (3.8). 

Denote E by E+; that is, let E+ satisfy 

(3.11) E+=e -gHE+ 

and let E- satisfy 

(3.12) E-= e + FgHE-. 

Also, let 

(3.13) A= 2 2 

Then 

(3.14) A =e-FgHB, B =-1gHA 

and 

(3.15) v(e) =((A + B) * (A + B)) 
( ((A A)) + ((B B)). 

Here we have noted that 

(A B) =((e-FgHB) B) 
=-(FgHB . B) 

=-(B HFgB) 

=-(B gHB) 
=-(B* (e - FgHB)) 

=-(B A), 

which makes the cross terms in (3.15) vanish. Substituting B =-1gHA into the first 
equation in (3.14) and in (3.15), we obtain 

(3.16) A = e + FgHFgHA, 

(3.17) ca(e) = (A. A) -(HFgHA . A) 
= ((I - HF9H)A A). 
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Let 

(3.18) KH =HFgH 

and note that it is a selfadjoint and positive operator 

(KHF F) = (FgHF . FgHF) > 0. 

Thus, A satisfies 

(3.19) A = e-FgKHA 

and 

(3.20) co(e) = ((I + KH)A A). 

Since KH is selfadjoint and positive, it is easy to see that 

(3.21) oa(e) inf ((I + KH)F F). 
V x F=O 

(F) =e 

In fact, the Euler equation for this variational principle is 

(3.22) V (I+ KH)F 0, 

V x F = 0, (F) =e, 

which is equivalent to (3.19). Note, however, that (3.22) is quite different from the 
cell problem (2.15), (2.16) (with E = 1) because KH is not a matrix but an operator 
given by (3.18). Thus, (3.22) is a nonlocal, elliptic cell problem, and the nonlocality 
is a direct consequence of the symmetrization. The variational principle (3.21) was 
derived before by a different method in [8]. A more general discussion of variational 
principles and symmetrization is given in Appendix A. 

When the dependence on E is restored in (3.21), (3.22), we have that 

1 
(3.23) KHH 2HIPH 

and 

(3.24) a,(e) inf E((I + K )F F). 
VXF=O, (F)=e 

In two space dimensions, a flow u(x) that is divergence-free can be expressed in terms 
of a stream function H(x) 

(3.25) u(x) = V'H(x) Hy (x), HX (x)), 

where x = (x, y) and then 

(3.26) H(x) ( -H(x) H(x) 

The simplest bound we can obtain for oc(e), which is, of course, very bad as E -* 0, 
comes from (3.24) when we put F = e as trial field. Then 

(3.27) CJ < E + (FgHe . He) 
Muchbettrbondsandsympi l(u a e(-A) e) 

Much better bounds and asymptotic limits are obtained in subsequent sections. 
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The variational principle (3.21) can provide upper bounds, and careful choice of 
test fields in (3.24) can provide upper bounds for ar (e) that do not become, trivial 
as E -* 0. To obtain more precise information about oc,(e), however, we need lower 
bounds as well. We describe next how to do this. 

3.2. Variational principle for the lower bound. Let us return to the case 
where E = 1, since this parameter does not play any role in the calculations that follow 
and can be reinserted at the end. From general duality considerations, we know from 
(3.21) that 

(3.28) (ar(e) )1 inf ((I + KH)-1G G), 
V G=O 
(G) =e 

where (oa(e))-1 is the inverse of the quadratic form a(e). This variational principle 
is not useful, however, because KH is a nonlocal operator, and, when the c-scaling is 
restored, the operator (I + KH)-1 is difficult to handle. 

To avoid having an operator such as (I + KH)1 in the variational expression for 
(o,(e))-', we proceed as follows. We work in JR3 or JR2 to be able to use simple vector 
analysis, but there is no loss in generality.1 Let {e1, e2, e3} be an orthonormal basis 
in R3. We return to the cell problem (2.15), (2.16), with E = 1, and write it in the 
form 

V. (I + H)E k =O, 
(3.29) V x Ek = 0, 

(E k) = e kI k = 1, 2, 3. 

Let 

(3.30) (I + H)Ek = E k 

where cJlk are the matrix elements of oa(e) ae . e given by (2.13) or (2.19) (with 
E = 1). If for 1 = 1, 2, 3, D' satisfies 

V x (I+H)-Dl= 0, 

(3.31) V 0 D , = O, 

(D1) = e , 

then Ek =El(I + H)-1D'a'lk satisfies (3.29) and 

e k= j((I + H)-<1D')alk. 

Dropping the superscripts, this is equivalent to solving for D such that 

V x (I +H)-<D = 0, 

(3.32) V- D = 0, 

(D) = e, 

In Appendix B, we use differential forms for a similar computation in four dimensions. 
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and then 

(33) ((e))1 ((IJ+ H)-1D e) 

- ((I + H)-1D D). 

In two dimensions, the matrix H has the form (3.26) 

Therefore 

(3.34) (I+ H)-1 1 (I-H 
Il?H2('H 

In three dimensions, H has the form 

/ 0 -a3 a2 
(3.35) H j a3 0 -a1 

\ -a2 a, 0/ 

Define the vector 

(3.36) a = (a1, a2, a3) 

and let a = lal be the length of a. Then 

(3.37) (1 +H)-1 1 2( +aga-H). 

Returning to (3.33), we see that in two dimensions 

(3.38) (ID(e)<1 Kl1HDD) 

while in three dimensions 

(3.39) (cT(e) )l 1+2(I+aXa)D.D> 

In both two and three dimensions, problem (3.32) has the form 

V x (S - U)D = 0, 

(3.40) V- D = 0, 

(D) = e, 

where S is a symmetric, positive definite matrix, and U is a skew symmetric matrix. 
We rewrite (3.40) as an integral equation as we did for the cell problem for E, (2.15)- 
(2.17), with (3.8). As in (3.1), let 

(3.41) {Hs = {F(x), (IF12)s < C?} 

be the Hilbert space of square integrable, periodic vector functions with inner product 

(3.42) (F, G)s = (SF, G). 
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Let 

(3.43) As = V x (SV x.) 

This is a second-order elliptic operator with bounded inverse As-1 defined over all 
square integrable, divergence-free fields F with (F) = 0. Define on AS the projection 
operator 

(3.44) Fs = V x A-1V x (S.). 

This is indeed a projection operator 

(JjFF G)s = (SV x AS-1V x (SF), G) 

= (SF,V x A-1V x (SG)) 
= (F, FSG)s 

and 

(FS)2F = V x A-1V x (SV x A-1V x (SF)) 

= V x A-1V x (SF) - FSF. 

Using Fs, we can now write (3.40) in the form 

(3.45) D = e - se + JFSS-1UD. 

Clearly, D satisfies (D) = e and V D = 0. We also verify that 

V x (SD) V x (Se) - V x (SF4se) 

+V x SJ4SS-1UD 

V x (UD) 

so that V x (S - U)D = 0. Thus, (3.45) is equivalent to (3.40). 
The projection operator Fs takes vector fields F in 'HS into divergence-free fields 

that have mean zero. It is therefore analogous to the projection operator F> on H 
given by (3.5). It is interesting to look for a characterization of the operator I -Fc 
that projects into the orthogonal complement of divergence-free fields in AS. For this 
purpose, we let 

(3.46) F - FSF = G 

and we note that 

(3.47) (G) = (F), V G = V * F, 

and 

(3.48) V x (SG) = 0. 

From (3.48), we deduce that 

(3.49) G = S-1Vh 
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and from (3.47) 

(3.50) V (S-1Vh) =Ash = V . F. 

The elliptic operator As has a bounded inverse on zero mean square integrable func- 
tions. Thus 

(3.51) Vh VAs-V l F + S [(F) - 1VA- V F)], 

and, if we set 

(3.52) rs = -1VA-1V 

then 

(3.53) G = IFSF + (F) - (17SF) 

and 

(3.54) F = IFSF + IFSF + (F) - (17SF). 

The operator Fs is selfadjoint in 'HS and (FS)2 = Fp, so it is a projection operator. 
It is, moreover, orthogonal to r1s, since rsrs = 0. However, r1s does not map vector 
fields to mean zero, curl-free vector fields, but rather to fields annihilated by the 
operator V x (S ). Since the mean of FSF is not zero, it must be subtracted on the 
right in (3.54). 

We now return to (3.45) and carry out its symmetrization, as we did for (3.8). 
Let 

(3.55) eS = e - Fse 

and rewrite (3.45) in the form 

(3.56) D = eS + FSS1 UD. 

With the notation of (3.40), both (3.38) and (3.39) become 

(3.57) (o,(e)) -1 = (SD D) = (D D) s. 

For the symmetrization, let D+ satisfy (3.56) 

(3.58) D = es +? FS UD+ 

and D- satisfy 

(3.59) D- es - rss-1UD-1. 

As in (3.13), let 

(3.60) A B 

Then 

(3.61) A = es + FSS1UB, B = rIjS1UA, 
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and 

(3.62) (a,(e))1 ((A + B) (A + B)s 
(A A)s ? (B . B)s, 

where the cross terms vanish as in (3.15). Substituting B = FSUA into the first 
equation in (3.61) and in (3.62), we obtain 

(3.63) A = eS + FSS-1UjSS-1UA 

(3.64) (aJ(e))-1 = (A A)s + (IFSS-1UA .FSS-1UA)s 

= ((I- S-1UFSS-1U)A A)s. 

Put 

(3.65) Ks =-S-1UJFSS-1U. 

As with KH in (3.18), we note that it is selfadjoint and positive definite in 'S 

(KSF -F)s =-(UFSS-SUF F) 

= (JFSS-1UF S-1UF)s 
- (FSS-1UF IFSS-1UF) > 0. 

In terms of Ksu we can write (3.63) for A in differential form 

V x [S(I + KU)A] =0, 

(3.66) VA 0 ()e V -A = o,1 (A) =e. 

From the differential form of the equation for A and (3.64), we see that we have 
the following variational principle for (oa(e))-1: 

(3.67) (oa(e))-1 inf ((I + Ku)G . G)s. 
V *G=O 
(G) =e 

3.3. Summary for the two-dimensional case. We are particularly interested 
in the two-dimensional case, where, by (3.34) and (3.40), 

(3.68) S= I H. 
I1?H2 I1?H2 

Since the curl operator in two dimensions can be expressed in terms of the perpen- 
dicular gradient 

(3.69) =(-a a) 

we have that 

As =V' (2I v') 

(3.70) r VS = A-lvl(. 

Ks =-HFSH, 
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and (3.66) for A is 

(3.71) V [1+ H2 (I-H cH)A1 =O, 

V -A = O, (A) = e. 

In the two-dimensional case, we also use the simpler notation 

F = VF = VA-,V., IF ]C= V'IA-1v'I 

(3.72) AH = AS, 

FH =F, FHS=H . 

With this notation and the E dependence reinserted, the direct and inverse variational 
principles become 

(3.73) a6(e) inf E(Vf Vf) + -(FHVf FHVf)} 

and 

(a) (e) inf K 1 l H2V9V9) 

(K 1 ? H - /H Vg ' 11. H 9 

where 

(3.75) E 1H = V'A2-lHV'H (1HH + E- 2)H2 

(3.76) EIH (1+ -2H2 2 ) 

In the following sections, we use the variational principles in the form (3.73) and 
(3.74). 

4. Convection-enhanced diffusion for cellular flows. The cell problem 

(4.1) EAX+u-VX+u-e=0 

determines, up to a constant, a periodic function x(x, y), -r < x < r, -7r < y < wr, 
and the effective diffusivity is given by 

(4.2) ,,(e) = e((VX + e) X(V + e)), 

where ( ) is normalized integration over the period cell. The velocity field u is incom- 
pressible, V u = 0, and comes from a stream function H(x, y) 

(4-3) U = (-Hy, Hx) = V1 1H. 

The stream function H(x,y) = sinxsiny gives rise to a cellular flow (see Fig. 1.1), 
and, when e = (1, 0) is a unit vector in the x direction, then X is odd in the x direction 
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FIG. 4.1. Quarter cell. 

and even in the y direction. Problem (4.1) can then be restricted to a quarter of the 
cell (see Fig. 4.1), 0 < X < Kr, 0 < y < 7r, and, if we define 

(4.4) P= X+X 

then 

(4.5) cAp+ u- Vp 0, 

(4.6) 0P (X,0) = ap (X, ir) = 0, ay 09y 

(4.7) P(0, Y) = 0 , P(7r, Y) = 7r, 

and 

__ 
__OP 

2 p 2- 

(4.8) a. (e) = 2 j [(0P) + 
-y 

] dx dy. 

We consider general cellular flows, that is, flows with stream function H(x, y) 

for which the lines x = 0 and y = 0 are separatrices, and level lines of H = 0. 

Furthermore, we assume that H is symmetric with respect to the x- and y-axes. 

Then the quarter cell reduction (4.5)-(4.8) is possible, and we work with it. First, 

we introduce a new coordinate system (x, y) -* (H, 0) from the rectangle 0 < x < r, 
0 < y < ir to the region H > 0, -4 < 0 < 4, so that 

(4.9) VH VO = 0 
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near the boundary of the rectangle and 

(4.10) IVOl = IVHI 

on the boundary of the rectangle. There is a unique function O(x, y), the circulation 
or angle variable, satisfying (4.9) and (4.10). It is not defined in all of the rectangle, 
in general, but only in a region including the boundary of the rectangle. The fact 
that 0 runs over the interval -4 < 0 < 4 is a normalization condition on the stream 
function H. We call the coordinates 

(4.11) (h, 0) ($,) 

the boundary layer coordinates. In terms of the boundary layer coordinates, the cell 
problem (4.5)-(4.7) becomes 

(4.12) IVH 2 +P ? H +P ? 2 P ? A0 0? + J o0P 

where J = Hyx- Hx- y H -V1H VO is the Jacobian of the map (x, y) -> (H, 0). 
Because of (4.10), IVH12 IJI at the boundary, and hence the principal terms as 
E - 0 in (4.12) are 

&2 p ap - 
(4.13) a +2 ? - 

with 

p(0, 0) = 0, 0 < 0 < 2, 

(4.14) Ohj0)6 0, 2<0<4, 

p(O, 0) = 7r, -4 < 0 < -2, 

O 
(01 0) = ?, -2 < 0 < 0. 

Oh 

From (4.8), we obtain 

(4.15) 7 (e) - 2 X j4(j dhd0. 

The above analysis is essentially due to Childress [1]. In this section, we derive 
(4.15) using the variational principles of ?3. The main difficulty in attempting to 
justify the asymptotic analysis of Childress is the lack of regularity of X at the separa- 
trices. This lack of regularity is an essential aspect of convection-enhanced diffusion 
and not only a technical difficulty. In the variational approach regularity is no longer 
a problem. 

4.1. Upper bound for the effective diffusivity. As in (4.13), (4.14), we fix 
e = e1 = (1, 0), since the case where e = e2 = (0, 1) is similar. Let 

(4.16) TFBL { f f(h, 0), h > 0, -4 < 0 < 4, f e C?, 
( f const for h > N, for some N > 0} 
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and suppose that f e FBL also satisfies the boundary conditions 

f(0,0)=0, 0<0<2, 

(4.17) af (010) =0 -2 < 0 < 0, 2 < 0 < 4, 

f(O, 0) = 7, -4 < 0 < -2 

and the matching conditions on the separatrices 

h0 Of 
J dh-a - 0, -2 < 0 < 0, 2 < 0 < 4, 

(4.18) J dh/ a] f 9=0, 0 < 0 < 2, 

JdhJ 4=O, -4<0<-2. 

The matching conditions (4.18) are also the solvability conditions in evaluating the 
nonlocal term in the functional, as can be seen in the following estimates. Consider 
now the variational principle (3.73). We may look for trial fields F that have the 
quarter cell symmetry of (4.5)-(4.7). Then the averages in (3.73) can be restricted to 
a quarter cell, also, and, if f E FBL, then F = Vf is an admissible trial field. 

We now calculate Vf and FH Vf for f E YBL and - small. We have that 

(4.19) fH =X af + ?o af fy 
H af Oaf (4.19) 

if~VE ah. ao0 JYIFEah 
v a0, 

Then 

(c(F F) ~ I jj I VH12J(0)2 dhd0 

7r 2 4 (0hJ ahd 

since IVH12 IJI near H 0. Similarly, let (1/c)FHVf Vf' for some periodic 
f'; then f' is the solution to the singular Poisson problem 

(4.21) cAf' =u Vf 

and 

(4.22) 1-(FHVf FHVf) = (Vf Vf'). 

Concerning the energy integral c(Vf' . Vf'), to leading order, it is sufficient to solve 
f' from the dominant terms in (4.21) after the boundary layer rescaling 

(4.23) _VH _l a fJ 

which becomes 

(4.24) a2 a fa 
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since IVHJ2 = J on the separatrices. Equation (4.24) is an ordinary differential 
equation in h and can be solved by direct integration. The matching conditions 
(4.18) guarantee that the existence of the solution f' to (4.24) in the function space 
JBL satisfying the null boundary conditions. From (4.21), we see that 

1 f~ f4 (f~7~ &f \2 dhdh 
1(FH Vf FH Vf) -, I Of/ dh) hd 

(4.25) J J-4 \J / 
1 00 4 (f/) 2dha 

1F J~Oh) dhdO. 

Since f e FBL is identically zero for h large, the h integrals are well defined. Using 
(4.20) and (4.25) in (4.8), we have 

o,(e) < c(Vf - Vf) + -(FHVf - FHVf), 

and hence 

(4.26) lim1 a J fe< f{ ?h (f 00 )dh dh}dO. 

Since the left-hand side does not depend on f, we also have 

(4.27) lim Iu(e) < inf JI A 
4 

f Ofh) + 
h Of dh') } dhdo 

40 VE? f fETBL iT2 A oh0 

4.2. Lower bound for the effective diffusivity. To obtain a lower bound for 
,(e), we use the variational principle (3.74) 

(56(e))l i vnf I 
I 

( ( -f2V9*V9 (4.28) 
(u( 1 

(V'g)=e E 
K K 1 -c2H2 Vg V'g~ 

? K 1? +-2H2 'rF -lHHV' . !F_lHHVIg)}, 

where Fr1H and /-1H are given by (3.7and nd (3.76), respectively. Boundary layer 
trial functions can be constructed by noting that, when e = e1 = (1,0), they arise 
from g = X-y, when X is periodic, so that V'g = VX?+(1,0) and (V'g) = (1,0). If 
the space FBL in (4.16) is denoted more precisely by JBL(el), then the boundary layer 
functions for (4.28), with quarter cell symmetry, FB-L(el), are the same as -JFBL(e2). 

Thus, .FBL is the same as (4.16), but with the boundary conditions (4.17) replaced 
by 

g(O, 0) = O, 2 < 0 < 4, 

(4.29) 0g A 0) = 0, o < 0 < 2, -4 < 0 < -2, 

g(O, o) = 7, -2 < 0 < 0 
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and the matching conditions replaced by 

h2 dh' (h0)2 36*O as h t 0, 0 < 0 < 2,-4 < 0 <-2, 

[00 fh 1 _ 

(4.30) / dh h2 dh' 0 = 0 O < 0 < 2, 
J~(h' )2 00 

J dh h2 Jdh' 1 = ?, -4 < 0 <-2. 
(h' )2 00 I 

We can now use a trial function G = V'g, with g e -FBLL in (4.28). Calculations 
very similar to those for (4.20) and (4.25) now yield the bound 

1 [00[4r1 ( 0?,\2 
lim(a(e)) inf - eFA I 2 <\nh} 

(4.31) 40EF BL? (4h)2~h)}hO 

(lo(h/)2 00 ) 

4.3. Equality of upper and lower bounds. We must now show that the 
upper bound (4.27) is equal to the reciprocal of the lower bound (4.31) and that they 
coincide with the constant in (4.15), obtained by solving (4.13), (4.14). This proves 
the following theorem. 

THEOREM 4.1. The limit 

(4.32) lim gU,(e) 72 t Jth dh dW 
40OVE 72J0 4\Oh/ 

exists and equals the right side. 
Proof. We begin with (4.13) and write it in divergence form 

(4.33) 0. (11 ? h)0p? - 0, 

where p+ = p, the solution of (4.13), and 

(4.34) (9 - ) 

(4.35) I1= 
I 0 h ) = ( h h 

Both p+ and p- are to satisfy the boundary conditions (4.14). We define 

(4-36) c* (e) = i 
4(0 ) dh d0. 

We now proceed to symmetrize this problem as we did in ?3. Let 

(4.37) A= 2 'P, B-= 2 P- 

Then A and B satisfy 

(4.38) ,9h2 + ,9?} = ? ) , 202A OB 02B =A 
Oh2 ~00O2 o 
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Formally, for now, we note that 

(4.39) B 
h h OAA 

and hence A satisfies 

(2A h h 02A 
(4.40) - I:0P0 0 

along with the boundary conditions (4.14). Since p+ = A + B, we note from (4.36) 
that 

(4.41) c*(e) 72 ? - j)dho d 

(4.41) 100r4(/ A2 (hA 2 

72 A w 1 (Oh) ? 00 )o 
where the cross term vanishes 

j 4 OA &B f00 =-XA( 4 a hA dhdA 
f-f4 -dhdO - A dh d1 j0 4Oh Oh J 4 

= 00f4 OA 
A1 dh dO 

-0. 

We now see that the right side of (4.41) is identical with the integral in (4.27) and 
that (4.40) is the Euler equation for this functional. This identifies the upper bound 
(4.27) with the constant c* in (4.36) that comes from the boundary layer problem of 
Childress (4.13), (4.14). The sense in which (4.40) holds (plus the boundary conditions 
(4.14)) is precisely as the Euler equation of the variational problem (4.27) in the 
appropriate Hilbert space defined by the inner product derived from this quadratic 
form and by the closure of JBL with this inner product. 

To identify the lower bound (4.31) with (c*(e))-1, we proceed again as in ?3. 
From 

0a (I1 + h)&p 0, 

we conclude that there is a function 0(h, 0) such that 

(4.42) c*(e)OLq = c*(el) (-1, )( + h)Op. 

Thus, since 0 0LO = O, we have 

O' (11 + h)-1 010 0 o 

which is equivalent to 

(4.43) Al (12 - h)O'o 0 

with 
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We show that a satisfies the dual boundary conditions (4.29) and that 

1f 4 1 
(4.45) (c* (el))l * 10 1 4 1O(2 &h) dh dO. 

We prove (4.45) first. From (4.15), we have that 

I 0f 4 (ap 2 
c* (el) =72] Oh) dh dO 

- 7r2 j j ap- (I1 +h)&pdhdO 

1 fo f4 

-(c*(el))2 20 (]1+ h)-l &'q3 a0'qdhda 

1 20O J4 1 (E02 
- (c*el))2 i7 Li( h2 dh dO 

which is the same as (4.45). 
To prove that q, defined by (4.42), satisfies the boundary conditions (4.29), we 

write (4.42) in component form 

-*0- OP +h-p 

(4.46) 
00 
a 

h 
aG' 

c* 0 =-h 0P 

From the second relation, we obtain 

c*a = c(O) - hOh' 

h 

= c(O) -hp+ p 

where c(O) is a periodic function. Using the first relation in (4.46), we obtain 

-* &ab _-/0+a + 
_ 
0 

ap ap , =- cIO) +h-0+0h 

from which we conclude that c'(0) 0 and hence c(0) _c, a constant. Now, on the 
sides 2 < 0 < 4 and -2 < 0 < 0, we have that 

afGj dhf=-0 ah2dh a-p(o,o) =_ 

by (4.14). Thus we may choose the constant c to equal 

c=- /Jpdh, 2<0 <4 
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and then 

b(0,0)=O on 2<0<4 

It remains to show that 

(4.47) (0,0) = 7r on -2 < 0 < 0. 

For this purpose, we note that, on -2 < 0 < 0O 

b(O, 0) - (O, 0) - (O, 0 + 4) 

jO? A + a?(0,0) 

1 [0?4 ap 
F]0 ~ (0,0) 

c* O h(') 
- lf 

~(0,0) 

1j2p ~(0 0). 

However, 

c 2 ~ (P)dh dO 
7r J4 Oh 

- 42 j O)P(01 0)(fo(41) - - [ P(O 0)ap( 0) (from (4.13)) 

14 1 j 2 dO P(0j 0)(fo 41) 

and hence (4.47) follows. 
We now return to (4.43)-(4.45) and symmetrize it so that (c*(ei))-1 is given by 

a variational principle. We let q =$+ and define q- by 

(4.48) a' 1 2 + h)0'- = 0, 

where both + and q- satisfy the boundary conditions (4.29). We define again A 
and B by 

A= +(q +? ), B=(q$ -qY) 

and find that 

2 (a aAOA B 

h2 B + AA 
Oh2 

1- 
O 

? 
00 

af f2 a f IO OAc 

Oaf ft2 aft ? 0 

Thus 

B = Jfth2 9A 
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and 

(4.49) h ( 12AA_h-2 fh12A o O2h k7 Oh)J' h2 002 

while, from (4.45), 

(c*(e))-l=1 
/04 1 (0A OB 2 

(C*(el)>-l -2 j 4 A OB dh dO 
72 42 ~Oh~ Oh h 

(4.50) =2 jAj41 AA h2 + OB 2J dhdO 
If00f4 [1(OA 2 

(hI OA\21 
= 2X j [1 0A + h2 (2 )]dh d0. w2]j4 h2~ Oh) ~~ h2 100) ddO 

This is precisely the right-hand side of (4.31), since (4.49) is just the Euler equation 
for that quadratic functional. This proves that the limit (4.32) exists and equals c*. 

5. Corner layer theory: Nonoverlapping eddies in point-contact. The 
effective conductivity of a two-component conductor with checkerboard geometry is 
equal to the square root of the product of the component conductivities. If, for ex- 
ample, the conductivity of the black squares is 1 and the conductivity of the white 
squares c, then the effective conductivity is . Conductors with random checker- 
board geometries can also be studied. Now each square has conductivity - with prob- 
ability p and conductivity 1 with probability 1 - p, independently of other squares. 
Kozlov [10] studied this problem by variational methods and found that there are the 
following three regimes: when 1 > p > PC, ,the poorly conducting material prevails, 
and the effective conductivity is O(E); when 1 - PC > p > 0, the normally conducting 
material prevails, and the effective conductivity is 0(1); when PC > p > 1 - Pc, the 
checkerboard configuration prevails, and the effective conductivity for this interme- 
diate regime is O(V/,). The critical probability Pc 0.59... is equal to the critical 
probability for the site percolation problem. 

In this section, we study convection-diffusion problems for a two-dimensional 
periodic checkerboard configuration that consists of eddies with stream function H = 
sinxsiny, for example, and still fluid, H = 0, alternatively from cell to cell, as in 
Fig. 5.1. The molecular diffusivity is -. Using variational methods, we develop a 
corner layer theory that includes the boundary layer theory treated in ?4 as a limiting 
case. We have also studied the random checkerboard configuration for convection- 
diffusion problems. Our results are parallel to those of Kozlov [10] and are presented 
in an upcoming paper. 

Corner layers arise because eddies have in contact only a point instead of an edge 
(i.e., a separatrix); for example, if we take away every other vortex in the cellular flow 
H = sin x sin y and change the sign of every other remaining vortex. The resulting pe- 
riodic array of vortices are in contact only at the corners and have the 180?-rotational 
antisymmetry with respect to the origin and consequently a symmetric effective flux 
tensor. The contact angle is equal to wr/2 (see Fig. 5.1). For these flows, the corners, 
rather than the separatrices, control the effective diffusivity. 

Before analyzing the problem with positive contact angle, let us modify the flow 
near the corner as follows. Let us regularize the streamlines near the corner so that 
they have well-defined tangent at contact point and therefore zero contact angle (see 
Fig. 5.2). Let t denote the tangential coordinate and s the normal coordinate. Now 



CONVECTION ENHANCED DIFFUSION FOR PERIODIC FLOWS 357 

60 - 

-2 - 

-4 

-6 - 
-6 -4 -2 0 2 4 6 

FIG. 5.1. Nonoverlapping eddies in point-contact. 

assume that the streamlines near the contact point are asymptotically defined by 
s -tl+ = constant. Here -y is the degree of the vanishing of the contact angle 
approaching the contact point. When two separatrices collapse, -y is infinite, and the 
situation is back to cellular flows treated in ?4. When -y is zero, the contact angle is 
positive. 

It turns out that the specific shape of the separatrices is not important. Only 
their asymptotic form near the contact point matters. When sufficiently close to the 
contact point, we may assume, without loss of generality, that the boundaries of eddies 
(that is, the separatrices) are defined exactly by s = ?Jtll+, and the stream function 
has the form 

uo(s - tl1+^') when s > ltll+^7 

(5.1) H= 0 when Isl < JtJ1+Y7 

Iuo(s + JtJ1+Y) when s <-ItKl+7. 

We assume that the velocity at the separatrices uo 7& 0 is different from zero in the 
following. This assumption makes the flow discontinous and somewhat unrealistic. 
The case when the velocity is zero at the separatrices can also be studied, but gives 
rise to different scalings, depending on how fast the velocity vanishes. 

As with cellular flow, particles away from the boundary are nearly trapped in 
stable closed orbits. However, unlike the cellular flow case, particles that stay near 
the boundary and eventually exit are almost trapped again in the adjacent vacant 
cells, except for those that exit from near the contact point. They can travel with 
the flow near the boundary of the adjacent vortices and exit again. Note that the 
narrow gap near the contact point creates a large concentration gradient and hence 
large diffusive flux. 
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t 

FIG. 5.2. Corner flow. 

Let us define scaled variables 

(5.2) t = t/aa s = s/(l+-/7) 
0 =0/6a, h = HIE + 

where 0 is the circulation variable defined as in ?4. Here a 1/(1 + 2'y) by the 
following scaling argument. The velocity u0 at the contact point is not zero, so we 
let the time it takes to pass the corner be 0(Ec/). The time it takes to diffuse across 
the narrow gap between vortices is 62:3(1+?) /E. These two timescales should be of the 
same order, and thus 3 =- 17(1 + 2'y). The scaling of time should be the same as that 
of the tangential coordinate t; thus a = 3 = 1/(1 + 2'y). Since -y > 0, the scale of 
the normal coordinate is smaller than that of the tangential coordinate. Therefore 
concentration gradients are 0(1/(E8(1+Y))), and a, is proportional to 

E x the area of corner layer x the square of concentration gradient 

1 2~~~~~~~~~~~~~~~~ 
(5.3) ,VE X (Ea X Eo,(1+-)) X(- ) 

,,E(1/2)(1+1/(1+2^ffl 

after substituting a = 1/(1 + 2-y). The power of E in a, ranges from 2 to I as-y 
ranges from infinity to zero. Using the variational principles, we justify this scaling 
argument and prove the following result. 
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THEOREM 5.1. For a checkerboard flow with stream function (5.1) near corners, 
the effective conductivity behaves like 

Ue- C* E(1/2)(1+1/(1+2^ffl 

where c* is a constant that can be computed explicitly. 
The proof of Theorem 5.1 is given in the following three sections. We refer to 

(t,s) for Isl < jtj1l+ and (h,O) for Isl > jtj1+7 as the corner layer variables. The 
period cell is [-7r, 7r]2. 

5.1. Upper bound for the effective diffusivity. For the upper bound, we 
again use the direct variational principle and choose trial functions according to our 
scaling argument given above. The class of corner layer trial functions for the upper 
bound is denoted by C, and f belongs to it if it is piecewise smooth and (a) for some 
No > 0, it satisfies the far field boundary conditions 

{ 7r for s > N+ and s > 

0 for s <-N N+ and -s>1+Y. 

Each f E C is associated with a corner region C, defined by {(t, Itl < No, 
1s1 < N'+'}, an eddy region E excluding C and a vacant region V excluding C. The 
corner region C = C(No,) depends on No, which may differ for different f. The 
period cell [-7r, 7r]2 is the union of the regions C, E, and V. We split the region C 
into Ce U Cv, where Ce and C, are intersections of C with the eddies and the vacant 
cells, i.e., Ce = {|s| > jitl+Y} and Cv = {Ls? < jti1+'}; 

(b) f c is a function of the corner layer variables and is piecewise smooth in 
sl > Vi1l+ and 1s1 < jtKl1+; 

(c) The matching condition on the separatrices are specified later. When E is 
small, we choose No = No(E) T oc, while E'No I 0 as E I 0, for some a > 0, to be 
determined later; we define the corner region C using this No (E). We can then discuss 
a common corner region C, eddy region E, and vacant region V for all f E C where 
C, E, and V depend only on E. For every f E C, f |E = 1r if H > 0, f |E = O if H < 0, 
and the profile of f restricted to the vacant cells f U is determined later. The 
entire profile of f in the period cell is shown schematically in Fig. 5.3. The functions 
f are normalized so that (Vf) -* (1, 0), as E l 0. 

The functional in the direct variational principle (3.73) for the upper bound has 
two terms, the local one E(F F) and the nonlocal one 1/E(FHF FHF). To estimate 
them, we break the integral over the period cell (.) into the integrals over the regions 
C, E, and V and write (.) = (')c + (')E + ( )V 

Let us consider the local integral E(F . F). First, (F . F)E = 0 by the far field 
boundary conditions (a). Second, F| can be chosen so that 

E(F - F)v = ? Ea(t1+ ) as No l ??, E c 0 while EcNo t 0. 

To see this, choose f I vucv to be smooth so that f Iv, for every V' c V is independent 
of E and No if V' is. Then the principal contribution to (F . F)v comes from the 
tiny region 6 > 0 fixed, where F = Vf is most singular due to the merging of two 
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0 0 

FIG. 5.3. Direct corner layer function. 

separatrices, Isl ?=tjl'+-, and the far field boundary conditions (a) Thus, (F F)v 
is of order 

2 J6j X (tY(w 2dsdt= ( I:| ?a+ dt 

2t+1 1 
(54 ) gsx(l+a) Na as c l 0 

=o(( 2) as No t oc 
if y > O. 

We note that the last identity in (5.1) does not hold for a 0, and this limiting case 
is analyzed later, where a logarithmic factor log 1/e appears. Third, for (F . F)c, a 
simple calculation gives 

(5.5) E(F -F)c rl_ gcdt(dl+f asj a 72 EO(1-Y lo0ce (<) 

since derivatives with respect to s and h dominate those with respect to t and 0 as 
E -* 0. In summary, we have 

E(F . F) E(F F)c 

(5.6) 6cjj(? ) 0 a 2 
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We next consider the nonlocal term (1/c)(FHF . FHF). Let (1/c)FHF Vf for 
some periodic f. Then 

(5.7) L\f =u Vf 

and 
1 

(5.8) - (FHF FHF) = E(Vf Vf). 
C 

The right-hand side of (5.7) has zero mean 

(u Vf) (u F) 

(u e) + (u(F - e)) 

by (u- e) = 0, integrating the second term by parts. Hence (5.7) is solvable, and 
f exists. As in the case of cellular flows, to leading order, it is enough to solve the 
following approximate equation for f' with the null far field boundary conditions: 

c 0s2 
1 (a0f + (1 + 7)P 0 in Ce, 

E2ca(1?-y) 0?2 f (Fu0 a-i 0Y)9f 
(5-9) ~ 02 n ~ 

52ac (l+-) a02 f in 

With a = (1/1 + 2ay), (5.9) becomes 

02 2 7 9 af0 \ i 
02 

0i v (5.10) 02f'=-uoy(,f?(1?+x)t4f)P in Ce, = inCf 

with f' is continuous across the separatrices s = ?Jtil+-. In (5.9), only the dominant 
term of the Laplacian in the corner layer coordinates appears, and a is chosen so 
that the diffusive flux is balanced by the convective flux. For (5.9) to be a valid 
approximation to the leading order of the energy integral E(Vf * Vf), it is actually 
required that (5.9) can be solved by a solution f' with the first derivative continuous 
across the separatrices. Thus, an additional matching condition must be imposed on 
the trial function f, which is, in view of the second equation of (5.10), 

J ~?IEI 2 f_ 

(5.11) ?00 0 tu) 

1 t= (0y + (I + 4)t- 3f) 

With this, f' can be solved continuously up to the first derivative, it has the following 
two parts: 

in Ce, 
f 

= 
nCr tfv' in Cv. 

Here fe satisfies the first equation of (5.10) and the far field boundary conditions in 
the definition of C, and 

(5.12) fv = fvt(9) is a linear function that matches 
the values of fe on the separatrices. 
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We then have 

(5.13) -(FHF FHF) 

- c(Vf.Vf) 

(5.14) ,vE(Vf Vf')c 

ir261-a {j j dtds (asf) } f 

From the upper bounds for both the local term and nonlocal term in the direct 
variational principle, we obtain the upper bound for the effective diffusivity oa, 

urn _ _ _ _ _ _ _ _ _ _ 1 f 00 [00 2 _ 2 

( ) l (/2)(l(l/l2)) <2 fC dt ds 0 f + Of 

with f' defined in (5.10). When f' f =p in (5.10), (5.10) is called the corner layer 
equation 

(5.16) =- p (1 + )t p) in Ce, 

p =? 0 
inCh, 

with p and its first derivative continuous across the separatrices s ? U + Equation 
(5.16) is complemented by the boundary conditions 

(5.17) p fr for h > 0, O ooo 

0 for h < 0, =?oo 

and 

(5.18) p {0 for h--oo. 

The correct weak form of (5.16) is given by (5.32). 

5.2. Lower bound for the effective diffusivity. To estimate a, from below, 
we use the inverse variational principle (3.74). Let us define a class of corner layer 
trial functions for the lower bound, denoted by C' as follows. A function g E C' if it 
satisfies the following conditions: 

(a) Far field boundary conditions: There exists a positive number No > 0 such 
that 

fir for t > No, 
9 lv0 for t <-No. 

As for the upper bound, we can associate with each g E C' a corner layer region 
{(t, s) U < No, 10, < N?l+ } an eddy region E, and a vacant region V. The period 
cell [-_r, ir]2 is the union of C, E, and V; 
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FIG. 5.4. Dual corner layer function. 

(b) g9c is a function of the corner layer variables, which is piecewise smooth in 

11 > ltl l+' and 1s1 < jil1+y and continuous everywhere; 
(c) g = g(t) for IsI < Itl1+' 
For every g E C', g9v = ir, if t > 0 and g9v = 0, if t < 0. The profile of g 

restricted to region E, which is not covered by the definition of C', is specified later. 
We note that the conditions on g are formulated so that (VLg) = e1. The overall 
profile of g is shown schematically in Fig. 5.4. 

Let us consider the local term in the inverse variational principle (1/e) 
((1/1 + (1/e2)H2)G * G). We break the integral into three parts, 

( 1 + (1/X2)H2 GG) 1 + (1/2)H2 

+ 1 (/1) G G) 

1 (1/62)H2 G 

First, (1/e)((1/1 + (1/_2)H2)G * G)v = 1/e(G * G)v = 0 by the far field boundary 
conditions (a). Second, we can choose No = No(?) t ox, 6 = No' 0 as - I 0 such 
that g v is a boundary layer function for the lower bound and the boundary layer 
theory developed in ?4 applies. We have 

(5.19) ? 
1 (l 1/62 H2 

G * = 
O ( . 



364 ALBERT FANNJIANG AND GEORGE PAPANICOLAOU 

Third, we split the integral over region C into regions Ce and Cv, 

K 1+ (1/c2)H2 G c 1(+ (l/62)H2 )C 

(5.20) + 1 ( 1 G H G 

-1(1 

+ (1/62 ) H2G G) 
+ 

-(G. 
G)CV. 

Since g g(t) in Cv, for the second term we have 

1 1 Eoz4l?y) 1No IEI1'-, 09 2 1 

-(G G)cv INJ dt dg 

(5.21) 002 
1 1 fO9IIg 

^'72 E(1/2) (1+1/(1+27,, di ds ( 9 

Here we have used the far field boundary condition (a) and a = 1/(1 + 2-y). For the 
first term, 

(5.22) - G.G rl_~~ ~ ~ ~~~~~~~~~~~~~~~~~~~ __ dt dg 
( 5.22 ) (? I + (l/E2)H2GG C 72 E3(l+-y) I sl?Il?7 h2 (as 

With a = 1/(1 + 2-y), the right-hand side of (5.22) can be further reduced to 

1 (1 9 ( 2 

(5.23) 7r2 E(1/2)(1+1/(1+2y)) 
iI 

dtds?h2 dtag1 

Since I/E(1/2)(1+1/(1+2Y)) > 1/ cE if 0 < -y < oc, we conclude that the integration 
over region C gives the dominant contribution and we summarize the estimate on the 
local term by combining (5.21) and (5.23) to obtain 

I I I~ ~~~~ II 
? 

I + (1/E2)H2 G G) ?I + (I/E2)H2 G G 

(5.24) < dtdg (5.24) T~~~~~~~2 E(1/2) (1+1/(1+2-ffl { d ts 

Itd 0 I 2 

+ J ditds h2 ( )2} 

We consider next the nonlocal term in the inverse variational principle, which is 

e3 
wIt 

+ 
(1/c2)H2 (1/g)HHG 

*(1/E)HHG). 

To estimate it, we write (I1E)F(I1,)H HV g = V'g for some periodic function g. 
Then 

(5.25) EV1 19 Il?(l/E2 )H2V9 I + V'g.)H 
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As before, to leading order, it is sufficient to consider only the dominant terms in 
corner layer coordinates 

(5.26) aia ,g + (? + /)t ,ag in Ce. 

Equation (5.26) is equivalent to 

(5.27) As T-h2ih0 g+ (+ )t ,g in Ce, 

where the different signs are taken for h > 0 and h < 0, respectivel,. To ensure 
that the normal derivative of g' is continuous across the separatrices, an additional 
matching condition is needed, which is 

(5.28) h2 f u2 (-g + (1 + -y)t- g)g 0 

on the separatrices. In summary, we have the lower bound 

lim(a) -1E(1/2)(ll/(l+2y)) 
4J0 

<1 infTff ? O ( O 1 
(5.29) - 2 gEi IJ < 1?+ dtdc [k ag 2 ag 2 

ff 1 Ft ~~~~\2 2- 

?]]dt [ K9)? (dt d) ] } 
with g' and g related by (5.26). 

When g' = qg , (5.26) is called the dual corner layer equation, 

(5.30) a-a (-0 + ( a + ) ) in Ce. 

The dual boundary conditions are 

(5.31) X 
r for 0 = oo 

10 for =-oc. 

5.3. Equality of upper and lower bounds. We show how to compute the 
constant in Theorem 5.1 in terms of the solution of the corner layer problem. 

THEOREM 5.2. The limit of the effective diffusivity is given by 

4t0 
6(1/2)(1+(1/1+2y)) 

IF2 

J J s 

where p is the solution of the corner layer problem (5.16). 
We use the saddlepoint variational principle to establish the reciprocity of the 

upper and lower bounds. We closely follow Appendix A.2, which is different from the 
method we used for cellular flows in ?2. 

We begin with the forward and backward corner layer equations in divergence 
form, 

(5.32) 0 (12 ? h) ap? = o, 
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where p+ = p, the solution of the corner layer problem, and 

(5.33) = (aO,ag) = ( Oa 

(5.34) 12 = 01)' 

(5.35) h= ( _hO)' 

with 

u0(-jtjl+) when s > itV1+, 
(5.36) h = 0 when 1s1 < jtj+-, 

uoQ( + tl1?Y) when s < -jtK+. 
Set 

E+ = 0p+, E- = p-, 
(5.37) D+ = (2 + h) ap+ (12 + h)E+, 

D- = (12 -h) ap- (2 -(h)E-. 

Then, in terms of Ei and DW, (5.32) is equivalent to 

(5.38) a DW = O, a' E- = O, 

and the boundary conditions (5.17), (5.18) play a similar role to the mean field con- 
ditions. 

Let us define 

E (E+ + E-) 
E' (E+ -E-), 

(5-39) D 
2 

D~? ) ( ) ~~~~~~D = (D+ + D-)j 
D'= (D+ -D-). 

They satisfy 

5 D' = -D = O, 
(5.40) <9l= ' E=O 

and 

D' = I2E' + hE, 

(5.41) D = I2E + hE', 

or in matrix form 
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Let c* denote the quantity of interest 

c JJ(Ilap?)2 

= j dtjds(0 ?)2 

(5.43) =(I2E+ E+) 

= 2E (I E+) + j(2E- E-) 

=2(D+ E+) +21(D- E-) 

=2(D+ E- )+-1(D- E+), 

where 

(5.44) (F G) ? j F Gdtds, 

and E+, E- satisfy the same direct boundary conditions. The last equality in (5.43) 
then follows from integration by parts, in view of (5.38). Representation (5.43) is 
equivalent to 

c* -(D' . E') + (D E) 

(5-45) ((-2-h (Et) (Et) 

which is a symmetric, indefinite form. The constant c* is given by the saddlepoint 
variational principle 

(5.46) c*= inf sup ( h Ih )F) (F 
F=af F'-Ogf' 2 / FF 

where C is the space of direct corner layer functions with the direct boundary con- 
ditions, and Co is the space of direct corner layer functions that are the difference of 
functions in C and hence have null direct boundary conditions. 

We eliminate the supremum by solving the corresponding Euler equation 

(5.47) aI2&f'+a haf =O. 

With (5.47) holding, (5.46) is equivalent to 

(5.48) C= inf {(12F' . F') + (I1F. F)}. 
fEC 

More explicitly, (5.47) is equivalent to 

a2EX f ?v for 1sl < It'l1+ 

,a -2 = 2 a ? ( 1 a , for 1 > ItllV+, 
-? 

2 
i 

? 
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with f' e C0, which is (5.10). Thus the right-hand side of (5.48) is identical to the 
upper bound (5.15). 

Now, let E? be scaled by a factor of c*, then, in view of the quadratic nature of 
(5.43), we have 

(5 49) ~~~(c*)1 l(I2E+ E+) 
- ~(D+ *E-)?+ (D .E+), 

where D+ are still related to E+ via (5.37). Representation (5.49) is equivalent to 

(c*)-1 -(D' . E') + (D . E) 

(5.50) -(D' . E')h0o + (D . E)hs0 

-(D' D')h=o + (D . D)h=o 

from (5.41). 
What boundary conditions do D' and D or, equivalently, D+, satisfy after the 

contraction? From (5.37), it follows that for 1s1 > jti1l+ 

(5.51) c*asq5+ =-hagp+v 
(C*9a5+ = -h a&p+ + agp+ 

and 

(5.52) c* a&q- 
h 

aYp-, 
c* aQY- h a&p- + a&p 

if p? satisfy the direct boundary conditions. The following equalities follow easily 
from (5.51) and the boundary condition (5.17): 

(5.53 --P j (t d~~p? I 
-0 IIh?h0 (dtai +ds(0 

h=ho, 

(5.53) Iho A (dt a + ds a)p+ + * d a p+ 
C =ho, C =ho, 

= * X dta5 p+ 
Ch=h[p 

On the other hand, from (5.16), we have 

O=- df9 dh a6p+ 

X hhdi dgu 
0 JP + (I + 7)t0-p+) 

(5.54) >h agtds<2 P 

Adi [ag p+] 
00 

h=ho 
h 

:C*tT- / dt agp+v 
=h_ 



CONVECTION ENHANCED DIFFUSION FOR PERIODIC FLOWS 369 

since 

j cit p (2 dt_ ?P?) 

following the definition of c*, the boundary conditions and the energy identity of the 
direct corner layer problem. Therefore, 

(5.55) [q ]O-- 7r 

and the dual boundary conditions are satisfied for 

s 

(5.56) higp+ 
C* 

=-_ u - ?o)p+ + uo ds p+ 

which converges to zero as t approaches infinity by the direct boundary conditions 
(5.17). The boundary conditions of 0+ for h < 0 can be similarly derived. 

Let us invert relation (5.42) and express E' and E in terms of D' and D 

E' = 
I 

ID D'- 
I 

hD, 

E= hI1D - hD/I 

or, in matrix form, 

(5.58) (hE ) ( -h- h2 
~E k-h I, 

where Ii = (I 0 ), and it is understood that when s < gt1+, h 0 and 

(5.59) I2E = 2D', E = D = I2D 

from (5.41). Again, (5.50) is a symmetric, indefinite form in view of (5.58) and (5.59) 
and admits a saddlepoint variational formulation 

c*)-1 
_ inf sup - I, 1 h 

(G G' 
(C =&g G'=&'g' JIJ G 

(5.60) 9ECl sec ECO-h h122 )h GJ G 

((-II 0 )(G' / G' ) 

Here C' is the space of the dual corner layer functions with the dual boundary condi- 
tions and Co' is the space of the dual corner layer functions with null dual boundary 
conditions. We eliminate the supremum by solving the corresponding Euler equation 

01Al 
I 

IiG '-Al 1 
hG = 0 for 11 > Jil?l + -y, 

(5.61) h2 G< 
a 1IG' 0 for +-Y. 
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Using (5.61) in (5.60), we obtain 

(c*>) inf { (I2G' G')h=o + (2G . G)h=o 
G=V1 Ig 

(5.62) ? K G G ? KhI1G} 

which is exactly the right-hand side of (5.29). 
We have therefore identified c* with the constant in Theorem 5.1. 

5.4. Limiting cases. There are two interesting limiting cases in the corner layer 
problem. In one, -y l 0, and, in the other, ny ' oc. Note that - < '(1 + 1/(1 + 2-y)) < 1 
for -y > 0 and limOO, '(I + 1/(1 + 2-y)) =. The edge-contact situation of H 
sin x sin y can be thought of as point-contact with infinite degree of contact (i.e., 
-y = oc), and the ,FE asymptotic behavior (but not the constant factor c*, since the 
boundary conditions are different) is recovered in the limit ny T oo. 

The preceding analysis breaks down when ny t 0, as was noted before. The case 
where -y = 0 is the one in which two separatrices meet at the contact point, which 
is a stagnation point at a positive angle. Therefore, it requires a separate treatment. 
For simplicity, we assume that the separatrices meet at a positive angle = 7r/2 and 
that the flow near the corner is similar to that of cellular flows. As we see in the 
following analysis, in addition to E, a log 1/ factor appears. Contrary to what we 
might guess from previous analysis, the corner layer scaling involved here is \,FE and 
not E = limL10 61/(1+2y). This is because of the presence of the stagnation point at 
the corner. As a result, it always takes order 1 time for a particle to pass around the 
corner, regardless of how short the traveling distance. The small molecular diffusivity 
E then builds up a \ corner layer, which gives an order E contribution to the effective 
diffusivity, while the region outside of the corner layer gives contribution of order 
E log 1/E. These facts follow from the construction of suitable trial functions and the 
estimate of the variational principles. A similar argument also handles the case where 
the contact point is not a stagnation point, provided that we work with the corner 
layer of order E, and the result is similar to the following theorem. 

THEOREM 5.3. If 0y 0, then there exist positive constants cl and c* such that 
1 1~~~~~~ 

cl Elog- < au < cc log-. I 2 

We have not been able to show that c= c* and determine this constant. The 
actual value of the angle is not important, since it affects only the constants. Although 
the tangent at the corner is no longer well defined, we still use t as the "tangential" 
coordinate whose axis is parallel to (1, -1) and s as the "normal" coordinate whose 
axis is parallel to (1, 1) (see Fig. 5.5). We now turn to the proof of Theorem 5.3. 

Upper bound. Consider trial functions f defined as in the direct corner layer 
functions C except that the corner layer scaling E' x EQ(1?+) is replaced by V x . 
We decompose the period cell into the regions C, E, and V as before. For the local 
term c(Vf . Vf) in the direct quadratic functional, it is easy to see that the corner 
layer region C gives a contribution only of order E, while 

(5.63) c(Vf * Vf)V = 0 jI/ ({) tdt) o (&log 1) 



CONVECTION ENHANCED DIFFUSION FOR PERIODIC FLOWS 371 

\~ K,, 

\\\s~~ \V 

-\ \</ 

-\, 

FIG. 5.5. Limiting cornerflow. 

since Vf O(I/t) and the area element is t dt. Thus 

(5.64) c(Vf Vf) c(Vf Vf)v = (0 log-). 

Next, we can estimate the nonlocal term (1/E)(1IFH Vf FH Vf) in the following 
way. Let (1/c)FH Vf =Vf for some periodic function f or, equivalently, 

(5.65) ALf =u* Vf, 

so that 
1 

(5.66) -(rH Vf PH Vf) =E(Vf Vf). 

We claim that the right-hand side of (5.66) is of order E. This is because of the 
scale invariance of the energy integral 

c(Vh. Vh), 

where h is an arbitrary nice function, and the convection operator is u- V. More 
precisely, let us define scaled variables x and y in the corner layer by 

x = v ?, y = yV. 

In terms of x~ and y, (5.65) becomes 

(5.67) A f - - x f + y f. 
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Therefore 

(5.68) c(Vf* Vf) =E(Vf VIf) ?<cc(Vf. Vf)= 0(E), 

where ( ). f fc (.)dxdy, and V, A\ are the gradient and Laplacian with respect to 
x, y, respectively. From (5.64) and (5.68), we conclude that 

(5.69) , < cE log- 

for some constant c*. 
Lower bound. Let us construct trial functions g in the following way. We define 

an arbitrary outer layer whose scale, say , is larger than that of the corner layer, 
which is . We denote the outer region by U, the complementary region in the 
vacant cells by V, and the complementary region in the eddies by E. In the outer 
region U, let g satisfy the same far field boundary conditions in the definition of C' 
and 

(5.70) g g 2 I gu =gE(t). 

In the eddies, g is a boundary layer function. From this, we know that the contribution 
of the eddies to the inverse variational principle is 0(1/1\E). Now let us consider the 
contribution of vacant cells to the local term. We have 

(5.71) -K 1 ? (/2)H2 Vg V ) g -(Vg V'g)v 

since H = 0 in the vacant cell. The right-hand side of (5.71) is, by the choice of g, 

1 IYE 

(5.72) _f (g)2 t dt, 

since Vg = 0 elsewhere and t dt is the area element. The minimum of (5.72) can be 
achieved by g, that satisfies 

(5.73) (g't)' = 0 with the far field boundary conditions. 

The solution of (5.73) is 

(I log t N r (57) 9E ( (- + 7 when > t > F, 
(57) 

2 logcE 2 

{- 2ir( loc log+t - when -,vE < t < 

The energy integral for (5.74) is O(1/clog(1/E)). Hence 

(5-75) <( 1 1 1 

where ct is a constant, and this with (5.69) proves Theorem 5.3. 
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6. Periodic arrays of eddies and channels. In this section, we study advec- 
tion-diffusion in the steady velocity field 

(6.1) u = (-H6, H6), H = sinxsiny + ? cosxcosy, 8 > 0. 

Here 8 cos x cos y is a small periodic perturbation that preserves the structure of crit- 
ical points of the stream function sin x sin y. The periodicity of the perturbation 
together with the instability of the separatrices creates periodic open channels in the 
vicinity of the separatrices of sin x sin y. The width of the channels is of order 8. 
The streamlines H6 = constant form a periodic array of oblique cat's-eyes separated 
by open channels carrying finite fluid flux of order 8. Transport takes place both in 
thin boundary layers and within the channels, and the parameter 8/17F measures the 
relative influence of the two. If 8 = 3f with 3 > 1, then advection in the channels 
dominates diffusion. This occurs when, for example, 8 = 8(E) = aE', ? < a < I 

a < 1, so that 3 = aE-1/2 El2 oo 
The streamline structure is like that of Fig. 1.2. There are two types of stream- 

lines: those in the channels 

(6.2) -8 < H6 < 8 

and those in the eddies 

(6.3) 8 < IH61 < 1. 

These streamlines are separated by separatrices defined by H8 = ?8. The flow struc- 
ture is no longer isotropic and has two eigendirections: one parallel to the channel, 
e = 1/V(1, 1), and the other, eI = 1/XV(-1, 1), orthogonal to the channel. Because 
of symmetry, the cell problem (4.1) can be reduced to one-quarter-period enclosed by 
the dotted lines in Fig. 6.1. 

The behavior of the effective diffusivity (4.2) as E tends to zero was first analyzed 
by Childress and Soward [5], who obtained asymptotic solutions for 3 > 1 using the 
Wiener-Hopf technique. Surprisingly, their asymptotic method gives reliable values 
of the effective diffusivity down to /3 1.5. Here we recover their results by our 
variational methods. 

THEOREM 6.1 (Special cat's-eye). For H6 = sinxsiny + 6cosxcosy, \,FE <K 
8 << 1, we have 

3 
0",(e) E16, CE (e) - as E 1?0 

In particular, if 8 = aEa, 0 < a <2 we have 2' 

5 )1 1- u5(e) a 3 a 3 

This theorem can be understood by a scaling argument in the following manner. 
The channels provide a very efficient vehicle in which a diffusing particle can take 
a long flight. The eddies are trapping regions, except in the \FE-boundary layer. In 
the e direction, the time the particle stays in one channel is Q(/32), since this time 
is proportional to the reciprocal of the diffusion coefficient E multiplied by the width 
of the channel squared, (,\F/3)2. The distance traveled in the direction eI during 
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this time is also 0(132). Therefore, the effective diffusivity should be 0(132) times the 
proportion of the time the particle spends in the channels, which is proportional to 
channel's width 13F. It ends with a 0(133\Fi) effective diffusivity. In the e direction, 
the trapping of the eddies is active, while the channels do not help. Since 13 > 1, 
the boundary layers are essentially separated, the timescale involved is again 0(132), 
and the stepsize is 0(1) due to the boundary layers. The effective diffusivity is then 
0(1/132) times the channel's width 13f, which is 0(\Fi/i3). 

In the following analysis, we take the limit E l 0 first, keeping 3 fixed, and 
then we consider the asymptotics of 3 T oc. In addition, (a) when passing to the 
limit E l 0, with 3 fixed, different boundary layers overlap in the channel. The 
boundary layer type of trial functions used in the case of H = sinxsiny are still 
appropriate, except that we must patch them in the channel region. This eventually 
gives ue, (e), ue (eI ) = ? 

(b) For the 3 T oc asymptotics, we must estimate the numerical constants c*, cl 
multiplying \,FE. As 13 gets larger, the channel region becomes dominant, and we are 
able to capture the dependence of c* and cl on 13. 

We now continue with the analysis that leads to Theorem 6.1. 

6.1. The asymptotic behavior of u,(eI). The upper bound for u,(e1) is 
obtained as follows. The boundary layer theory of eddies in ?4 tells us that the trial 
functions f for the upper bound should be constant at least in the interior of each 
eddy. To specify our ansatz in the channel, let us first define in the channel 

(6.4) [[f]h(0) = f (-8 0) - fG6, 0), 
(6.4) [f]0(h) = the difference of f along a streamline in half a period. 

We consider a trial function f such that 

(6.5) [f]h = 2 [f]o = 0 in the channel, 

and f assumes constant values in each eddy since we are concerned with the 3 > 1 
limit. Condition (6.5) ensures that f satisfies the mean field condition (Vf) = e as E 
tends to zero. Thus 

40 _ 1~~~~~~~~ 
2 

'h 

2 

(6.6) limo(eI)/8V/< inf -I dO] dh{ f) +(J -f)j 
lfh[f]0= 

2 
= 

Since we are looking at the direction perpendicular to the channel, the diffusive energy 
integral should dominate, and the appropriate trial functions are f f(h). Set 
h' = h/, -1 < h' < 1. Then we have 

(6.7) lim o,(eI)/F< inf 2 X d dh' f 
EJO 1f1h=(V2-2),, 3r -2 -1 Ah 

af la_O=- 

The minimum in (6.7) is achieved by a linear function of h', f = V2/27rh', and the 
right side of (6.7) becomes 

after subs ti t u 

after substitution. 
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The lower bound for a, (eI) is as follows. Let g be a boundary layer function and 
satisfy 

(6.8) [9]h = 0 and [g]o 7r in the channel. 

Then (6.8) guarantees that g generates the correct mean field (V'g) eI as E tends 
to zero. After substitution, we have, to principal order as 3 l oc, 

(lima, (e I)IVE) < inf 2 dO dh{h - 9g 
(6.9) in the channel 

J 

+ h2 J 2 } ?h (J a)2 

Consider g = g(O). The right side of (6.9) restricted to this particular class of trial 
functions can then be minimized by g = (V7r/4)0 in the channel; then it becomes 

hf2 dO jdh' (4w)=3 

after substitution. It does not matter how we choose g in the boundary layer since it 
only affects the 0(3) correction. 

Combining the upper and lower bounds, we have 

lim r(e) 1 as 3 T oo. 

6.2. The asymptotic behavior of au(e). For the upper bound for au(e) con- 
sider trial functions f, which are boundary layer functions in the eddies, that satisfy 
the matching condition on the separatrices 

(6.10) jtdh aof = O, 

or equivalently 

(6.11) j dh f = constant independent of 0 

and 

(6.12) [f]h = , [f]o = VX X in the channel. 

Like (6.8), (6.12) ensures that f generates the correct mean field (Vf) e in the 
limit E l 0. As with (6.6), we have 

1 ~2 2 h 2 

(6.13) lima,(e)/ F< inf - dO Idh ( -f) + (I f)}. 
E4O [f]h=0 7-2 J2 a~1\ h!\ ao0 

[f]6=V2ir 

We are looking at the direction parallel to the channel in the large 3 limit, so, clearly, 
the convective energy integral will dominate. Therefore, the appropriate trial func- 
tions should be in the form f = f(0), which makes the the first term of (6.13), the 
diffusive energy integral, vanish, and we have 

(6.14) limuoe (e)/v\? < inf -2 df X dh(f-9-fY 40 [f]h=~ 11J2[f0 = 2 ao 
[f]6=V2-ir 

2 
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The right side of (6.14) is minimized by a linear function in 0: f = vf7rO in the 
channel. Then 

(6.15) lim a,(e)/ ? A2 Q do QK dh( )h2 

- 1/33 
3 

to principal order as 3 T oo. 
For the lower bound for c,(e), consider the trial functions g, satisfying 

(6.16) [g]h = +, 0[g] = O in the channel 

so that (V'g) = e in the limit. Consider g = g(h), since we are looking at the 
perpendicular direction. The inverse variational principle becomes 

(6.17) Ilimua. e)/v/\f) < inf 2~ dO/ dh-C2(-g) (7 E10 Et )1 [glh=-/V'2 7r 2 O 
[g]6=o 

in the channel 

The right side of (6.17) is minimized by g = (r/V) (1/2f33) h3 and, after substitution, 

1 2do ~ 1( 1 \2 
(6.18) lima u(e)/\/E- X dX dh- (3h2)2 

3 

,33 

to principal order as 3 T oc. Combining the upper and lower bounds (6.15), (6.18), 
we have 

lima.(e)/ V 3 as p3 o 00. 
40O 3 

Clearly, the above analysis also works when E 1 0 and 3 T oX simultaneously, 
such as 8 = aEO < a<2. The opposite asymptotic limit 3 t 0 corresponds to a 
channel perturbation of cellular boundary layers and can also be studied by variational 
methods. The leading term of a, is O(W/-) and comes from the boundary layer theory. 
The next correction term is a power of 3 and depends on the direction. This problem 
has not been analyzed in detail. 

7. General periodic flows with a zero mean drift. The stream function 
H = sin x sin y is a Morse function (i.e., its critical points are not degenerate), but is 
not generic in the sense that it assumes the same value zero at the four saddlepoints. 
Generically, as a consequence of Morse's lemma (see Milnor [18]), we have the following 
theorem. 

THEOREM 7.1 (Existence of channels). Let H be a Morse function on the torus 
T2 and C1,c2 .C.2. ,C, its saddlepoint values. If ci :A cj, for i : j, then there exists 
some k 's such that 

H- (ck - 6, Ck): the collection of streamlines defined by H = constant in (Ck-8, Ck) 
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or 

H-1 (Ck, Ck + 6): the collection of streamlines defined by H = constant in (Ck, Ck + 6) 

is an open channel regardless of how small 8 is. 
Theorem 7.1 is actually true for any compact two-surface without boundary ex- 

cept the two-sphere. It implies the existence of open channels for stream functions 
that are Morse functions and that have distinct saddlepoint values. We call such 
stream functions generic. In other words, channels always exist for generic stream 
functions. However, genericity is not a necessary condition for channels to exist. 
For example, the cat's-eye flow discussed in the previous section is not generic but 
nevertheless contains channels. 

If channels do not exist, then the flow consists only of eddies and separatrices. 
Not every separatrix enhances particle diffusion. The important sets of separatrices 
are those that are not of the trivial homotopy type, equivalently, do not "separate" 
the torus. Any closed curve of the trivial homotopy type necessarily hits one of those 
nonseparating separatrices that form a web on the torus and induce boundary layers 
near them. In this case, our boundary layer theory developed in ?4 can be applied 
to those nonseparating separatrices, and the effective diffusivity a, is of order \, 
the constant factor can be calculated from the reduced variational principles in which 
the boundary conditions should, due to lack of symmetry, be replaced by matching 
conditions across the separatrix. This is all for the nongeneric case of no-channel 
flows. 

Generically, channels exist. The channels are all periodic and are of the same ho- 
motopy type. In other words, all streamlines are periodic and have the same asymp- 
totic slope or rotation number. Without loss of generality, we can assume that the 
rotation number is zero by making the following linear change of coordinates: 

(7.1) (x,y)-4 (px+qy,rx+sy), | q r s 

where p, q, r, s are integers and where q/p is the rotation number. After this transfor- 
mation, the periodic channel structure resembles the one in Fig. 7.1. 

We know from the cat's-eye flow analysis that, in the direction e parallel to the 
asymptotic slope, ao(e) is 0(1/E), and, in the perpendicular direction eI, o+(eI) is 
0(E). The constant factor can also determined as was done in ?6. In the special 
cat's-eye flow (see Fig. 1.2), two identical channels appear in a period cell, going in 
opposite directions, making the mean flow flux zero, while the rotation number is 
1. In general, we have an even number 2n of channels, half of them going in one 
direction, say (1,0), the others going in the opposite direction, (-1,0). Let us first 
state a general two-channel result. 

THEOREM 7.2 (Two-channel cat's-eye theory). Let 8 be the flow flux, equal to 
2[H]1 with \, << ? < 1. Then 

a, (e) -c* -, el 1) cl E, 

where 

63 c2 [H3]1 f dO f dO 
f dO 2 fdO' c 6~c [2 H 
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FIG. 7.1. Multichannel flow. 

Here [] is the absolute difference of the function across the channel, and cl, c2 are 
constants independent of the flow structure; f dO denotes flow circulation over a cycle 
in the channel. 

The proof of this statement is a slight modification of the theorem for cat's-eye 
flow in ?6. The effect of the eddies can be seen by comparing this result with that for 
shear layer flows (see Fig. 7.2), which is considered next. 

For shear layer flows, the effective diffusivity in either direction can be computed 
exactly using the inverse variational principle. 

THEOREM 7.3 (Shear layer). If u = (u(y), 0), then 

9,,(e) = K +-(H) e = (1,0) 

and 

U (e 
- I e, eI = (0, 1). 

Proof. From the inverse variational principle (3.74) for oa (e), 

(a)(e) inf ( -VI gVg) 
(7.2) (V'g)=e E ( + ? H 2 / 

+3 ( 2 HrH r1HHV9 

We obtain the Euler equation 

(7.3) V ? H - 2HFtHH) Vg = 0, 
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FIG. 7.2. Two-channel shear layer flow. 

which can be solved exactly with a function g = g(y). Equation (7.3) reduces to 

(7.4) V'g* ( ? H) V =g 0 

and the second term in (7.3) simply drops out. Equation (7.4) is easily solved by 
taking 

(7.5) g = (-g9 0) = (I+1(H)( + -H2 70) I 

which satisfies the mean field condition (V'g) - e. Substituting (7.5) into (7.2), we 
have 

E H + (H2) 

or 

(7.6) c,,(e) E + -(H2) 

It is also easy to see that a, (eI) E. In particular, for two-channel shear layer flow 
(see Fig. 7.2), 

(7-7) 62E +-,,(e E. 

Thus, in view of Theorems 7.2 and 7.3, we conclude that the effect of eddies in 
open channel flows is to enhance a, in the perpendicular direction by a factor 6-1 
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and to diminish a, in the parallel direction by a factor 6. Let us also state a general 
multichannel cat's-eye result. 

THEOREM 7.4 (Multichannel cat's-eye theory). If 2n periodic channels exist and 
their contributions to a?, as in the two-channel theory, are c*(i), cI(i), i = 1, ...,2n, 
then 

C* a,, (e) U,,5(e ) -c* E, 

where c* is the arithmetic mean of c* (i) and cl is the harmonic mean of c7 (i), i 
1, . .. , 2n. 

This result is analagous to what happens in conductivity problems. The proof of 
Theorem 7.4 is an extension of the argument given in the theorem for cat's-eye flows. 

For shear layer flows, a,6(eI) = E and (H2) in formula (7.6) for U6(e) accounts for 
its enhancement, which increases with the correlation of flow directions in adjacent 
channels, since particles can take bigger flights. However, the flow direction must 
alternate from channel to adjacent channel to sandwich eddies between them, while 
maintaining the consistency of the flow structure. The total effect of multichannels 
cat's-eye flows on a, (e) is simply the sum of that of individual channel contribution. 

8. Periodic flows with a nonzero mean drift. What happens if the mean 
drift is not zero? In this section, we consider particle dispersion in periodic flows with 
nonzero mean drifts. Such problems arise in the diffusion of contaminants in saturated 
porous media (e.g., see [9]) and in the diffusion of particles deposited as sediment in 
convective flows, which is treated in [6] for small mean drifts using boundary layer 
techniques. Bhattacharya, Gupta, and Walker [9] analyze the case with mean drifts 
that are not small, as do Majda and McLaughlin [25]. Bhattacharya et al. [26] make 
several observations, which are essentially Lemmas 8.2 and 8.3, below, and then apply 
them to a class of simple flows to obtain extremal diffusivity, that is, 7? = 0(c) or 
0(1/E). We reformulate their observations and apply them to general periodic flows 
with nonzero mean drifts. Variational methods for flows with a nonzero mean drift are 
a special case of the variational principles for time-dependent flows that are discussed 
in Appendix B. Hou and Xin [191 and Weinan [20] study the homogenization of the 
advective transport equations without diffusion under the hyperbolic scaling, and they 
obtain various effective equations, depending on the rotation number, ergodicity, and 
the stagnation points of the flows. It is interesting to compare their results to the 
ones we obtain in this section under the diffusive scaling with vanishing diffusion. 

We write the flows in the form c + u, where c is a constant vector and (u) = 0. 
As before, u is an incompressible, V- u = 0, periodic vector field of period 2ir in 
two dimensions, and we assume that it is smooth: u E Cr(T2), r > 0. According 
to a generalization of the classical theorem of Poincare by Moser and described in 
[20], when stagnation points occur, we have that (i) the asymptotic direction of the 
streamlines is parallel to c, and (ii) when considered on the plane R2, let the set 
of closed streamlines be the eddies and the rest the channiels, then c1 and c2, the 
components of c, are commensurate if and only if the flow has a periodic streamline 
in the channels, when embedded in the torus T2. When c1 and c2 are incommensurate, 
any single streamline starting from inside the channels is dense in the channels. 

It follows that the rotation number is defined in the channels and is independent 
of the streamlines. The behavior of the streamlines in the channels is completely 
characterized by c, as long as we know the structure of the channels or equivalently 
the structure of the eddies. Furthermore, we can decompose T2 into the sum of 
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invariant sets: T2 = N 1 Ui, (N might be oc) such that c + u restricted to U, is 
either completely integrable or ergodic, for all i = 1,..., N. An invariant region U, 
is an ergodic region only when it is a channel and the rotation number is irrational. 
Complete integrability means that the circulation variable 0 exists and that (H, 0) 
form a coordinate system. 

The cell problem is 

(8.1) EAX?+ (c+u) * VX+u * e = O, 

and the effective diffusivity is given by 

(8.2) U6,(e) = E + E(VX - VX). 

We rewrite the cell problem (8.1) in the form 

(8.3) V * (E+H?+A-lc * V)VX+u *e- = 0, 

where 

H (<?H ) 

and where H is the stream function with (H) = 0, and V'H - u. In terms of the 
projection operator F and with E = VX, we have 

(8.4) E? + rFHE? + ]A-1c VE + rH e = 0 

and 

(8.5) C7 e) + E(k E). 

8.1. A decomposition of the Hilbert space and its applications. Let 

G =HF?+A-1c V 

and denote by Kg the Hilbert space of mean-zero curl-free fields with (.) as inner 
product. Then G: Kg * Kg, is bounded and skew adjoint. Furthermore, we have the 
following lemma. 

LEMMA 8.1. G is a compact, skew-adjoint operator. 
Proof. For F C Kg, 

GF =HFF+FA-1c VF 

= VA-lu -F?+FA-c VF. 

Since one derivative is gained by applying G, it is compact. 
Denote the nullspace of G in Kg by K. Then the Hilbert space Kg has the 

decomposition 

XHg = NV D , 

where K1 (Range G). The effective diffusivity a, (e) can now be expressed as 

(8.7) u6(e) = E +e((Vx)r (VX)r) + E((VX)gAr *(VX)Ari)- 
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LEMMA 8.2 (Bhattacharya, Gupta, and Walker [9]). If FH e has a nonzero 
component in K, then 

C< c,,(e) < asE O 

for some positive numbers c' and c". 
Proof. Equation (8.4) can be decomposed into components in K and K', 

(8.8) EEAr i + GEA,? + (FH e)Ar =0, 

(EA + (FH e)Ag 0. 

If (FH e)Ag 4 0, then (EAr. EgA) 1/e2, and a, (e) > c'/e, for some c' > 0. However, 
from the variational principle, we know that a, (e) < c"/c, for some c" > 0. This 
completes the proof. 

The following lemma tells us when singular perturbations do not arise. 
LEMMA 8.3 (Bhattacharya, Gupta, and Walker [9]). If FH e E Range G, that 

is, there exists F in KHg such that GF = FH e, then 

e<crE(e) ce as etI 

for some c > 1. 
Proof. The direct variational principle for a, is a special case of the one for time- 

dependent flows with a/at replaced by -c * V (cf. Appendix B), that is, 

(8.9) ue(e)= inf {eF .FF) + -(FH'F * FH'F)}, 
(F) =e 

where 

(8.10) H' = H +?A-1c * V. 

We first show that FH e C Range G is equivalent to the existence of F such that 
(FH'F - H'F) = 0, which is equivalent to 

(8.11) V . FH'F =V . F(H ? A1lc V)F 
= u F + c F-0, 

where F = F - e, or where 

(8.12) (c+u) F+u-e=0. 

However, FH e C Range G X there exists F C Kg such that 

(8.13) -FH e=VA1-uFA-F FA-1c VF 

or 

(8.14) -u.e=u.F+c.F=(c+u).F, 

which is (8.12). Therefore, the nonlocal term in (8.9) vanishes and 

(8.15) 76(e) < cE for some c > 0 as E I 0. 

Since a,(e) > c, (8.15) leads to the conclusion of the lemma. 
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The converses of Lemmas 8.2 and 8.3 also hold. 
LEMMA 8.4. If FH * e does not have a component in K, then 

U,0(e) = 0(1/c). 

Proof . By the assumption, FH e e E K' = Range G. Moreover, there exists F, 
with V x F = 0, (F) = e, (F F) < o0, such that, for arbitrarily small 6, the nonlocal 
term in (8.9) is 

-(FH'F FH'F) < 6, 

and hence the conclusion. 
LEMMA 8.5. If FH e is not in Range G, then 

u7 (e) ? E as E I . 

Proof. Let us assume that FH * e does not have a component in K; otherwise 
Lemma 8.2 applies, and the conclusion is obviously true. From Lemma 8.4, it follows 
that, to avoid 1/E behavior, in (8.8), 

GE,?? + (FH * e)g? to, 

as E I 0. By the assumption of the lemma and the compactness of G, (E * E) is not 
bounded as c I 0, and hence the conclusion of the lemma. 

The gap between Lemmas 8.4 and 8.5 is when FH e C Range G but not in 
Range G. In this case, E <? u(e) < 1/E. If this occurs when c = 0, then various 
boundary layers and corner layers arise, and their effects on the effective diffusivity 
have been discussed in previous sections. It is shown in the following sections that 
the flow is rarely in this gap when c is not zero. 

8.2. A characterization of K and K'. Each F E Hg can be written as 
F = Vf for some periodic function or the limit of a sequence of such gradients. 
Furthermore, 

(8.16) F e NV FH Vf + F 
0-lc 

V Vf = O 

or, equivalently, f is constant along every streamline of c + u, and K is the closure of 
the set of fields that is the gradient of such functions. Let us state this as a lemma. 

LEMMA 8.6. KV {Vf I f is constant along every streamline of c + u}. 
The main result of this section is a characterization of K'. 
LEMMA 8.7. We have 

K' {Vg I f A g dt = 0, for every nonergodic streamline - in every region U.}, 

where t is the tirne associated with the streamline -y under the flow c + u. 
Proof. It suffices to consider E C K', F C K of the form E = Vg, F Vf, for 

some smooth g and f. Then 

0= (E. F) JJ dxdyVf . Vg 

(8.17) 
--JJ dxdyf Ag. 

T2 
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If -y is a nonergodic streamline, then consider a sequence of f7 = f7 (J), where J is 
an action variable (i.e., VJ e K) that is defined in a neighborhood of -y, such that 

nbco 
fn + JO ( J) I 

the Dirac delta function concentrated on Jo, and Jo J defines -y. We have 

(8.18) -Jj dydyfn g9 -c 
n 

dt/Ag, 

where c equals &(Jxt) which is constant on streamlines, since both dx dy and dJ dt 
are invariant for the flow. Thus 

(8.19) JdtAg =0. 

On the other hand, if -y E Ui in which c + u is ergodic, then it does not matter what 
we choose for gu ., This completes the proof. 

Actually, f dt Ag = 0 for every Vg in the range of G and every nonergodic 
streamline -y, since 

(8.20) J dt V FHFVf 

dt (c + u) . Vf 

(8.21) =Jds+f as 
-0. 

8.3. Flows with stagnation points. We analyze the behavior of the effective 
diffusivity when c + u has stagnation points (see Figs. 8.1-8.3). 

First, we establish the following general result. 
THEOREM 8.8. If the flow c + u has periodic orbits of the trivial homotopic type, 

then 

c c" 
-< ? Je) <- as EtO when e Lc 

for some positive numbers c' and c". 
Proof. In view of Lemma 8.2, it suffices to prove FH e f As'. Let -y be one of 

the periodic orbits of the trivial homotopic type. Obviously, f dt(c + u) = 0, since 
this integral is the displacement after a cycle. Now consider 

jA(Z-IV . H . e) jA\(A-(u. e)) 

(8.22) j 
-dtc -e 
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FIG. 8.1. Cellular flow with drift c (0, .2). 

if c is not periodicular to e. Thus 

(8.23) V/\-1V H .e = rH .e ,A 

by Lemma 8.7. This completes the proof. 
The condition in Theorem 8.8 seems to be generic whenever c + u has stagnation 

points (see Figs. 8.1-8.3). For example, if some of those stagnation points are elliptic 
points, then there are always periodic orbits of trivial homotopic type around those 
elliptic stagnation points. Theorem 8.8 can be generalized to higher-dimensional 
spaces. 

THEOREM 8.9. Let c + u C C' (TT). If there exists a bounded domain D 
invariant under c + u viewed as dynamical system on R', then 

C/ C// 

-< a.(e) <- astEO ife,Lc 
C C 

for some positive numbers c' and c". 
Proof . Let M = fD d'x be the "mass" of the fluid volume D. It is finite, since 

D is bounded. Define the center of mass for D by 

(8.24) qD(t) = J xX(t,x)IM 

where X(t, x) is the flow generated by c + u and X(O, x) = x. The invariance of D 
and incompressibility of c + u shows us that 

(8.25) d-qD(t) = O Vt. 
dit 
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-6 -4 -2 0 2 4 6 

FIG . 8 .2. Cellular flow with drift C= 0.2 (1, 2) . 

However, 

(8.26) d| qD(t)= M ID dmx(c ?u(x)) 

and thus 

(8.27) JDd (JDdn)J 
=-Mc *e. 

On the other hand, SD dnxu e = 0 is a necessary condition for PH e E A(W- if 

D is invariant. Therefore, PH e has a nonzero component in K. With the help of 
Lemma 8.2, the theorem is proved. 

What about o?(ej), e1Ic? In view of the results for cat's-eye flows, the following 
theorem is intuitively clear. 

THEOREM 8.10. If the slope of c is rational, then 

? <oa(e1)< C? asc? [0 

for some c > 1. 
Proof. By the result of Moser [20], mentioned in the beginning of this section, 

rationality of c implies rationality of the rotation number of the channels and the 
streamlines in the channels, which implies the periodicity of the streamlines. Without 
loss of generality, we can assume that the rotation number is zero by considering a 
linear change of coordinates (7.1) on T2. Then we can simply assume that c = (1, 0). 
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FIG. 8.3. Cellular flow with drift c 0.2(1, r/2). 

By Lemma 8.3, it is sufficient to prove that PH e E Range G, which is equivalent 
to the existence of F c JHg such that (see (8.14)) 

(8.28) (c+u) *F = u -e. 

However, since eLc, (8.28) is equivalent to the existence of F, (F) = e such that 

(8.29) (c + u) * F = 0. 
The existence of F satisfying (8.29) is clear for flows with periodic channels. 

When the rotation number is irrational, we have the following upper bound. 
THEOREM 8.11. If the slope of c is irrational, then 

a7(e I) = 0(11E). 

Proof. Since the rotation number p is irrational, the subspaces JK and KV' are 
completely determined by eddies in view of Lemmas 8.6 and 8.7, and the only non- 
ergodic streamlines are in eddies. It is easy to see that 

(8.30) J dt V rPH'. e = dt (c + u) e = 0 

for every closed streamline -y, every e. Let e = eI, and, since cleI, we have 

(8.31) JdtU-e1 = JdtV-rFH-e1 =0?- 

By the characterization of Xl in Lemma 8.7, PH e1 E K', and Lemma 8.4 implies 
the theorem. 

The precise asymptotic behavior of the effective diffusivity for flows with eddies 
and an ergodic channel is not clear and is the subject of a future study. 
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8.4. Flows with no stagnation points. Now, we consider the case where c+u 
does not have any stagnation points (see Figs. 8.4 and 8.5). 

The following theorem [21] is known in the theory of dynamical systems on the 
torus T2. 

THEOREM 8.12 (Kolmogorov-Denjoy). There exists a coordinate transformation 
in CT(T2)such that the trajectories in the new coordinate system are straight lines 
and the system has the form 

(8.32) dt C1V, d7C =V 

where (C1, C2) = c and v is some positive Cr-1 function. 
Here p = c2/cI is the rotation number of the dynamical system generated by 

c + u. Instead of the original system, we may study the transformed one and assume 
that (v) = 1 for simplicity, so that 

(8.33) u= (v - l)c. 

Note that the transformed flow cannot be incompressible in the new coordinates unless 
it is a shear layer flow in the new coordinates system v = v(s), s = clr -c2 . However, 
this does not hinder us from using Lemma 8.3, since solvability of (8.12) in one set of 
coordinates implies solvability in another. 

For rational rotation numbers, we have the following theorem. 
THEOREM 8.13. Let p be a rational number. Then we have 

C' C"/ 
-< a.(e) <- as E 0 for e ,L(1, p), 

E < ? (e) < c asElO fore,l(1,p) 

for some positive c, c', and c", unless 

J dt = constant independent of -y, 

in which case, the system can be transformed to 

dx dy 
-=tCl, -=C2, dt 

~~dt 
and a,r(e) = 0(E) as E I 0 for all e. 

Proof. We want to show that 

(8.34) ju edt5O0 forsome y 

and then apply Lemmas 8.2 and 8.7 to show that c'/I < a,(e) < c"/E. Since all orbits 
are periodic with rational rotation number p, we have 

(8.35) j(c + u) -e dt = c e 

and 

ju edt =c e - jc edt 

(8.36) =c.e (1 - dt) 

#0, 



CONVECTION ENHANCED DIFFUSION FOR PERIODIC FLOWS 389 

0.5 

0.3 

(8.37) d dy 

which obviously does not enhance the diffusion process, and we have 

(8.38) I an (e) = O(d ) ast l 0 for alle . 

If (i) occurs, we want to show that 

(8.39) (c?u) Vf+ue =d 

is solvable. Actually, u- e1 = (v - 1)c * e 0. Therefore f 0 is a solution. It 
follows from Lemma 8.3 that 

(8.40) u6(e1) = O(E) as E l 0. 

Shear layer flows with a nonzero perpendicular drift are examples where the con- 
dition 

J dt = constant independent of y 

in Theorem 8.13 holds, and therefore no enhancement occurs (see Fig. 8.4). To see 
this, let us consider the flow with u = (cos 27ry, 0) and c = c(0, 1), c > 0. 
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FIG. 8.5. Cellular flow with drift c-1.1 (1, r/2). 

The cell problem (8.1) becomes 

(8.41) a/X+u(Y) X+cac X +u e = O. 

For e e2 = (0,1), u * e = 0; thus X = 0 is the solution of (8.41), and we have 
a (e2) =E. For e = el (1,0), (8.41) can be solved by a function X = X(Y) whose 
derivative is 

1~~~~ 
(8.42) 1 {-2 sin 2iry - 2 cos 27 } 

and 

(8.43) ua(ei) = ? +2(47r2c2 + c2) 

which is of order - when c is not zero. To see the enormous effect of the drift c = c(O, 1) 
on the effective diffusivity for shear layer flows, we can compare (8.43) with formula 
(7.6). 

If the rotation number p is an irrational number, then the flow is ergodic, the 
space K is trivial, and we have a, = 0(1/E). Actually, there is almost surely no 
enhancement, as can be seen from the following theorem. 

THEOREM 8.14. Assume that (1) there exists c, 8 > 0, such that 

min lp-p/ql > 2+, Vinteger p,q 
p q 
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and (2) r > 3 + 6. Then 

u,(e) = O(c) as EO Ve. 

Proof. Consider the transformed system 

(8.44) dx = cJv, dY - C2Vi v > O, dt dy 

as before. We claim that vc* Vg + f = 0, for any f c CY-1, is always solvable if the 
rotation number satisfies the Diophantine inequality. Dividing the equation by v, we 
have c* Vg + f/v = 0. Writing g and f in terms of Fourier series, we have 

9=Egmeim X 9m =O if m=(ml,m2)=(0,0), 

(8.45) m 

f/v = E Cmeimx C cr-1 
m 

Then 

(8.46) 9m = Cm/(ml + pm2)- 

By assumption (1) in Theorem 8.14, however, 

(8.47) in1 ?pm2l m21 +P > ? X _ < + 

and we know that Em(cmjmK-l)2 < o. Therefore Em(gmImD)2 < o? if r > 3 + 8. 
This completes the proof of the theorem. 

It is easy to see that a coordinate transformation affects only the constant coeffi- 
cient but not the asymptotics; therefore, if the transformed flow is constant streaming, 
which obviously does not enhance the effective diffusivity, then the effective diffusivity 
for the original flow is order c. The Diophantine condition in Theorem 8.14 is also a 
sufficient condition under which a flow can be transformed to constant streaming. 

A number p is "normally approximated" by rational numbers if it satisfies the 
Diophantine inequality 

(8.48) min lp-p/ql > C 
p ~- q2+6' 

The set of normally approximated numbers has full measure, as can be shown in the 
following manner. Consider 

(8.49) Aq= {p:minp- P < 2i6}* 

Then measure (Aq) < 2c/ql+?, which implies that Eq measure (Aq) < oo, and the 
assertion follows from the Borel-Cantelli lemma (see [21]). 

The exceptional cases where enormous enhancement might occur, not covered by 
Theorem 8.14, are discontinous flows or flows with nearly rational rotation numbers, 
that include rational rotation numbers as a special, trivial case. 
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8.5. A theorem concerning general time-dependent, nonballistic flows. 
If, instead of FHF + ? -F&c- V, let 

G = FHF + FA-1 , at, 
then, as in ?8.1, the Hilbert space 'Hg of time-dependent, mean-zero, curl-free fields 
can be decomposed 

'H9 =K J\ ED J' 

with K the nullspace of G and K' the complementary space of K in 7Hg, which is 
also equal to (Range G). As for Lemma 8.4, it is also easy to deduce Lemma 8.15. 

LEMMA 8.15. 1H e does not have a component in K (i.e., 1H71 e E K') if 
and only if 

cr&(e) =O() as cJO. 

Before applying Lemma 8.15, let us define the notion of "ballstic" and "nonbal- 
listic" motions. An orbit x(t), dx(t)/dt = u(x, t) is called "ballistic" in the direction 
e if 

(8.50) lim sup (t) > c 
tioc t 

for some positive c; otherwise, it is called nonballistic in the direction e. A flow 
is called nonballistic in the direction e if almost all orbits are nonballistic in that 
direction. The following theorem is a direct application of Lemma 8.15. 

THEOREM 8.16. If the flow generated by u(x, t) is nonballistic in the direction 
e, then 

56(e) = O() as c ?. 

Proof. It is sufficient to show that 

j dtJ dxe f u(x, t) = 0 

for every F Vf E A. Since both f and u are time-periodic, we have 

j dtJ dxe fu(x,t) 

1I N 
(8.51) lim ] dtJ dxe fu(x,t) 

If N 
- lim N] dt] dx'e fu(X(x',t),t), 

where X(x', t) is the flow 

(8.52) d(xt) u(X(x', t), t), X(x', 0) = x'. 
dt 
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The last equality of (8.51) is due to the incompressibility of u. It is easy to see that a 
characterization of the space N similar to that in Lemma 8.8 holds for time-dependent 
flows and f is constant along every streamline if Vf E K, i.e., f(X(x', t), t) f(x', 0). 
Thus, after interchange of spatial and temporal integrals, (8.51) becomes 

(8.53) lim dx'f 1 j dte.u|< dx IfIlimsup( e0xN))O 

by the definition of nonballistic flows. 
Orbits in an open channel are clearly ballistic, and they result in 0(1/E) effective 

diffusivity, as stated in the theorems of ?7. Together with previous results on flows 
with open channels, Theorem 8.16 indicates that ballistic flows are the only ones that 
lead to 0(1/E) asymptotic behavior of the effective diffusivity. Theorem 8.16 also 
holds for nonballistic flows that are temporally random. As a comparison, ballistic 
motion in flows with nonzero mean drifts may not enhance the effective diffusivity as 
shown in Theorem 8.14. Zhikov [23] makes an observation similar to Theorem 8.16 
for two-dimensional steady flows that do not have nontrivial contours. According to 
the results in ?7, the effective diffusivity for these flows is of order y? generally. 

Appendix A. Relations between different variational principles for 
nonsymmetric diffusivities. Homogenization theory as described in ?2 is valid 
quite generally, even when the conductivity or diffusivity matrix (aij) (cf.(2.4)) is 
complex-valued. The complex effective conductivity can be characterized by a sad- 
dlepoint variational principle. A key observation of Gibiansky and Cherkaev (see [12]) 
is that the saddlepoint variational principle can be converted, via Legendre transforms, 
into a Dirichlet-type variational principle. Milton [12] generalized the formulation of 
Gibiansky and Cherkaev to nonselfadjoint problems, such as the conductivity problem 
when a magnetic field is present, including the Hall effect. Milton's extension proce- 
dure is equivalent to our symmetrization procedure. In this section, we use their idea 
to derive a variational principle similar to that of Gibiansky-Cherkaev-Milton, except 
that the variation is under different constraints. Then we use the duality relation to 
derive a dual variational principle under a dual constraint and study the connection 
between these variational principles and those developed in ?3. In ?A.2 we show how 
to derive our general variational principles for the full flux tensor directly from a pair 
of saddlepoint variational principles. 

A.1. Derivation of the variational principles of ? 3 by a partial Legendre 
transformation. Consider the forward and backward cell problems ((2.11) in ?2), 
with E = 1, 

(A. 1) V-(I +H) E+=0, VxE+=0, (E+)=e, 

(A.2) V (I -H)E- =0, V x E- =0, (E-) =e. 

Let D+ = (I + H)E+, D- = (I - H)E- be the fluxes for the forward and backward 
problems, respectively, and define 
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Then E', E, and D', D are related by 

(A.5) D' = E' + HE, 

(A.6) D=E+HE' 

or, in the matrix form, 

(A.7) (D' / I H )(E' 

The cell problems (A.1) and (A.2) are equivalent to (A.7) with 

(A.8) V D' = V D = O, 

(A.9) V E' = V E = O 

under the constraints 

(A.10) (E') 0, 

(A.11) (E) =e. 

Note that the matrix (j H I) is not symmetric. Following the Gibiansky and Cher- 
kaev idea of performing a partial Legendre transform, let us rewrite (A.5) as 

(A.12) E' = D'-HE. 

Then (A.6) becomes 

(A.13) D = HD' + (I -H 

and in matrix form, (A.12) and (A.13) are equivalent to 

(A.14) ( D ) = ( H I-H 2 )(E) 

Now the matrix is symmetric and positive definite as a result of this transformation. 
The effective diffusivity is given by 

5(e) =(E+ E+) 

(D+ . e) 

= (D+ e) + 2(D- -e) 

(A.15) - 2(D+ E+) + (D- E-) 

(D' . E') + (D E) 

SIi-H Dc D 

Since 
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is symmetric and positive definite, we have the following variational formulation for 
5(e): 

(A.16) a(e) inf inf I 2-H (G' F 
(F)=e (G'1)=(HF) H) F 

The constraint (G') = (HF) comes from (A.5) and (E') = 0 for the original problems. 
More explicitly, we have 

a(e) inf inf {(G' . G') - 2(HF G') 
(A.17) (F)=e (G') (HF) 

+ (F . F) + (HF HF)}. 

Let us fix F and perform the minimization on G'. The resulting Euler equation 
is 

(A.18) V x (G'-HF) = 0. 

Equation (A.18) can be solved using the projection operator F' - VA -1 V1, de- 
noted by F, in ?3 (cf. (3.72)), 

(A.19) G' = (HF) + F'HF. 

Substituting (A.19) into (A.17) and observing that F = V A V I - F ), we 
obtain 

(A.20) 5(e) =inFf {(F . F) + (FHF . FHF)}, 
(F) =e 

which is the direct variational principle (3.73) with E = 1. 
To derive our inverse variational principle, let us consider the dual forward and 

backward cell problems, with E 1 again, 

(A.21) V x J + H) - 1D+ = 0, V D + = 0, (D +) = e , 

(A.22) V x (I- H)-'D- = 0, V D- =0, (D-) = e. 

Set E+ = (I+H)-1D+, E- = (I-H)-1D- and define D', D and E', E as before and 
related as in (A.5) and (A.6). The dual cell problems (A.21), (A.22) are equivalent 
to (A.7) with (A.8) and (A.9) under the constraints 

(A.23) (D') 0, 

(A.24) (D) e. 

Again, we do the partial Legendre transform to (A.6) 

(A.25) E=D-HE'. 

Then (A.5) becomes 

(A.26) D' =E' + H(D-HE') 
= HD + (I -H2)E/ 
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and in matrix form (A.25) and (A.26) are equivalent to 

(A.27) (DE)(IH H)(I D) 

in which the matrix is symmetric and positive definite. The inverse effective diffusivity 
is given by 

(J>)-1(e) = (D' E') + (D E) 

(A.28) /I - H 2H tE' tE/ 

Since this quadratic functional (A.28) is symmetric and positive definite, we have the 
following variational formulation for () - (e): 

(A.29) (j)-1(e) inf VXFf=O K( I-H2 H ) (F') (F')\ 
(G)=e ((1+H2)F')=-(HG) 

where the constraint for F' comes from (A.26), (HD) + ((I - H2)E') = 0, by (A.23). 
More explicitly, we have 

(a)->(e) inf inf_ {(F' . F') + (H2F' . F') 
(A.30) (G)=e ((1+H2)F/)=-(HG) 

+ 2(HG . F') + (G. G)}. 

Let G be fixed and perform the minimization on F'. The Euler equation is 

(A.31) V (1+H2)F'+V HG=0. 

We can solve (A.31) in the following way. Write (1 + H2)F' =-HG + V'X, where 
X is a periodic function. This will satisfy the constraint, and X must solve 

(A.32) ?=VxF'=Vl 'F'=-Vl H G+V' 1 
1+ H2 1+ H2 

or 

(A.33) v -X = IFHG, 

where Fr = V'A/\1V' (1/1 + H2) (cf. (3.70) and (3.71) with E = 1) and 
H H ~ ~ 

(A.34) F - G + F' HG. 
1+ H2 1?H2 H 

We now substitute (A.34) into (A.30) and consider each term separately. For the 
first term, we have 

(F'. F') = I 
( - F' )HG - I (I-F )HG 

for the second term, 

(H2F'- F') = 1lF112( ( H)HG 1 H2(I - F)HG) 

K 1 +H2 (I - IF)HG. (I - IF)HG) 

-( KlH2'(I-P I)HG. (I?-IF' HG); 
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for the third term, 

2(HG . F') -2(HG. (I-F )HG) 

(A.35) H 

-2K(I - IF)HG. 'H -I(IF-')HG 

where we use the fact that F is a projection operator that is selfadjoint with respect 
to the inner product weighted with (1 + H2)-1. For the fourth term, we have 

(G . G)=K1+H2G G) + K+ G ?H G 

KI +H2G I G)+ +K HG HG). 

When we add these terms, we obtain 

(A.36) (a)1(e) incf{< l+IH2G G)+Kl?H2FHHG FHGG}, 
(G) =e 

which is our inverse variational principle. 

A.2. Derivation of the variational principles of ? 3 from a saddlepoint 
variational principle. Our variational principles can be derived directly from a pair 
of saddlepoint variational principles. This is actually closer in spirit to our original 
approach in ?3. At the end of ?2 we noted that the full effective flux tensor, defined 
by (2.17), is not symmetric. We now give variational formulations for the full effective 
flux tensor 

a(el, e2) = (D+ - e2) V el, e2 , 

where e1, e2 are unit vectors, 

(A.37) D+1 =( + H)Ee1 

and E+ is the solution to the forward cell problem in the direction el 

(A.38) V (IJ + H)E+1 = 0, V x E+1 = 0, (E+)= el. 

The effective diffusivity 

5(e) = a(ei,e2) for e1 = e2 = e 

is the symmetric part of the effective flux tensor. Define the backward cell problem 
in the direction e2 by 

(A.39) V7 (- -H)E-2 = 0, V x Ee- = ?, (E-2 e2 

and let 

(A.40) D = (I- H)Ee. 
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Define also 

El2 (E+ - E-) 

(A.41) E 2 el 2+ +e2) 

D12 = 2 eD+1-e2)' 

D 12 = (D+1 + D-2). 

Then, from (A.37) and (A.40), 

(A.42) 12 E12 + HE12, 

and the cell problems (A.38) and (A.39) are equivalent to 

(A.43) V x E12 =V x E12 = 0, 

(A.44) VD/2 = VD12=0 

along with (A.42) and subject to the mean field constraints 

(E) el e2 
(E12) = el + e2 

The effective flux tensor is given by 

a(el, e2) =(D+ - e2) 
el~ ~ D~ l 

= 2(D+1 e2) + 
1 

(D- 
- 

el) 

= 2(D+1 Ee-) + 
1 

(D-2 * E+1) 

(A .45) =4- ((D+ + D-)(E+ + E)) 
1 

((D+ - D-)(E+l-e) 

(D12 E12) - (D2 E/2) 

/-I -H" (/ E E 
\KH I E12 kE12)J 

We note that the last expression in (A.45) is a symmetric, indefinite functional whose 
Euler equations are (A.44) via (A.42). Therefore 

(A.46) o7(el, e2) inf sup(F(e+)/ VF-O- (")(')) 
VxF=O (F/)-(el-e2)/2 II 

The Euler equation for the supremum is 

(A.47) V*F'?+VHF =O, 

and hence 

(A.48) F' = 
e - 2 _ FHF. 
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When (A.48) is substituted into (A.46), we obtain our general variational principle 

a(ei,e2) inf (F. F) + (FHF . FHF) 
V xF=O 

(A.49) (F) =(el +e2) /2 2 

2f - (HF) * (el -e2) - el - 
2 } 

When e1 = e2 = e, (A.49) is identical to the direct variational principle (A.20) of the 
previous section and of ?3. 

To get an inverse variational principle, we note that 

(A.50) (o>)-1(el,e2) =(D12 E12)-(D'2 E' 

provided that E12, 2, , D12, and D12 satisfy (A.42), (A.43), and (A.44), subject to 
the mean field conditions 

,T,el -/Th\ el____ 

(12) 2 el e, (12) = +2. 

Let us invert (A.42) as follows: 

(A.51)~~~~~~ E1 = f^D2HD12)i E12 1 + H2 (D12- 

(A.51)1 
E 

+H2(D12-HD12) 

As before, we have the saddlepoint variational principle 

(a) (el, e2) 

(A.52) -I H 

(G)=(el+e2)/2 (G,)=(e- )/2 

Eliminating the supremum by solving the corresponding Euler equation, we obtain 

1 1 
V x + G'-V x HG =0, 

1?+H2 I1?H2 

and hence 

(A.53) G' - -2 - (e 2 e2) +IFHG, 

where I" is defined by (3.70) and (3.72). Using (A.53) in (A.52), we can obtain our 
general inverse variational principle 

(r)-1(el, e2) 

- inf 1 G-G~ 1 IF' HG. F' HG\ 
= -= Iif {( + H2G ) l+ H2 H H 

) (G) =(el +e2) /2 1H2?H2HH 

(A.54) +2K+lHe2HG(e 2 2 -r ( e122)> 

-K(?H ( el -e2 _]7 (el e2))2)} 
When e1 e2 = e, (A.54) is identical to (A.36) of the previous section. 
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A.3. The symmetry of the full effective flux tensor. Let v- be the effective 
flux tensor associated with the flow -H, instead of H. In view of (A.46) and (A.49), 
v- admits also variational formulations 

C- (el, e2) 

(A.55) = inf sup ( F' 
VxF=O (F/)=(el-e2)/2 

and 

J- (el,e2) inf (F. F) + (FHF . FHF) V xF=o L 
(A.56) (F) = (e1 +e2) /2 2 

e e2 
+ (HF) - (el -e2) -| 22} 2 f 

Clearly, 

(A.57) a- (el, e2) = a(e2, el). 

The symmetry of a, that is, a(e1,e2) = a(e1,e2), is equivalent to the statement 
that the effective flux tensor is independent of the sign of the stream matrix H. 
Several situations lead to the symmetry of the effective flux tensor for two-dimensional, 
periodic flows: (a) Translational antisymmetry of H in the sense that there is a vector 
r such that H(x + r) =-H(x) for all x C R2. 

The symmetry of the effective flux tensor follows easily from this translational 
antisymmetry of H in view of the transformation x -* x+r, F(x) -> G(x) = F(x+r). 
This brings (A.49) to 

(A.58) inf {(G- G) + (FHG* FHG) + (HG)- (el - e2) - el - 

(G)=(el+e2)/2 

which is equivalent to (A.56); 
(b) Reflectional antisymmetry of H with respect to an axis, say, x-axis, in the 

sense that H(x, -y) =-H(x, y) for all x = (x, y) C R2. 
Write the trial fields F and F' in (A.46) as the gradient of periodic functions f 

and f' plus the mean fields (el + e2)/2 and (el - 22)72, respectively, and consider 
the transformation 

F~~G=V(g+ 2Y), F'-G'=V(g'+ X2Y), 

where 

g(x, y) f (x, -y), g'(x, y) -f'(x, -y). 

This transformation maps (A.46) into 

_ -H 
(G)=(el-e2)/2 VxG'-o -H I G G 

VXG=O=(-e1-e)2 

which is equal to v-(-e2, el). Using the relation (A.57), we have 

o(el, e2) =-(-e2, el) = (el, -e2) =-c(el, e2), 
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that is, cr(el, e2) = 0. Similarly, we have cr(e2, el) = 0. In other words, the antisym- 
metry of H with respect to the x-axis leads not only to the symmetry of the effective 
flux tensor, but also to the statement that e1 and e2 are the eigenvectors of the tensor. 
The same conclusion holds for any H that is reflectionally antisymmetric with respect 
to the y-axis. Generally, if the stream function H has the reflectional antisymmetry 
with respect to a vector e, then the effective flux tensor is symmetric, and e and its 
perpendicular direction are the eigendirections of the tensor; 

(c) The 1800-rotational antisymmetry of H with respect to a point, say, the origin 
in the sense that H(-x,, -y) = -H(x, y) for all x = (x, y) E R2. 

Consider the transformation 

F - G=V(?g+ x +) F' G glV( '+ x y) 

where 

g(x, y) -f(-x, -y), g'(x, y) -f'(-x, -y). 

Note that G(x) = F(-x). This transformation maps (A.46) into 

inf sup ( 
(G) =(el+e2)/2 VxG'-o ( H G G VxG=O G =ee22 

which is o- (el, e2), and the symmetry of the effective flux follows immediately. 
A special class of flows that have symmetric effective flux tensor are shear layer 

flows for which the cell problems can be solved exactly as follows. The cell problem 
for u(x) = (u(y), 0) in the direction e1 is 

(A.59) AX, + u(y) Q9 X1 + u(y) = 0, 

which reduces to 

(A.60) 0Al + u(y) = o 

when the ansatz Xi = Xi(y) is chosen. Thus 

Y 

Xi (Y) j dy' H(y'). 

The effective flux 

a(el, e2) = ((I + H)VX, e2) ax(,y ) 0. 

On the other hand, the solution X2 to the cell problem in the direction e2 is trivially 
zero, and 

a(e2, el) = ((I + H)VX2 el) = 0. 

Thus, we have 

a(el, e2) = ae2 0 el = O. 

Therefore, for the shear layer flows in the x- or y-directions, the effective flux tensors 
are symmetric, and e1, e2 are the eigenvectors of the tensors. 
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Appendix B. Variational principles for time-dependent flows. In this 
section, we derive various variational principles for the effective diffusivity in time- 
dependent flows by two different methods. Let us consider two-dimensional space-time 
periodic flows u = u(x, y, t) that are incompressible, i.e., V . u = 0. The space-time 
cell problem is 

(B.1) a- cAX + u. VX + u. e, at 
and the effective diffusivity is given by 

(B.2) oE(e) = J + E (Vx Vx), 

where f denotes temporal average over a time period and (.) for spatial average over 
a spatial period. In the derivation of the variational principles, we set E = 1. 

B.1. Variational principles from a nonlocal space-time cell formulation. 
Equation (B.1) can be put into divergence form 

(B.3) V (I+H -A1t)Vx+V He=O 

or 

(13.4) V (I +H - A-'Ot)E+ =O V x E+ = O, (E+) =e 

with 

5(e)-f (E+ E+). 

Here 

H=(oH ) and V'H=u. 

Consider the forward and backward cell problems 

V (I+ H-/A-10t)E+ = O, V xE+ = O, (E+) =e, 

V (I-H+/A-10t)E- =O, V xE- =O, (E-) =e. 

Define the (nonlocal) fluxes by 

D+ (I + H- A-1at)E+, 

D--(I - H + A-1t)E- 

and set 

E'= 1(E+ -E-), 

E-= (E+ +E-), 

D' 1(D+ -D-), 

D=1(D+ +D-). 
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Then we have 

D' = E' + H'E, 

(B.5) D = E + H'E', 

where H' = H - A-&t is a skew symmetric operator with respect to the space-time 
inner product. The original cell problem (B.4) is now transformed into 

(B.6) V x E' V x E 0, 

(B.7) V D'= V D =0 

along with relations (B.5) and the mean field conditions (E') = 0, (E) = e. 
The effective diffusivity can be expressed in terms of E', E, D', and D as follows: 

5(e) J(D+ e) + J(D- e) 

(B.8) J(D+ E-) + 2J(D- E+) 

= (D E) - (D' E'). 

Using (B.5), we can write (B.8) in the form 

(B.9) 5(e) = (( H I )(E *( )' 

which is a symmetric, indefinite functional whose Euler equations are (B.7) via (B.5). 
Therefore, v(e) comes from a saddlepoint variational principle that is 

-I -H' 1F' F 
(B.10) o(e) inf sup I\( H' - ) (F' 

We can eliminate the supremum by solving the corresponding Euler equation 

V F' + V . H'F = 0. 

Using projection operator, the solution has the form 

(B.I1) F'=-FH'F, 

and, substituting (B.11) into (B.10), we have 

(B.12) 5(e) inf -f {(F F) + (FH'F FH'F)}, 
V xF=OJ 

(F) =e 

which is the (direct) variational principle for the upper bound. 
To obtain a reciprocal variational principle, we note that 
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if D', D, E', and E satisfy (B.5), (B.6), and (B.7), subject to the mean field constraints 
(D') = 0, (D) = e. Inverting the relation (B.5), we have 

(B. 14) ~E/ = (-(H )2) 1(D/ - H/D)) 

E (I - (H )) -1(D - H'D'). 

Note that -(H/)2 is nonnegative. In terms of D' and D via (B.14), (B.13) is a 
symmetric, indefinite functional whose Euler equations are (B.6). Therefore 

(B.15) (J1-(e) inf sup f ((I-(H) ) ( -H' H ' (G) (G (B. 15) (a)2~( )MG, GG) 
(G) =e (G')=O 

We can eliminate the supremum by solving the corresponding Euler equations to 
establish the inverse variational principle for the lower bound of v(e). However, this 
variational principle seems useless because the operator (I - (H')2)-1 is difficult to 
work with. 

In the next section, we derive different variational principles that are easier to 
use. 

B.2. Variational principles from a local, augmented, space-time cell 
formulation. This approach is based on the following simple observation. If, instead 
of (B.1), we consider 

(B.16) - a = /\X + u VX' +x u e 

with x' x'(x, y, t) space-time periodic, then the effective diffusivity is again given 
by 

(B. 17) 5(e) = 1 + ff(VX/ VX ). 

This can be readily seen, since the right-hand side of (B.17) has a variational formu- 
lation similar to (B.12) with H' replaced by H + A-1at. The infima are the same 
since both trial fields F(x, y, t) and F(x, y, -t) are admissible. 

Consider now the following extended coordinate space (x, y, t, w) and an extended 
cell problem: 

X = A/ + u- + u - e whenO<w< 1 
at2 

(B.18) w 

--9X= AX+u vX+u e when -<W<0, at2 

where (B.18) is periodized in w with period 1. The function X- = (x, y, t, w) is simply 

Xdefined by (B.1) whenO<w< K 

X' defined by (B.16) when - < w < 0. 

Let us introduce the following notation: 
(a) the extended gradient: V = (V, at, am); 
(b) the extended intensity: E = Vx + e with e (e, 0, 0); 
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(c) the extended velocity: u(x, y, w, t) = (u, ?1, 0) depending on the sign of w, 
mod 1; 

(d) the extended average: ((.)) f= dwf (.). 
Note that iu is incompressible in the extended space (x, y, t, w) and has zero mean. 

Thus there exists a periodic skew symmetric matrix H, such that V H =i. In fact, 

H 0 
(0 L)' 

where 

H=( 
O ) and L (2 0 )' 

where L = L(w) is a piecewise linear sawtooth function defined by 

Iw when 0 < w < 2 
L( 

w when -2 < w < 0. 

With this notation, (B.18) can be put into divergence form 

(B. 19) V(I + Hf)E+= + = = V + e, 

where 

0 1 0 0 
I= 0 0 0 0 . 

I0 0 0 0 

Let 

/0 0 0 0' 

I- 0 0 0 0 
_ 0 1 0 

0O O O 12 

so that I + I' is the identity matrix in the extended space, which is denoted by I, i.e., 
I + I'. 
The effective diffusivity is given by 

v(e) = ((IE,+ -E+)). 

Since the extended space is four-dimensional, it is not convenient to use gradient and 
curl, and we use differential forms to interpret (B.19). The field E+ is a 1-form such 

that dE+ = 0, ((E+)) = 6, and 

(B.20) d*(I + H)E+ = 0, 

where d is the exterior derivative and * is the Hodge star operator on the four- 
dimensional torus (see [24]). 
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Next, we carry out the symmetrization procedure as before by considering the 
following forward and backward problems: 

d*(I + H)E+ = 0, dE+ = 0, ((E+)) = e) 

d*(I - H)E- =, dE- =, ((E-)) = e 

Let 

(B.22) 
D+ = *(I + 

H)E+- 
fD- -= *(I -Hf)E- 

and 

E' 2(E+-E-)? 

(B.23) 2(E+ + E 

D2(D+ +D-). 

Note that (B.22) are local relations in the extended space. The relations between E', 
E, D', and D are 

D' = *(IE' + HE), 
(B.24) ~ ~ ~ 

D = *(IE + HE') 

or in matrix form 

(B.25) ( 
-]a 

H I) E 

which is a symmetric, indefinite form. We have that 

5(e) = (((-*)D+ *)) + 2 (((-*)D- e))) 
- ((*D E-)) + 2(((-*)D- E+)), 
- (-*) E)) -( *)D E')) 

The minus sign is due to the identity **E =-E for 1-forms in four dimensions. As 
before, we have a saddlepoint variational principle in view of (B.25) 

(B.26) cr(e) inf sup ( 
dF=O dF-O H F F 

((F)) =e ((F)) =O0 

We can eliminate the supremum by solving the corresponding Euler equation 

(B.27) d*IF' + d*HF = 0 

in the following manner. Set F' = df with f is a periodic function in the extended 
space since ((F')) = 0. Then f satisfies 

(B.28) (d*Id)f =-d*HF. 
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The left-hand side of (B.28) is simply the spatial Laplacian A\ over the spatial period 
that is invertible. Thus 

(B.29) f =-(d*Id)-1d*HF. 

When (B.29) is substituted into (B.26), we have 

v(e) inf ((IF'- F')) + ((IF. F)) 
dF=O 

(B.30) - inf ((IF F)) + (((d*Id)-1d*HF .d*HF)). 
dF=O 

((F)) =e 

It is not hard to see that, after some algebra, (B.30) is the same as (B.12). 
To obtain an inverse variational principle, we note that 

(B.31) (a) 1(e) (((-*)D E)) -(((-*)D' E')) 

with ((D')) 0 and ((D)) *e. We now invert (B.25), which is a local operation, and 
we have 

fE'- --HI*D/ + + lH + -J' *D, 
(B.32) E I- + 1I \ 1 + LJ) 

Il+H2?(l+ H2H? 

where 

0 0 0 0' 

J= 0 0 0 1 
O -1 0 

As before, we have a saddlepoint variational principle for (B.31), 

(u) -1 (e) 

(B.33) dO su //(1 ?H2 H-H+ (*' (J'/\ 
dGG- \\ (0 1+H2 -LJ 1+H2 ) // 

((G))= e ((G,))=o 

The Euler equation for the supremum is 

(B.34) d I*G'-d H+ -J' *G=0, 1? H I+ H\+2 LJ 

and, when (B.34) holds, (B.33) can be simplified to 

(B35(= inf (7 1 IG 1 - (B.35) (a)Ge ifO 1+ H2I *G7 ? KK + H2 I*G' G 
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