
Physica D 136 (2000) 145–174

Phase diagram for turbulent transport: sampling drift, eddy diffusivity
and variational principles

Albert C. Fannjiang
Department of Mathematics, University of California, Davis, CA 95616, USA

Received 12 March 1998; received in revised form 1 February 1999; accepted 4 June 1999
Communicated by U. Frisch

Abstract

We study the long-time, large scale transport in a three-parameter family of isotropic, incompressible Gaussian velocity
fields with power-law spectra. Scaling law for transport is characterized by the scaling exponentq and the Hurst exponent
H , as functions of the parameters. The parameter space is divided into regimes of scaling laws of differentfunctional forms
of the scaling exponent and the Hurst exponent. We present the full three-dimensional phase diagram. The limiting process
is one of three kinds: Brownian motion(H = 1/2), persistent fractional Brownian motions(1/2 < H < 1) and regular
(or smooth) motion(H = 1). We discover that a critical wave number divides the infrared cut-offs into three categories,
critical, subcritical and supercritical; they give rise to different scaling laws. We introduce the notions of sampling drift and
eddy diffusivity, and formulate variational principles to estimate the eddy diffusivity. We show that the fractional Brownian
motions result from a dominant sampling drift. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The movement of a passive scalar in a turbulent flow is described by the stochastic differential equation

dxxx(t) = V(x(t), t, ω) dt +
√

2κ dwww(t), x(0) = 0,

wherex(t) is the position of the particle at timet, κ ≥ 0 the molecular diffusivity,www(t) the standard Brownian
motion andV(x, t, ω) a time-stationary, space-homogeneous, incompressible velocity field. Hereω denotes an
element of an ensemble of random flows.

We are concerned with the long-time, large scale behavior of the displacementx(t). To this end, we study the
scaling limit

xε(t) = εx(t/ε2q), as ε → 0, (1)
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with suitableq > 0. The scaling exponentq characterizes the timescale associated with transport on the spatial
observation scale 1/ε. The equation for the rescaled displacement (1) becomes

dxε(t) = ε1−2qV(xε(t)/ε, t/ε2q) dt + ε1−q
√

2κ dwww(t). (2)

When molecular diffusion is evidently negligible, we setκ = 0 to simplify the equation

dxε(t) = ε1−2qV(xxxε(t)/ε, t/ε2q) dt. (3)

The effect of molecular diffusion is discussed where the issue arises and in the concluding remarks.
Motivated by existing diffusion limit theorems for steady flows with finite-range spatial correlations [14,19], on

one hand, and those for temporally mixing flows with long-range, spatial correlations [9,15,31], on the other hand,
we consider turbulent transport in a class of random flows with power-law spectra parameterized byα, β, γ (see
Section 2 for details).

Roughly speaking, the velocity fieldV is time-stationary, space-homogeneous and Gaussian. Its two-point cor-
relation functionsR = [Rij ], Rij (x, t) = 〈Vi(·, ·)Vj (· + x, · + t)〉, are given by the Fourier transformRij (x, t) =∫

eik·x R̂ij (k, t) dk with

R̂ij (k, t) = ρ(|k|2βt)ε(k)(δij − kikj |k|−2)|k|1−d (4)

whereρ is the time correlation (relaxation) function andε the energy (shell) spectrum given by a power-low

E(k) = E0|k|1−2α, E0 > 0.

Here〈·〉 denotes the ensemble average. The factor(δij − kikj |k|−2) ensures that the flow is divergence-free. Ifρ is

anexponentialfunction, e−a0|k|2β t , then the velocity field is an Ornstein-Uhlenbeck process which is Markovian.
Note that the spectrum is not integrable near|k| = ∞ or |k| = 0 for α ≤ 1 orα ≥ 1, respectively. The infrared

divergence (small|k|) of the integral of velocity energy spectrum indicates non-homogeneous velocity and thus
violates the space homogeneity assumption, whereas the ultraviolet divergence (large|k|) of the integral would
make the velocity a generalized, rather than ordinary, function (i.e., a distribution). To remove divergence in the
spectrum, we introduce an ultraviolet cut-off

E(k) = 0, |k| > K, for α ≤ 0, (5)

and a infrared cut-off

E(k) = 0, |k| < δ � 1, for α ≥ 1. (6)

In the case ofα < 1, the energy containing scale is at the ultraviolet cut-off; in the case ofα > 1, the energy
containing scale is at the infrared cut-off. It is convenient to write the cut-off energy spectrum as

E(k) = E0|k|1−2αI (|k|), (7)

whereI (|k|) is the characteristic function of [0, K], for α < 1, of [δ, ∞), for α > 1, and of [δ, K], for α = 1 (see
[20]). When we study the effect of an infrared cut-off, we will take an infrared cut-offδ = εγ > 0.

If the infrared cut-offδ > 0 is fixed, independent ofε, then the flow is mixing in time (i.e., correlation time is
uniformly bounded, independent of wave number), and consequently, the scaling in (1) is diffusive,q = 1, and the
limit is a Brownian motion [15]. In the case of the Kolmogorov–Obukov spectrum(α = 4/3, β = 1/3, see [20,28]),
[δ, K] represents the inertial range whereK−1 is the dissipation length andδ−1 is the integral length. In general,
the infrared cut-off is determined by the scale of external forcing and the size of physical domain. By lettingδ to
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change withε, asδ = εγ , γ > 0, we vary the spatial scale of observation 1/ε in relation to, e.g., the size of physical
domain.

If the scaling limit exists,statistically independent of the initial point, and has stationary increments, then the
transport process is said to behomogenized, and the up-scaling, or coarse-graining, procedure represented by (1) is
calledhomogenization. The scaling is diffusive ifq = 1, superdiffusive ifq < 1, subdiffusive ifq > 1. Sub- and
super-diffusions are called anomalous diffusion.

The limit Z(t) may be Gaussian or non-Gaussian, Markovian or non-Markovian, even if the velocity field is
Gaussian and Markovian. In generalZ(t) has stationary increments as doesxxxε(t) [39]. If Z(t) is self-similar and
Gaussian then it can be characterized by a unique Hurst exponentH in its autocovariance function

Cov(Z(t1), Z(t2)) = 1
2C{|t1|2H + |t2|2H − |t1 − t2|2H }, 0 < H ≤ 1 (8)

whereC is the variance ofZ(1). H = 1 corresponds to aregular(or smooth) motion:H = 1/2 a Brownian motion,
B(t). Any otherH corresponds to a fractional Brownian motion (FBM),BH (t), which, after normalization, can be
represented as

BH (t) =
∫ 0

−∞
(|t − t ′|H−1/2 − |t ′|H−1/2) dB(t ′) +

∫ t

0
|t − t ′|H−1/2 dB(t ′), 0 < H < 1, (9)

as introduced in [36]. Eq. (9) defines the only mean-zero, continuous, Gaussian process that is self-similar (or
self-affine), with the Hurst exponentH , has stationary increments, and satisfiesBH (0) = 0 (see [41]). FBMs found
in the present study are all persistent in the sense thatH > 1/2. It is worth noting that, forα ≥ 1 with the critical
cut-off (γ = γc), the limit process is not self-similar (cf. Regimes II′,III ′ and IV′).

Non-Markovian limits are related to non-local homogenization [5,11,43,44]. Previously non-local homogeniza-
tion has been shown to arise as a result of fast oscillation, rather than a scaling limit.

If Z(t) is non-Gaussian, then there may be a hierarchy of Hurst exponents corresponding to higher moments
of the process. When the sequence of Hurst exponents diverges as the order of moment increases, the limit is
intermittent. Intermittency effect may also manifest in multiple scaling exponents. We do not consider the problem
of intermittency here.

In this paper, we do not address directly the question of existence and uniqueness of the scaling limit. Rather,
we assume the existence and uniqueness of a non-trivial scaling limit, and seek to identify the scaling expo-
nent and the second order Hurst exponent (the Hurst exponent, in the case of a Gaussian limit). In doing so,
we point out relevant mathematical results that exist, or can be proved. We try to present a coherent physical
picture of the whole phase diagram. To enhance our case, we often analyze the problems from several different
perspectives.

The exponentq characterizes the time scale associated with transport observed on the space scale 1/ε; the
exponentH characterizes the time correlation property of successive increments on the observation scale (and
therefore, the roughness of the limiting sample paths). Naturally, we ask if the dimensionally correct
relation

H = 1/(2q) (10)

holds? When (10) holds the limit process is invariant under the same scaling transformation (1). It turns out that
relation (10) generally holds forα < 1 but fails forα > 1. If an additional infrared cut-off is made in the case of
α < 1 and if the cut-off is removed slower than somecritical wave number,kc, then (10) does not hold. In these
situations, the inequality

H < 1/(2q) (11)
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Fig. 1. Phase diagram with supercritical cut-offs:γ > max{1/(α + 2β − 1), 1}.

Fig. 2. Phase diagram with subcritical cut-offs:γ > max{1/(α + 2β − 1), 1}.

is in the place of (10). The inequality (11) is due to the fact that 2H characterizes thecovariances, whereas 1/q
characterizes thevariances, of successive increments of turbulent motion on the observation scale.

In general the exponentsq, H depend on the parametersα, β and the cut-offδ = εγ and can be expressed
explicitly as functions ofα, β, γ . Here it may be helpful to draw analogy to critical phenomena in statistical
physics: we think ofα, β, γ as order parameters, the scaling limitε → 0 as thermodynamic limit and the exponents
q, H given by formulas ofα, β, γ as phases. The phase diagram divides the space of order parameters,α, β, γ into
regions associated with different formulas forq, H . Our results are summarized in Figs. 1–4. Since there are three
parameters, the full phase diagram is three-dimensional. To simplify the presentation, we choose to portray the full
diagram as several two-dimensional diagrams.
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Fig. 3. Phase diagram at any cross sectionγ = constant> 1.

Fig. 4. Phase diagram at any cross-sectionγ = 1.

Note also that the phase diagrams are different from those in statistical mechanics in that our phases are con-
tinuum, not discrete: except for the diffusive regime, whereH = 1/2, q = 1, H, q change from point to point,
continuously or discontinuously. But their functional forms in relation toα, β, γ are discrete and divided by phase
boundaries.

Phase diagram was first used by Avellaneda and Majda [1,2] to present scaling limits of turbulent transport in
anisotropic, stratified flows of the formV(x, t) = (v(x2, t), 0), with x = (x1, x2). A different diagram for the same
shear-layer flows was rigorously obtained by Zhang and Glimm [46] using a different approach. In the current
paper we considerisotropic turbulent flows in two or three dimensions, although the results are applicable to the
case of shear-layer flows when interpreted appropriately. Also, we do not attempt to derive the results rigorously
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here. Often we refer to existing theorems to indicate how in principle results may be proved, subject to technical
modification, and to support the physical arguments invoked; they are not intended to be mathematical proofs. The
proofs of many of the results are very technical and will be published elsewhere.

The effect of an infrared cut-off depends on whether the cut-off issubcritical or supercritical. For α < 1, a
supercritical cut-off,γ > γc = max{1, 1/(α + 2β − 1)}, does not affect the scaling law. Forα ≥ 1, because the
infrared cut-off corresponds to the energy-containing scale, the scaling limit is dominated by the infrared cut-off.

The supercritical diagram (Fig. 1) includes:
• Regime I:α + β < 1 orα < 0. The scaling is diffusive,q = 1, and the limit is a Brownian motion,H = 1/2.
• Regime II:α+β > 1,α+2β < 2,α < 1, γ > 1/(α+2β −1). A FBM regime with the space-freezing property

that the velocity dependence on space is negligible. The scaling is superdiffusive,q = β/(α + 2β − 1), and the
limit is a fractional Brownian motion, withH = 1/(2q).

• Regime III.α + 2β > 2, 0 < α < 1, γ > 1. A FBM regime with the time-freezing property that the velocity
dependence on time is negligible. The scaling is superdiffusive,q = 1−α/2, and the limit is a fractional Brownian
motion, withH = 1/(2q).

• Regime IV: 1 ≤ α < 2, γ > max{1, 1/(α + 2β − 1)}. A regular (or smooth) motion regime with both the
space-freezing and the time-freezing properties. The scaling is superdiffusive,q = (1 + γ )/2 − γα/2, and the
limit is regular(H = 1).

The relation (10) is satisfied in all but Regime IV.
In the case of subcritical cut-offs,γ < γc = max{1, (α + 2β − 1)−1}, the number of regimes shrinks as the

significance of low wave numbers is reduced: part of Regime IV merges with Regime II, and part of Regime IV
merges with Regime III. The scaling exponent now depends on the cut-off exponentγ explicitly. The limit is
universally a Brownian motion across all regimes.

The subcritical diagram Fig. 2 includes:
• Regime I remains intact.
• Regime V:α +β > 1, α + 2β < 2, γ < 1/(α + 2β − 1). Velocity decorrelation in time dominates the transport.

The scaling is superdiffusive,q = 1 + γ − γ (α + β).
• Regime VI:α + 2β > 2, 0 < α < 2/γ, γ < 1. Velocity decorrelation in space dominates the transport. The

scaling is superdiffusive,q = 1 − γα/2.
Finally, there are three regimes associated with critical cut-offs for which the limit process is not self-similar, and

thus, the Hurst exponent is not well-defined (see Figs. 3 and 4).
• Regime II′: α + β > 1, α + 2β < 2, 0 < α < 1 with γ = (α + 2β − 1)−1.
• Regime III′: α + 2β > 2, 0 < α < 1 with γ = 1.
• Regime IV′: 1 < α < 1 + 1/γ with γ = max{1, (α + β − 1)−1}.

Part of Regimes V and VI was first studied by Avellaneda and Majda [3] (see also [21,22]). The main difference in
assumption and setup between this work and [3] is that they considered a partial diagram(0 < β < 1/2, 0 < α < 2)

with an infrared cut-offγ = 1 ≤ γc (see also [38]). Fig. 4 is a generalization of their work. The phase diagram of
[23] was obtained entirely by certain scaling arguments, and is restricted to two dimensions.

In contrast to previous results [1–3,46], our main findings are: (i) the transport effect of the sampling drift and
related critical wave number, which are introduced for the first time, (ii) fractional Brownian motion limit as a result
of the critical wave numbers, (iii) the effect of infrared cut-offs, and (iv) the formulation of cut-off dependent eddy
diffusivity and its associated variational principle without molecular diffusion. The variational principle gives a
useful bound for the eddy diffusively.

The organization of the paper is as follows. In Section 2, we define the three-parameter family of Gaussian flows,
whose transport properties are discussed in subsequent sections. In Section 3, we introduce the notions of sampling
drift, critical wave numbers and eddy diffusively. We also formulate the variational principles that lead to general
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bounds for the cut-off dependent eddy diffusivity in terms of a fractional vector potential of the velocity field. Since
the transition from ultraviolet to infrared cut-off in velocity occurs atα = 1, we divide the discussion accordingly
into two cases:α < 1 andα > 1. We consider the caseα < 1 in Section 4 and the caseα > 1 in Section 5.
We conclude with various remarks in Section 6. In Appendix A we derive a variational principle for the cut-off
dependent eddy diffusivity, without the presence of molecular diffusion.

2. Random velocity field

In this section, we describe some mathematical properties of the random velocity fields considered in this paper.
The most important property is stationarity in time and homogeneity in space (space–time stationarity for

short), without which homogenization is unlikely to hold. It should be noted that, when formulated in a gen-
eral, abstract framework as we will do momentarily, space–time stationarity encompasses space–time periodicity,
quasi-periodicity and almost periodicity as well as random stationarity. This abstract formulation is also handy for
formulating the variational principle for the eddy diffusivity (Section 3.2). Elsewhere, the paper can be understood
without referring to the abstract formulation.

The variational principle in the absence of molecular diffusivity also uses explicitly the Markov property of
the flow and the associated generator. A key turbulent diffusion theorem cited in the discussion of the diffusive
regime (Section 4.1) was proved for certain Markovian velocity fields. For Markovian flows, the mixing property
conveniently corresponds to the spectral gap of the generator. Elsewhere, the Markov property is not used explicitly
and probably not needed.

Since we only use the spectral density explicitly in presenting the phase diagrams, it is safe to assume that the
velocity fields are Gaussian. In particular, the Gaussian property is essential in the fractional-Brownian-motion
regimes (II and III). Elsewhere, the Gaussian property is probably not important.

Let us begin with the abstract formulation of space–time stationarity, upon which we will define the Gaussian
and Markov properties. LetΩΩΩ be the space of steady, space-homogeneous velocity field and letP be a probability
measure onΩΩΩ. Homogeneity in space can be canonically described by the invariance of the distributionP under
the group of translations{τττ x}x∈Rd acting onΩΩΩ. We further assume thatP is ergodic with respect to{τττ x}x∈Rd in the
sense that the only invariant, measurable functions onΩΩΩ under{τττ x}x∈Rd are constants. The measureP dictates the
correlation of the velocity field inspace, and in the case of Gaussian velocity fields, is determined by the energy
spectrum.

Alternatively, we think ofΩΩΩ as the ensemble of elementsω, representing the randomness of the velocity field,
which is distributed according to the measureP . A (prototypical) random velocity field is a vector-valued, random
variable (i.e., a function onΩΩΩ), denoted bỹV(ω). The realization or the sample of the (time independent) velocity
field, V(x, ω), is the translate of̃V(ω) onΩΩΩ, i.e.,V(x, ω) = Ṽ(τττ xω). Since the measureP is invariant under the
translations, the resulting velocity fields are space-homogeneous. We assume thatṼ has zero mean

〈Ṽ〉 = 0

and zero divergence

∇ · Ṽ = 0, ∇ = (∂1, ∂2, . . . , ∂d).

Partial derivative∂i is the infinitesimal generator of the subgroup of translation{τττxi
}xi∈R. The Laplacian1 := ∇ ·∇

is defined as usual. As before,〈·〉 denotes the ensemble average with respect to the distributionP .
The time dependence of the velocity field is then introduced as a time-stationary stochastic process,ω(t), on

the spaceΩΩΩ, which preserves the measureP . In other words,P is an invariant measure of the processω(t). The
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realization of time dependent velocity field is then given by

V(x, t, ω) = Ṽ(τττ xω(t)), ω(0) = ω.

In this formulation, the temporal properties are conveniently separated from the spatial properties of the velocity
field. Additional structures such as Gaussianity and Markovianity can be added on by imposing corresponding
properties onP andω(t). The spaceΩΩΩ is usually infinite dimensional in suitable coordinates such as Fourier
modes. This formulation is sufficiently general to describe periodic, quasi-periodic, almost periodic as well as
random homogeneous velocity field (see, e.g., [10]).

We think of a Markovian velocity field as a sample path inΩΩΩ of a Markov processω(t). A Markovian, Gaussian
velocity field corresponds to anexponentialtime correlation functionρ in (4) and admits the spectral representation

V(x, t) =
∫

Rd

ei2πk·xV̂(dk, t),

where the stochastic measureV̂(dk, t) is an Ornstein-Uhlenbeck process

dt V̂(dk, t) = −a0|k|2β V̂(dk, t) dt + |k|βE1/2(k)(I − k ⊗ k|k|−2)1/2|k|(1−d)/2W(dk, dt) (12)

and can be conveniently expressed in terms of Gaussian white noiseW(dk, ds)

V̂(dk, t) =
∫ t

−∞
e−a0|k|2β(t−s)|k|βE1/2(k)(I − k ⊗ k|k|−2)1/2|k|(1−d)/2W(dk, ds).

The Ornstein-Uhlenbeck process (12) has an invariant measureP that is a Gaussian distribution with zero mean
and the variance matrixR = [R̂ij ] given by (4). Then the exponential relaxation function corresponds to a generator
A of the form

A =
(

− 1

4π2
∆

)β

A0, β ≥ 0, (13)

whereA0 is the generator of the process

dt V̂0(dk, t) = −a0V̂0(dk, t) dt + E1/2(k)(I − k ⊗ k|k|−2)1/2|k|(1−d)/2W(dk, dt). (14)

The operatorA0 is symmetric with respect to the measureP and commutes with the translationτx, ∀x ∈ Rd because
of homogeneity. As the process (14) is a time change of (12) and different wave numbers are independent, the measure
P remains invariant with respect to (14). Also, because the time correlation function for (14) is exponential with an
exponenta0 uniformly bounded above zero,A0 has a spectral gap

−〈A0ff 〉 ≥ a0〈f 2〉, a0 > 0, (15)

for all functionsf, 〈f 〉 = 0, in the domain ofA0.
The motion in such a temporally stationary, Markovian flow is also a temporally stationary, Markov process

whose generator is

L = A+ Ṽ · ∇ (16)

when molecular diffusion is absent, and is

L = A+ κ∆ + Ṽ · ∇ (17)

when molecular diffusion is present [15].
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Now we make an observation which will be helpful in assessing the role of molecular diffusion. The generator
(17) in conjunction with (13) and (15) suggests that the presence of molecular diffusion introduces a mechanism
of generating a Lagrangian correlation in time comparable toβ = 1 in the Eulerian correlation in time. Forβ < 1,
the generatorA dominates overκ∆ for low wave numbers, and if a fixed ultraviolet cut-off is also present, are also
comparable toκ∆ for the other wave numbers. Thus, the effect of molecular diffusion is negligible forβ ≤ 1 and
α < 1 in the limit of high Peclet number(κ → 0).

In the sequel we shall use the notation of the fractional gradient of orderβ,

∇β := (−∆)(β−1)/2∇.

3. Transport properties of various wave numbers

To study motion in a flow with a power-law energy spectrum over a wide range of scales, it is convenient to
decompose the energy spectrum into thesampling driftand thefluctuatingvelocity field, and to consider separately
their distinctive transport properties. The relation between the sampling drift and the fluctuating velocity field is
like that between a mean flow and the fluctuation.

3.1. Sampling drift and critical wave numbers

For each realization of random velocity field there is a non-zero sampling drift due to random fluctuation,
depending on the scale of observation.

The volume-averaged flow on the observation scale consists of spatially non-fluctuating wave numbers on the
observation scale, namely, essentially all|k| = O(ε). The volume-averaged flow comprises three kinds of wave num-
bers:supercritical, criticalandsubcriticalwave numbers depending on their variations in time on the observation
scale. Critical and supercritical wave numbers compose thesampling drift.

The supercritical wave numbers are effectively uniform in time as well as in space in the sense that their correlation
times are much larger than the timescale of observation,|k|−2β � ε−2q , and satisfy

|k| � min{εq/β, ε}. (18)

As such, they behave like a constant drift on the observation scale and transport particlesballistically. Among them,
we pay special attention to those wave numbers that, on their own correlation timescales, transport particles over a
distance larger than the observation scale, i.e.,

|k|1−α|k|−2β � 1/ε, (19)

where(∫
c1|k|≤|k ′|≤c2|k|

E(k ′) d|k ′|
)1/2

∼ |k|1−α |k| � 1, (20)

is the amplitude associated with wave numbers of order|k| � 1. Note that, for (19) to define a non-empty set
of low wave numbers, we needα + 2β > 1. Forα + 2β ≤ 1, the supercritical wave numbers do not contribute
to the transport on the observation scale and are negligible asymptotically; for this reason they are refferred to as
insignificant wave numbers.

Since we do not know the scaling exponentq ahead of time, we define thecritical wave numbers to be the
boundary of thosesignificantsupercritical wave numbers. Thus, the critical wave numbers are of the orderkc = εγc ,
with
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γc = max{1, (α + 2β − 1)−1} =
{

(α + 2β − 1)−1, for 1 < α + 2β < 2,

1, for α + 2β ≥ 2.
(21)

By (21), forα + 2β > 2, the sampling drift is identical to the volume-averaged flow.
Insignificant supercritical wave numbers occur when the following conditions are satisfied:γc > q/β > 1. This

leads immediately toα + 2β < 2 andβ ≤ 1. The latter follows fromq ≤ 1 (see Section 4.1). As we will see later,
this can only happen, in part of Regime I (withq = 1) defined byα + β < 1, α + 2β < 2, β < 1.

The critical wave numbers have long-range correlation in time or in space and dominate the transport in the
fractional-Brownian-motion regimes (Regimes II and III). Thesubcritical wave numbers are either temporally
fluctuating,|k| � εq/β , or spatially fluctuating|k| � ε. Effectively, the subcritical wave numbers can be defined
by |k| � kc, and by definition, include the insignificant supercritical wave numbers.

Denote bycccε the sampling drift on scale 1/ε. It has an amplitude of the order(∫
δ≤|k|≤kc

E(k) d|k|
)1/2

∼
{ |k1−α

c − δ1−α|, for α 6= 1,

|logkc − logδ|, for α = 1.
(22)

Since the critical wave numbers dominate the sampling drift forα < 1,cccε has a long-range correlation in space or
time on the observation scale, so its transport effect is not ballistic. Forα ≥ 1, cccε is effectively frozen in time and
its transport effect is ballistic.

Infrared cut-offs are classified accordingly:δ = εγ is critical if γ = γc, supercriticalif γ < γc, andsubcritical
if γ > γc. We callγc thecritical exponent.

From (18) and (19), we have the simple inequality for the scaling exponent

q ≤
{

β/(α + 2β − 1), for 1 < α + 2β < 2,

β, for α + 2β ≥ 2.
(23)

The equality in (23) is admissible because asymptotics is a continuum and cannot be fully resolved by power-laws.
In this study, we restrict our attention to the power-law part of scaling behaviors.

For transport effect, besides the lineα + 2β = 2, the lineα = 1 is also important for the following reasons.
For α < 1, the sampling drift is dominated by the critical wave numbers, whereas, forα > 1, the sampling drift
is dominated by wave numbers nearby the infrared cut-off. Moreover, in the case ofα ≥ 1, the infrared cut-off
corresponds to the energy containing scale, and therefore, dominates the transport as well as the flow. As a result,
scaling laws of transport forα ≥ 1 are in general (infrared) cut-off dependent. The limit processes in the case of
a supercriticalcut-off, however, are always regular motions (H = 1, Regime IV) as the effective constant drift
dominates the transport.

Based on the supercritical wave numbers alone, the exit timeτ (out of a ball of radius 1/ε) for α < 1 can be
estimated by (cf. (20))

τ ≥ kα−1
c /ε =

{
ε−2β/(α+2β−1), for 1 < α + 2β < 2,

ε−2+α, for α + 2β ≥ 2.
(24)

It is easy to see that, the (asymptotic) equality in (24) is achieved when the combined effect of the supercritical
and the critical wave numbers is considered since, forα < 1, the critical wave numbers are much stronger than the
supercritical wave numbers in magnitude. Forα ≥ 1, however, the transport is dominated by the wave numbers
|k| ∼ δ. So we have

τ ≥ δα−1/ε = ε−1−γ+αγ (with δ = εγ ) (25)

in the case ofα ≥ 1.
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As we will show by the variational method in Section 3.3 that the critical wave numbers dominate the transport in
Regimes II and III. In the case ofα < 1, the exponent forα+2β < 2 is less than or equal to 2(i.e., 2β/(α+2β−1) ≤
2) only if α+β ≥ 1; forα+2β ≥ 2, the exponent is less than or equal to 2(i.e., 2−α < 2) only if α ≥ 0. The former
defines Regime II; the latter defines Regime III. In the case ofα ≥ 1, any non-negativeγ leads to 1+ γ − αγ ≤ 2
( the scaling is superballistic forγ > 1). In the remaining region (Regime I:α + β < 1 orα < 0), the supercritical
wave numbers are negligible since the transport effect of the fluctuating wave numbers is at leastdiffusiveas we
will see later. Equating the exponent with 2q, we have, from (24) and the remark following the scaling exponents
for Regimes II, III (see Section 4), and from Eq. (25), the scaling exponent for Regime IV (see Section 5), both with
supercriticalcut-offs,γ > γc.

In the regimes where the critical wave numbers have a leading effect, the scaling limit is a fractional Brownian
motion (Regimes II and III). Fractional Brownian motions arise as a result of long-range correlation of the critical
wave numbers.

If the infrared cut-off is subcritical, i.e.,δ � kc, wave numbers of the spectrum are either temporally or spatially
fluctuating. Contrary to the fractional-Brownian-motion limit caused by the critical sampling drift, the limit is
always a Brownian motion. But the scaling exponent may be superdiffusive (q < 1) due to low wave numbers in
the vicinity of the cut-off.

3.2. Subcritical wave numbers: eddy diffusivity

To study the effect of subcritical, or fluctuating, wave numbers on transport, we think of turbulent motion as a
superposition of a mean flow (i.e.,cccε), and the fluctuating flow, following a spectral discretization.

We propose that the fluctuating wave numbers give rise to a fluctuating motion, on top of the mean flow, on the
observation scale, and this fluctuating motion can be characterized by a notion of scale dependent eddy diffusivity
introduced below. We then formulate two variational principles and use them to obtain general upper bounds for
the (scale-dependent) eddy diffusivity.

Spectral discretization is motivated by a standard result of the ergodic theory for stationary processes that a
stationary process is a limit of periodic processes (see [10]). We will use the periodic approximation in two different
ways: In the first, we consider the periodic approximation in thespacevariables only and work with a subspace
of (ΩΩΩ, P ), the space(ΩΩΩn, P (n)) of time-independent, space-periodic velocity fields with period cell [0, n]d (see
discussion below). In this approach, time randomness in the velocity field is represented as a Markov process on
(ΩΩΩn, P (n)). In the second approach, we work with a sequence of space–time periodic fields with the (normalized)
Lebesgue measure as the probability distribution on the space–time period cells as stated in the following lemma.

Lemma 1. Let ω be a stationary process. Then there exists a sequence of periodic processesωn of period
ln → ∞ in each variable, such that, the probability measurePn obtained as the distribution ofτxωn where
x is random and distributed uniformly on the period cell[0, ln]d converges weakly to the distribution ofω as
n → ∞.

(See, for instance, [37] for a proof). We emphasize that spectral discretization is only a convenience for the formu-
lation of the variational principles; it is neither essential nor necessary.

We now formulate the first approach more specifically. A spectrally discretized flow can be written as a sum
cccε + V(ε,n) wherecccε is the sampling drift (see Section 3.1 and Eq. (22)), andV(ε,n) is thespatial periodicversion
of the fluctuating velocity field with a discrete spectrumk ∈ Zd/n, max{kc, δ} � |k| ≤ K and the amplitude

(I − k ⊗ k/|k|2)
√∫

|k|≤|k ′|≤|k|+1/n
E(k ′) d|k ′|. The mesh size 1/n should tend to zero sufficiently fast, asε → 0, to

approximate the transport effect of the original fluctuating flow in view of the above lemma.
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Equivalently, we replace the spectral measureV̂(dp, t) by the discrete measurêV(ε,n)(k, t)δk,p, ∀k ∈ Zd/n,

max{kc, δ} � |k| ≤ K with V̂(ε,n)(k, t) satisfying

dt V̂(ε,n)(k, t) = −a0|k|2β V̂(ε,n)(k, t) dt + |k|β
√∫

|k|≤|k ′|≤|k|+1/n

E(k ′) d|k|(I − k ⊗ k|k|−2)1/2 dtW(k, t),

(26)

whereW(k, t), ∀k ∈ Zd/n, max{kc, δ} � |k| ≤ K are independent standard Brownian motions. As discussed in
Section 3.1, the sampling driftcccε is steady forα + 2β > 2 orα ≥ 1; it is unsteady forα + 2β ≤ 2, α < 1.

The time-stationary, space-periodic fieldV(ε,n)(x, t, ωn), ω ∈ ΩΩΩ(n) is a Markovian flow and can be represented as
a translate,V(ε,n)(x, t, ωn) = Ṽ(ε,n)(x, ωn(t)), of steady, space-periodic fieldṼ(ε,n)(x, ωn), whereωn(t), wn(0) = 0
is a Markov process onΩΩΩ(n). As usual, we writeωn explicitly only to emphasize its role.

For fixedε, n, the displacement,x(t), in the periodic flow,cccε + V(ε,n), is the sum of a mean motion,
∫ t

0 cccε(s) ds,
and the fluctuation,x(t) − ∫ t

0 cccε(s) ds. After a proper rescalingt → λ2t, x → λx, λ → ∞, the fluctuation
converges to a Brownian motion by a turbulent diffusion theorem for mixing flows [15]. LetA(ε,n) be the generator
for cccε(t)+ V(ε,n)(x, t). The diffusion coefficients,D(ε,n)

ij , of the limiting Brownian motion are determined from the

random,space-periodicsolutionχ
(ε,n)
j (i.e.,χ(ε,n)

j can be viewed as a function defined onΩΩΩ(n)) of the abstract cell
problem (cf. (16), see also [15])

L(ε,n)χ
(ε,n)
j := A(ε,n)χ

(ε,n)
j + (cccε + Ṽ(ε,n)) · ∇∇∇χ

(ε,n)
j = −Ṽ

(ε,n)
j , in ΩΩΩ(n), ∀i, j (27)

D
(ε,n)
ij := 1

2(〈Ṽ (ε,n)
j χ

(ε,n)
i 〉n + 〈Ṽ (ε,n)

i χ
(ε,n)
j 〉n) = −1

2(〈L(ε,n)χ
(ε,n)
i χ

(ε,n)
j 〉n + 〈L(ε,n)χ

(ε,n)
j χ

(ε,n)
i 〉n)

= −1
2(〈A(ε,n)χ

(ε,n)
i χ

(ε,n)
j 〉n + 〈A(ε,n)χ

(ε,n)
j χ

(ε,n)
i 〉n) = 〈∇βχ

(ε,n)
i ·A(ε,n)

0 ∇βχ
(ε,n)
j 〉n, ∀i, j. (28)

with the periodic boundary condition, where〈·〉n is the average with respect toP (n). Here we have used the following
identity

〈[(cccε + Ṽ(ε,n)) · ∇∇∇χ
(ε,n)
i ]χ(ε,n)

j 〉n + 〈[(cccε + Ṽ(ε,n)) · ∇∇∇χ
(ε,n)
j ]χ(ε,n)

i 〉n
= ∇ · 〈(cccε + Ṽ(ε,n))χ

(ε,n)
i χ

(ε,n)
j 〉n = 0, (29)

which follows from the incompressibility ofcccε + Ṽ(ε,n) and the space-homogeneity of〈(cccε + Ṽ(ε,n))χ
(ε,n)
i χ

(ε,n)
j 〉n.

The problem (27) is well-posed and has a unique solution, up to a constant (which does not affect (28)). In
Appendix A, we derive the minimum principle

D(ε,n)(e) := D(ε,n)e · e = inf
f

{−〈A(ε,n)ff 〉n − 〈A(ε,n)f ′f ′〉n} (30)

with the space-periodic functionsf ′, f related by

A(ε,n)f ′ + (cccε + Ṽ(ε,n)) · ∇f + Ṽ(ε,n) · e = 0, in ΩΩΩ(n). (31)

It should be noted that the explicit form of the generator is not used for the variational formulation.
In the limit n → ∞, the abstract cell problem (27)–(28) becomes

Lχ
(ε)
j + Ṽ(ε)

j = 0, in ΩΩΩ. (32)

We also have

D
(ε)
ij = lim

n→∞D
(ε,n)
ij = 1

2(〈Ṽ ε
j χ

(ε)
i 〉 + 〈Ṽ (ε)

i χ
(ε)
j 〉) = 〈∇βχ

(ε)
i ·A0∇∇∇βχ

(ε)
j 〉, ∀i, j, (33)
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following from (28). It is clear from (33) that the matrixD(ε) = [D(ε)
ij ] is symmetric and positive-definite. We think

of D(ε) as a measure of turbulent dispersion caused by eddies composed of subcritical wave numbers in interaction
with the sampling drift. We call it theeddy diffusivity. If the increments of the fluctuation of particle motion have
divergent step sizes asε → 0, then the eddy diffusivity is cut-off dependent. Eq. (33) indicates the right solution
space for (32) in the limit ofε → 0: L2

β(ΩΩΩ), the space of functions with homogeneous, square integrable fractional
gradient of orderβ.

From another perspective, the variance of the fluctuationx(t) − ∫ t

0 cccε(s) ds after the rescalingt → λ2t, x →
λx, λ → ∞ can be expressed as the time integral

2
∫ t

0
D

ε,λ
ij (s) ds

of the Lagrangian velocity autocorrelation

D
ε,λ
ij (s) = 1

2

∫ λ2s

0
(〈V (ε)

i (x(s), s)V
(ε)
j (xxx(s′), s′)〉 + 〈V (ε)

j (xxx(s), s)V
(ε)
i (x(s′), s′)〉) ds′. (34)

Because the Lagrangian velocityV(ε)(x(t), t) is a stationary Markov process [15,39], (34) can be rewritten as

D
ε,λ
ij (s) = 1

2

∫ λ2s

0
{〈V (ε)

i (0, 0)V
(ε)
j (xxx(s′), s′)〉 + 〈V (ε)

j (0, 0)V
(ε)
i (x(s′), s′)〉} ds′

= 1

2

∫ λ2s

0
{〈Ṽ (ε)

i exp(Ls′)Ṽ (ε)
j 〉 + 〈Ṽ (ε)

j exp(Ls′)Ṽ (ε)
i 〉} ds′.

In the limit λ → ∞, D
ε,λ
ij (s) tends to the following expressions

−1
2(〈Ṽ (ε)

i L
−1Ṽ

(ε)
j 〉 + 〈Ṽ (ε)

j L
−1Ṽ

(ε)
i 〉) = 1

2(〈Ṽ (ε)
i χ

(ε)
j 〉 + 〈Ṽ (ε)

j χ
(ε)
i 〉) = D

(ε)
ij , (35)

whereχ
(ε)
j is the solution of (32).

When molecular diffusion is present, we denote the eddy diffusivity byD(ε,n)
κ . As before,D(ε,n)

κ can be charac-
terized variationally by adding the terms,κ, κ〈∇f · ∇f 〉n, κ〈∇f ′ · ∇f ′〉n to (30) and a Laplacian term,κ∆f ′, to
(31).

We turn to the second approach of space–time periodic approximation. LetV(ε,n,λ)(x, t) be the approximating
sequence of space–time periodic fields, as stated in Lemma 1, with increasing space periodn and time periodλ,
for the velocity fieldVε with a subcritical cut-off. We work with the space–time period cell problem in which time
randomness in the Lagrangian dynamics is absent. To formulate a variational principle in this case, we need to
reinstate the molecular diffusion here.

For fixedλ, n, the effective diffusivity,D(ε,n,λ)
κ , in the flowV(ε,n,λ)(x, t) exists and can be given by

D(ε,n,λ)
κ (e) = inf

f

1

λ

∫ λ

0

1

nd

∫
[0,n]d

κ(1 + ∇f · ∇f + ∇f ′ · ∇∇∇f ′) dx dt, (36)

wheref, f ′ are both temporally and spatially periodic with the periodλ, n, respectively, and are related to each
other by the following equation

κ∆f ′ = −∂f

∂t
− (cccε + V(ε,n,λ)) · ∇∇∇f − V(ε,n,λ) · e
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(see [17,19]). The eddy diffusivityD(ε)
κ in the presence of molecular diffusion is the large scale limit ofD

(ε,n,λ)
κ ,

i.e.,

D(ε)
κ = lim

n,λ→∞
D(ε,n,λ)

κ . (37)

The variational principle (36)–(37) is more useful than (30)–(31) when the temporal randomness of the velocity
is negligible as in Regime III. Another advantage for working with the space–time periodic setting is that a dual
variational principle can be formulated for the inverse ofD

(ε,n,λ)
κ and can be used to obtain the lower bound for

D
(ε,n,λ)
κ (see [12,17,18]).

3.3. Variational bounds: fractional vector potential

3.3.1. Case 1: supercritical cut-off
When the sampling drift is present, i.e.,γ > γc, we show by the variational principles the following upper bounds

on the growth rate of the eddy diffusivity

D
(ε)
ij ≤ C, for α + β < 1 or α < 0, D

(ε)
ij �




ε2γc(1−α−β), for α + β > 1,

log(1/εγc ), for α + β = 1,

ε−α, for α > 0,√
log(1/εγc ), for α = 0.

(38)

∀i, j , for some constantC > 0. Note thatε−α is a better bound thanε2γc(1−α−β) for α + 2β > 2.
Take the trivial trial functionf = 0 in (30) and eliminate the first term in the functional. We calculate the second

term in (30) by studying the equation

A(ε,n)f ′ + V(ε,n) · e = 0, (39)

(cf. (31)). Consider thefractional vector potential (the fractional stream function) in three dimensions (in two
dimensions)H̃(ε,n)

β of orderβ defined by

H̃(ε,n)
β = (−∆)−β/2Ṽ(ε,n) (40)

via the Fourier transform. This means thatH̃(ε)
β = limn→∞H̃(ε,n)

β has the energy spectrum

E0|k|1−2(α+β) (41)

with a subcritical infrared cut-off. The usual vector potential and the stream function correspond toβ = 1. What is
significant is that, forα + β < 1, (41) is integrable neark = 0 uniformly as the infrared cut-off is removed, and
thus defines a homogeneous, square integrableHβ that is cut-off independent. Forα + β ≥ 1, (41) is not square

integrable uniformly as the infrared cut-off is removed, and the second moment ofH(ε)
β grows like

〈|H(ε)
β |2〉 � ε2γc(1−α−β), for α + β > 1 (42)

and〈|H(ε)
β |2〉 � log(1/εγc ), for α + β = 1 asε → 0.

In terms ofH(ε,n)
β , (39) becomes

A(ε,n)f ′ + (−∆)β/2H(ε,n)
β · e = 0. (43)
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A straightforward energy estimate for (43) gives

−〈A(ε,n)f ′f ′〉n = 〈(−∆∆∆)β/2H(ε,n)
β · ef ′〉n (44)

≤
√

〈|H(ε,n)
β · e|2〉n

√
〈|(−∆)β/2f ′|2〉n (45)

≤
√

〈|H(ε,n)
β · e|2〉n

√
1

a0
〈−A(ε,n)f ′f ′〉n. (46)

Therefore,

−〈A(ε,n)f ′f ′〉n ≤ 1

a0
〈|HHH(ε,n)

β · e|2〉n (47)

which, in the limitn → ∞, is much less thanε2γc(1−α−β) for smallε.
It is worth noting that the right side of (47) is, up to a factor independent ofε, what one gets in replacing the

Lagrangian autocorrelation in (34) by the Eulerian autocorrelationR
(ε)
ij (0, s − s′) := 〈V (ε)

i (0, s)V
(ε)
j (0, s′)〉, i.e.,∫ ∞

0
R

(ε)
ij (0, s) ds (48)

which is called the (Eulerian) Taylor–Kubo formula, used extensively in the literature to approximate the eddy
diffusivity since Taylor’s work [42] (see also [35]). The physical significance of the bound (47) is that the eddy
diffusivity D

(ε)
ij of the fluctuation is bounded, as the infrared cut-off is removed, by constant times the Eulerian

Taylor–Kubo formula (48); the eddy diffusivity may be much smaller than (48) due to the spatial decorrelation of
velocity.

A different upper bound for the eddy diffusivity can be obtained by using the second variational principle (36).
First we note that the eddy diffusivity in the presence of molecular diffusion would be enhanced if we freeze the
time variable of the velocity fieldV(ε). This can be easily seen as follows. LetD̄(ε,n)

κ be the eddy diffusivity for the
frozen velocity fieldV(ε,n)(x, 0)

D̄(ε,n)
κ e := D̄(ε,n)

κ e · e = inf
f

1

nd

∫
[0,n]d

κ(1 + ∇f · ∇f + ∇f ′ · ∇f ′) dx (49)

wheref, f ′ are spatially periodic with period cell [0, n]d and are related by

κ∆f ′ = −(cccε + V(ε,n)(x, 0)) · ∇f − V(ε,n)(xxx, 0) · e.

Since time independent trial functionsf are admissible in (36), (49) is larger thanD
(ε,n,λ)
κ , ∀λ > 0, given by (36).

Using the trivial trial functionf = 0 in (49) and the same energy estimate as above we have the upper bound

D̄(ε)
κ := lim

n→∞D̄(ε,n)
κ ≤ 〈|H(ε)

1 |2〉.

A better bound, however, can be obtained for steady, isotropic flows by a duality argument in conjunction with the
variational method (see [12]):

D̄(ε)
κ ≤

√
〈|H(ε)

1 |2〉



≤ C, for α < 0,

� ε−α, for α > 0,

� √
log(1/εγc ), for α = 0,

(50)

which agrees with results by other approaches (such as RNG calculation of [7] and Green’s function method of
[27]).
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When the sampling drift is present, the estimates (38) can be used to compare the transport effects of the sampling
drift and the subcritical wave numbers. Forα+β > 1, we have from (38) the bound for the timescale of the fluctuation
of particle motion.

ε−2/D(ε)(e) � ε−2ε2γc(α+β−1) = ε−2β/(α+2β−1),

which, in Regime II, is the timescale of observation as determined from the sampling drift alone (cf. (24) and the
remark following). Therefore, the transport in Regime II is dominated by the sampling drift.

Forα + 2β ≥ 2, (50) implies the bound for the timescale associated with the fluctuation of particle motion

ε−2/D(ε)(e) � ε−2εα = ε−2(1−α/2),

which, in Regime III, is the timescale of observation as determined from the sampling drift alone (cf. (24) and the
remark following). Thus, again, the transport in Regime III is dominated by the sampling drift.

3.3.2. Case 2: subcritical cut-off
When the sampling drift is absent, i.e.,γ < γc, or negligible, instead of (38), we have

D
(ε)
ij ≤ C, for α + β < 1 or α < 0, D

(ε)
ij ≤




Cε2γ (1−α−β), for α + β > 1,

C log(1/εγ ), for α + β = 1,

Cε−γα, for α > 0,

C
√

log(1/εγ ), for α = 0,

, (51)

∀i, j , for some constantC > 0. Note again thatε−γα is a better bound thanε2γ (1−α−β), for α + 2β > 2.
The estimates (51) are derived by the same energy estimate as before. In this case,cccε = 0 and the velocity field

consists entirely of the subcritical wave numbers. As a result,� in (38) becomes≤ in (51).
When the sampling drift is absent, the estimates (51) yield a lower bound for the scaling exponent. Forα + β >

1, γ < γc the fluctuation of particle motion is 1/ε and is much less than√
ε2γc(1−α−β)ε−2q = εγc(1−α−β)−q .

Thus, we have

q ≥ 1 + γ − γ (α + β), for α + β > 1. (52)

The bound (52) is sharp when temporal fluctuations of the velocity fields are the dominant mechanism for transport
as in Regime V.

Forα + 2β ≥ 2, γ < γc, (51) implies

ε−1 ≤
√

ε−γαε−2q = ε−q−γα/2.

Thus, we have

q ≥ 1 − γα/2, for α + 2β ≥ 2, (53)

which turns out to be sharp in Regime VI.
In the case of subcritical infrared cut-offs, it is often useful to know if the wave numbers|k| ∼ δ dominate the

transport or not. For this purpose, we modify the previous variational method to estimate the transport effect of the
wave numbers much larger than the subcritical infrared cut-off. We replacecccε by the velocity fieldUε consisting
entirely of wave numbers|k| ∼ δ = εγ andV(ε) by the velocity field consisting of the wave numbers|k| � εγ .
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After other corresponding modifications are made, the variational method and the subsequent energy estimate after
substitution of the trivial trial function work the same way. We get the upper bound for the contribution, denoted
by Ḋ(ε) = [Ḋ(ε)

ij ], of wave number|k| � εγ to the total eddy diffusivityD(ε)
ij :

Ḋ
(ε)
ij ≤ C, for α + β < 1 or α < 0, Ḋ

(ε)
ij �




ε2γ (1−α−β), for α + β > 1,

log(1/εγ ), for α + β = 1,

ε−γα, for α > 0,√
log(1/εγ ), for α = 0.

(54)

∀ij , for some constantC > 0. For specific applications of bounds (54) see discussions for Regimes V and VI.

4. Phase diagram forα < 1α < 1α < 1

4.1. Regime I: diffusive limits

First of all, as discussed in Section 3.1, the sampling drift is negligible in this regime: In (24), ifα + β < 1 and
α + 2β < 2, then 2β/(α + 2β − 2) > 2; if α < 0 andα + 2β ≥ 2, then 2− α > 2. In either case, the transport
would be dominated by the fluctuating wave numbers.

Whenα + β < 1, (38) implies

0 ≤ lim inf
ε→0

D(ε)(e) ≤ lim sup
ε→0

D(ε)(e) < ∞. (55)

As we will see below thatD(ε)(e) should not vanish in the limit even withλ = 0, so the scaling is diffusiveq = 1
and the scaling limit should be a Brownian motion(H = 1/2). The limit D∗(e) = limε→0D

(ε)(e), if exists, is the
(scale independent) eddy diffusivity. Similarly, forα < 0, the variational bound (50) implies the diffusive scaling
limit.

The eddy diffusivity probably does not vanish in the absence of molecular diffusion for the following reason.
From the turbulent diffusion theorem formixingflows, proved in [15], we know that, forβ = 0, α < 1, the scaling
is diffusive(q = 1) and the limit is a Brownian motion. Asβ increases, the velocity correlation in time increases
and so should the rate of transport. But the upper bound (55) for the eddy diffusivity tells us that it cannot enhance
transport to the extent of changing the scaling limit as long asα + β < 1 (this scenerio has been rigorously
justified in the regionα < 0, β ≤ 1 in a different turbulent diffusion theorem fornon-mixingflows, proved in
[15]).

For α < 0, the (ordinary) vector potentials for the flows are time-stationary, space-homogeneous and have
finite moments. Then the diffusion limit theorem of [14] holds for such flows if molecular diffusion is present
(i.e., q = 1, H = 1/2 if κ > 0). The effective diffusivity can be determined from a pair of variational prin-
ciples [19], one of which is (36). This is manifest in the existence of homogeneous (ordinary) vector potentials
whenα < 0. As shown in [19], forsteady flows, the existence of space-homogeneous (ordinary) vector poten-
tials is thesharpcondition for a diffusive scaling limit with molecular diffusion. As time dependence of veloc-
ity becomes important withβ ≤ 1, the phase boundary defined byα + β = 1, β ≤ 1 points to the fact that
the existence of space-homogeneous,fractional vector potentials becomes the criterion for the diffusive scaling
limit.

For α + β > 1, α ≤ 0 (thus,β > 1 andα + 2β > 2), both the sampling drift and high wave numbers are
negligible. The effect of molecular diffusion may not be negligible for homogenization but the scaling law should
remain the same in the limit of vanishing molecular diffusion (see Section 6.1).
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4.2. Regime II: space-freezing property

As we have seen from the analysis of the sampling drift and the applications of variational bounds, for

γ > γc, α + β > 1, α + 2β < 2, α < 1,

the sampling drift dominates the transport, and therefore,

q = β

α + 2β − 1
(56)

by (24) (and the discussion afterward). Moreover, since the sampling drift is asymptotically uniform in space, the
displacement can be approximated asymptotically by

xε(0) + ε

∫ t/ε2q

0
V(xxxε(0)/εs) ds. (57)

Eq. (57) is called the space-freezing approximation, in which the space dependence of the Lagrangian velocity is
suppressed. Eq. (57) defines a Gaussian process with stationary increments. It is easy to check that (57) converges
to a fractional Brownian motionBH (t) by computing its covariance tensor

〈BH (t) ⊗ BH (t)〉 = Ct2H

with the Hurst exponent

H = 1

2
+ α + β − 1

2β
= 1/(2q) >

1

2

and the coefficient

C = E0

∫
Rd

e−a0|k|2β − 1 + a0|k|2β

|k|2α+4β−1
(I − k ⊗ k|k|−2)|k|1−ddk.

This scaling limit was first obtained in [16] by a different, rigorous approach.

4.3. Regime V: subcritical cut-off

If the cut-off is supercritical,δ � kc, the sampling drift is effectively intact, so the frozen path approximation
(57) holds along with the FBM limit withq given by (56).

If the cut-off is subcritical,δ � kc, the sampling drift is absent and the transport is determined by the fluctuating
velocity field. We further decompose the subcritical wave numbers into those|k| ∼ δ = εγ and those much larger.
We have made the estimate (54) for the contribution of the latter to the eddy diffusivity.

By a simple spectral calculation, the velocity fieldUε(x, t) consisting of the wave numbers|k| ∼ δ can be
approximated by

δ1−αU(δx, δ2βt), (58)

whereU has the energy spectrum (7) for|k| ∈ [1, C] with a sufficiently large constantC. Substituting (58) into the
equation of motion we have

dxε = εγ (1−α)−2q+1U(xε(t)/ε1−γ , t/ε2q−2βγ ) dt. (59)
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The effect of the wave numbers|k| � δ is like adding a turbulent diffusivity to Eq. (59), i.e.,

dxε = εγ (1−α)−2q+1U(xε(t)/ε1−γ , t/ε2q−2βγ ) dt + ε1−q
√

2Ḋ(ε) dB(t), (60)

whereB(t) is the standard Browian motion anḋD(ε) is the portion of the eddy diffusivity coming from the wave
numbers|k| � δ (cf. the discussion preceding (54)).

SinceU is a mixing flow, we expect the limit of (60) to be a Brownian motion. We also expect the time variable
in (59) to dominate, so we equateεγ (1−α)−2q+1 = ε2q−2βγ and arrive at the expression

q = 1 + γ − γ (α + β) (61)

in view of a generalized ‘diffusive’ scaling of (59). We check that the space variable in (59) is indeed relatively slow
in the sense

(1 − γ )/(q − βγ ) < 1, (62)

for α + 2β < 2. With (61), Eq. (60) becomes

dxε = η−1
ε U(x/η(1−γ )/(q−βγ )

ε , t/η2
ε ) dt + ε1−q

√
2Ḋ(ε) dB(t), with ηε = ε1−βγ . (63)

The bound (54) and (61) imply thatε1−q
√

2Ḋ(ε) � ε1−q+γ−γ (α+β) = 1 asε tends to zero. Subcriticality,γ <

1/(α + 2β − 1), impliesηε → 0. Eq. (63) satisfies the conditions of the diffusion limit theorem of [29,30] for
mixing flows with a generalized ‘diffusive’ scaling (63)–(62). The limit is a Brownian motion with the diffusion
coefficients given by the Eulerian Taylor–Kubo formula∫ ∞

0
〈U(0, t) ⊗ U(0, 0)〉dt. (64)

The conditionα + β > 1 impliesq < 1.
The scaling law withH = 1/2, q, given by (61), and the eddy diffusivity given by the Eulerian Taylor–Kubo

formula (64) holds in the other part of RegimeV (α ≥ 1) as well (see Section 5).

4.4. Regime II′: critical cut-off

When the infrared cut-off is critical, i.e.,γ = γc = (α + 2β − 1)−1 the critical wave numbers are still present.
Therefore, the scaling exponent is given by (56).

Rescaling the velocity fieldUε consisting entirely of wave numbers|k| ∼ εγc but |k| < εγc by (58), we have,
instead of (60), the equation

dxε = U(xε(t)/ε1−γc , t) dt + ε1−q
√

2D(ε) dB(t),

whereU has the energy spectrum (28) supported in [1, ∞) andD(ε) is the eddy diffusivity.
Sinceγc > 1 andq < 1, we have in the limitε → 0

dZ(t) = U(0, t) dt. (65)

Because the energy spectrum ofU does not have small wave numbers, the processZ is not self-similar. Thus,
the Hurst exponent is not well-defined. However, the long time asymptotics of (65) is a Brownian motion, due
to the mixing property ofU, so we may associate the asymptotic Hurst exponent 1/2 to the process defined by
(65).
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4.5. Regime III: time-freezing property

In this regime, the sampling drift is a time independent, mean zero random variable whose second moment is of
order∫ kc

0
|k|1−2α d|k| ∼ ε2−2α.

The mixing time for the sampling drift is not less than 1/ε2β . On this timescale the sampling drift transports particles
over the distances not less thanε1−αε−2β = ε1−α−2β which is not less than the spatial observation scale 1/ε if
α + 2β ≥ 2. Thus, the sampling drift appears steady on the observation scale. The time to exit a ball of radius 1/ε,
based on the sampling drift alone isε−1εα−1 = εα−2.

From (50) it follows that the time to exit a ball of radius 1/ε, with its center moving by the sampling drift,
is � εα−2, as a result of the spatially fluctuating, subcritical wave numbers(|k| � ε). Thus, by (24) and the
remark following, the effect of the subcritical wave numbers is dominated by that of the sampling drift. Therefore,
we have

q = 1 − α/2. (66)

The scaling exponent (66) is superdiffusive forα > 0. Note that

q − β/(α + 2β − 1) = (α/2 + β − 1)(1 − α)/(α + 2β − 1) < 0

for 1 < α + 2β < 2, α < 1, and thus, for the sameα, the rate of transport in Regime II is smaller (since faster
decorrelation in time tends to slow down the transport).

Since the transport is dominated by the effectively steady sampling drift, we may consider the velocity fieldUε

consisting entirely of the wave numbers|k| ∼ kc = ε and freeze the time variable in the resulting velocity field as
ε → 0. Rescaling as in (58), we have the equation

dxε(t) = ε2−α−2qU(xε(t), 0) dt + ε1−q
√

2κ dwww(t) (67)

in the presence of molecular diffusion.
Eq. (67) has a limit if and only if (66) holds, which also make the diffusion term vanish in the limit forα > 0.

Formally, the limit processZ satisfies

dZ(t) = U(Z(t), 0) dt, (68)

whereU has the energy spectrum (7) supported in|k| ∈ (0, ∞). The supercritical cut-off is now removed by the
rescaling (58). This indicates the limitZ is self-similar.

It should be noted that the velocity fieldU is a generalized function because of the ultraviolet divergence in the
energy spectrum ofU. Thus, Eq. (68) is not well-defined in the ordinary sense. Study of transport in generalized
velocity fields is interesting by itself, but we do not pursue it here. Our only purpose is to use the energy spectrum
of the velocity field as an indicator of the self-similarity of the limit process and to show how the space and the time
dependence of the velocity field enter the equation. The same remark applies to the same situation in the sequel as
well as (65) and will not be repeated.

We now identify the Hurst exponent ofZ. From (8), we have the asymptotics for the covariance of the successive
increments on the time scalet ∼ ε−2q

〈(x(2t) − x(t)) · (x(t) − x(0))〉 ∼ t2H ∼ ε−4qH . (69)
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On the other hand, by (24) and the remark following, the covariance of the successive increments on the time scale
t ∼ ε−2q is of order(k1−α

c ε−2q)2. Equating it with (69), we haveH = 1/(2q). We hypothesize that the limit be a
fractional Brownian motion.

Molecular diffusion probably has no significant effect on the scaling law, though the presence of molecular
diffusion is needed in the variational principle (36). As remarked after (17) in Section 2, the molecular diffusion is
negligible forβ ≤ 1. Forβ ≥ 1, as largerβ gives rise to longer correlation times, the scaling law should have equal
or smaller scaling exponentq. However, since the time-freezing property has already set in forβ < 1 and resulted
in a scaling exponent independent ofβ, the absence of molecular diffusion would not change the scaling exponent
for β ≥ 1.

4.6. Regime VI: subcritical cut-off

The results of the previous section hold for any supercritical cut-off(γ > γc = 1) as the sampling drift is
essentially intact and dominates the transport.

For a subcritical cutoff we separate the wave numbers|k| ∼ δ from |k| � δ and rescale the equation as in Section
4.3 to obtain (60). As before, we expect the limit to be a Brownian motion. In this case, however, we expect the
space variable in the velocity field to dominate the transport. So we equateεγ (1−α)−2q+1 = εγ−1 and obtain the
scaling exponent

q = 1 − γα/2. (70)

Rewriting (60) withηε = ε1−γ we have

dxε(t) = η−1
ε U(xε(t)/ηε, t/η

2(q−βγ )/(1−γ )
ε ) dt + ε1−q

√
2Ḋ(ε) dB(t) + ε1−q

√
2κdwww(t). (71)

The bound (54) and (70) imply thatε1−q
√

2Ḋ(ε) � ε1−q−γα/2 = 1. Sinceq < 1 the factor in front of the molecular
diffusion also tends to zero asε → 0. The time variable is relatively slow in the sense

η2(q−βγ )/(1−γ )
ε � η2

ε

asα + 2β > 2.
The velocity fieldU has a fixed infrared cut-off, and consequently, gives rise to a space-homogeneous vector

potential, so, as suggested by the diffusion limits theorem of [14], the limit should be a Brownian motion.
The diffusion limit theorem of [14], however, does not apply directly because it was proved with a non-vanishing

molecular diffusion. Generalizing the theorem of [14] to the situation with a vanishing molecular diffusion such as
Eq. (71) remains a challenging problem in turbulent transport (see also [32,33]).

4.7. Regime III′: critical cut-off

When the cut-off is critical, i.e.,γ = 1, the critical wave numbers are still present and dominates the transport.
Therefore, the scaling exponent is given by (66).

The difference is that Eq. (67) now has the limit satisfying Eq. (68) with the energy spectrum ofU supported in
|k| ∈ [1, ∞) rather than(0, ∞). As a consequence, the limit is not self-similar.

4.8. Phase boundary

The transport for the phase boundaryα + 2β = 2, 0 < α < 1 contrasts interestingly to regime on either side of
the boundary.
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When the cut-off is supercritical, the sampling drift is present and dominates the transport. Thus, we expectq = β

from (56). Indeed, with that andγc = 1, we have as before the asymptotic equation

dxε(t) = U(xε(t), t) dt + ε1−q
√

2D(ε) dB(t),

whereU has the energy spectrum (28) supported in|k| ∈ (0, ∞). In the limit, the diffusion term vanishes (cf. (38))
and the limitZ satisfies the equation

dZ(t) = U(Z(t), t) dt (72)

whose solution is expected to be a fractional Brownian motion.
When the cut-off is subcritical, we expectq = 1 − γ + γβ from (61). With that andηε = ε1−γ , we have the

asymptotic equation

dxε(t) = η−1
ε U(x/ηε, t/η

2
ε ) dt + ε1−q

√
2Ḋ(ε) dB(t), (73)

where the energy spectrum ofU is supported in|k| ∈ [1, ∞). The diffusion term dies out in the limit as before (cf.
(54)) and the limitZ is a Brownian motion due to the spectrual gap inU by a turbulent diffusion theorem of [15].

Contrary to Regimes II, II′, V, III, III ′ and VI, both the time and the space dependence of the velocity field in (72)
and (73) affect the transport.

5. Phase diagram forα > 1α > 1α > 1

If the infrared cut-off thresholdδ is fixed asε tends to zero then the velocity is mixing in time, and by the turbulent
diffusion theory of [15], the scaling limit is a Brownian motion(H = 1/2).

Anomalous scaling limits arise whenδ is coupled to the spatial observation scale:δ = εγ , γ > 0. The exponentγ
characterizes the relation between the spatial observation scale 1/ε and the energy containing scale 1/δ. In this case,
superdiffusive scaling results from divergent mean kinetic energy as the infrared cut-off is removed; in particular,
when, the cut-off is supercritical,γ > max{(α + 2β − 1)−1, 1}, (Regime IV), the energy containing scale is larger
than the spatial observation scale, and it results in a super-ballistic scalingq < 1/2 and a regular limit(H = 1).

Since the transport is dominated by wave numbers|k| ∼ δ, it is natural to rescale the velocityV as

V(x, t) = δ1−αU(δx, δ2βt), (74)

where the velocity fieldU has the energy spectrum (7) supported in|k| ∈ [1, ∞). Contrary toU occurring in the
case ofα ≤ 1, the velocity fieldU in the case ofα > 1 is an ordinary function, since there is no ultraviolet or
infrared divergence, and temporally mixing due to the spectral gap inU.

In terms ofU, the equation of motion becomes

dxε(t) = δ1−αε1−2qU(δxε(t)/ε, δ2βt/ε2q) dt = εγ (1−α)−2q+1U(xε(t)/ε1−γ , t/ε2q−2βγ ) dt. (75)

Now that the infrared cut-off ofU is 1, the limit is expected to be a Brownian motion as long as either space or time
variable is fast. Depending on the parameters, two types of diffusion limit theorems in the literature are pertinent to
the limit; one is based on velocity decorrelation in time [24,29,30,34] and the other based on velocity decorrelation
in space [14].

Eliminating the infrared divergence by rescaling is also the approach of Avellaneda and Majda [3], in which the
case of a critical cut-offγ = 1 was considered in the regionβ < 1/2, 0 < α < 2. Here, we adopt the same idea of
rescaling and generalize their results by using new limit theorems which were not available to them.
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5.1. γ ≥ 1: Regimes V, IV and IV′

Forγ ≥ 1, Eq. (75) does not have fast space variables. To have a non-trivial limit, we must have 2q−1+γ (α−1) ≥
0: Forγ ≥ 1, space variable is not fast in (75). To have a non-trivial limit, we must have 2q − 1+ γ (α − 1) > 0 or
2q − 1+ γ (α − 1) = 0. The former case gives rise to Regimes V whereas the latter gives rise to Regimes IV or IV′.

5.1.1. Regime V
When

2q − 1 + γ (α − 1) > 0, (76)

U in (75) has a large multiplier, so a non-trivial scaling limit requires rapid time relaxation, i.e.,

q > γβ. (77)

By choosing a generalized ‘diffusive’ scaling for Eq. (75), i.e.,(δα−1ε2q−1)−1 = δβ/εq or

q = 1 + γ − γ (α + β), (78)

(75) becomes

dxε(t) = η−1
ε U(η(γ−1)/(q−βγ )

ε xε(t), t/η2
ε ) dt (79)

with ηε = εq−βγ . Eq. (79) has the form of the classical diffusion limit theorem [6,24,34]. (Moreover, the velocity
field U is smooth and satisfies the mixing condition of Rosenblatt [40] even forβ > 0 sinceU has no smallk
components) Thus, the processxε(t) converges to a Brownian motion(H = 1/2) with diffusion coefficients given
by the Eulerian Taylor–Kubo formula (64).

However, there is one constraint to be considered: (78) must be consistent with (77), i.e.,ηε must tend to zero
with ε. This meansγ < 1/(α + 2β − 1), a subcritical cut-off.

5.1.2. Regime IV: smooth motion
If the cut-off is supercritical, as discussed in Section 3.1, the transport in this regime is dominated by the sampling

drift that is, in turn, dominated by the wave numbers near by the infrared cut-off. Time as well as space dependence
of the velocity field are irrelevant. Because both space and time variables are slow in the velocity field, non-trivial
scaling limit holds only ifδα−1ε2q−1 = 1. Thus we have

q = (1 + γ )/2 − γα/2. (80)

Consistency, 0< q < γβ, then implies thatγ > 1/(α + 2β − 1) and

α < 1 + 1/γ.

The limit processZ(t) is advected by a constant drift

dZ(t) = U(0, 0) dt (81)

and is regular, or smooth(H = 1).
We note that the limit (81) is independent of the initial conditionxε(0), is self-similar and has a well-defined

Hurst exponent.
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5.1.3. Regime IV′: critical cut-off
When 2q − 1 + γ (α − 1) = 0, or, equivalently,

q = (1 + γ )/2 − γα/2, (82)

and

q = γβ, (83)

a non-trivial limit results. Combining (82) and (83), we haveα + 2β = 1 + 1/γ or

γ = 1/(α + 2β − 1) (84)

which defines a critical cut-off forα + 2β < 2. The limitZ(t) satisfying

dZ(t) = U(0, t) dt (85)

is a smooth, Gaussian process. The Hurst exponent is not strictly well-defined forZ(t) due to lack of self-similarity.
On large timescales, however, (85) has a Brownian motion limit asU is temporally mixing, and thus, an asymptotic
Hurst exponentH = 1/2. This case is similar to Regime V.

In particular, whenγ = 1 = 1/(α + 2β − 1) andq = β, Eq. (75) is independent ofε, i.e.,xε(t) = Z(t) with

dZ(t) = U(Z(t), t) dt (86)

The Hurst exponent is not strictly well-defined forZ(t) due to lack of self-similarity. But, as the velocity field is
temporally mixing, the long-time limit ofZ(t) is a Brownian motion, by the turbulent diffusion theorm of [15]. So
H = 1/2 is the asymptotic Hurst exponent.

Another critical cut-off isγ = 1 for α + 2β > 2. The equation of motion (75) becomes

dxε(t) = ε2−α−2qU(xε(t), t/ε2q−2β) dt

which has a non-trivial limit whenq = β = 1 − α/2. The limiting processZ(t) satisfies

dZ(t) = U(Z(t), 0) dt (87)

which is regular for finite times, but is not self-similar. Thus the Hurst exponent is not well-defined. It is not clear
whether an asymptotic Hurst exponent is well-defined either, since we do not know if, without molecular diffusion,
motion in three-dimensional, steady flows like (87) can be homogenized or not. Bounded and unbounded streamlines
may co-exist in steady flows, and if so, the resulting limit would depend on initial conditions (see discussion in
Section 6.1).

5.2. γ < 1: Regimes V and VI

With γ < 1, fast space variables now enter the picture. There are two regimes depending on whether time
dominates over space decorrelation or not.

5.2.1. Regime V: dominant time relaxation
This regime occurs whenδβ/εq � δ/ε, or equivalently,

q > 1 − γ + γβ. (88)
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Then, by choosing the ‘diffusive’ scaling,(δα−1ε2q−1)−1 = δβ/εq , i.e.,

q = 1 + γ − γ (α + β), (89)

Eq. (75) can be rewritten as (79), except that the space variable is also fast, albeit not fast enough to have an impact
in the diffusive scaling. In this case, the generalized limit theorems proved in [29,30] are applicable and they extend
the validity of the Taylor–Kubo formula to our situation. (Like the classical diffusion limit theorem, the generalized
limit theorems also require the mixing condition and regularity on the velocityU, both of which are satisfied here.)
The limit is a Brownian motion(H = 1/2) with diffusion coefficients given by the Eulerian Taylor–Kubo formula
(64).

Condition (88) requires that

α + 2β < 2. (90)

5.2.2. Regime VI: dominant space decorrelation
For

q < 1 − γ + γβ (91)

velocity dependence on space now dominates over the dependence on time in the diffusive scaling of Eq. (75). By
choosing the scaling(δα−1ε2q−1)−1 = δ/ε, or equivalently,

q = 1 − γα/2, (92)

Eq. (75) is rewritten as

dxε(t) = η−1
ε U(xε(t)/ηε, t/η2(q−βγ )/(1−γ )

ε ) dt, with ηε = ε1−γ . (93)

The limit of (93) should be a Brownian motion asU gives rise to a space-homogeneous vector potential (cf. the
discussion in Section 4.5).

Consistency ((91) andq > 0) requires thatα + 2β > 2, γ < 2/α.

5.2.3. Phase boundary
On the phase boundaryα + 2β = 2, Eq. (93) becomes

dxε(t) = η−1
ε U(xε(t)/ηε, t/η2

ε ) dt (94)

with a temporally mixing flowU. Space and time correlations play comparable roles in (94). From the turbulent
diffusion theorem for mixing flows [15], it follows that the solutionxε(t) has a Brownian motion limit(H = 1/2).

6. Conclusions

The supercritical and subcritical diagrams (Figs. 1 and 2) are divided by the line,α + β = 1, and the line,
α + 2β = 2, and/or the vertical linesα = 0, 1, 1 + 1/γ, 2/γ . First of all,α + β < 1 orα < 0 defines a cut-off
independent diffusive regime, in which the sampling drift is negligible. Outside of the diffusive regime, the line,
α + β = 1, is the cross-over between short-ranged and long-ranged velocity correlations; the latter manifests
in the fact that the sampling drift dominates the transport and subcritical wave numbers are negligible. The line,
α + 2β = 2, is the cross-over between velocity dependence on space and on time; in the region above the line,
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velocity dependence on time is negligible, whereas in the region below the line velocity dependence on space is
negligible.

Figs. 3 and 4 are cross-sections of the full three-dimensional phase diagram atγ = constant> 1 andγ = 1,
respectively. In Fig. 3, the cut-off is supercritical forα + 2β > 1 + 1/γ and subcritical forα + 2β < 1 + 1/γ . In
Fig. 4, the cut-off is subcritical forα + 2β < 2 and critical forα + 2β ≥ 2. Cut-offs withγ < 1 are subcritical,
and thus, covered in Fig. 2.

The limit is one of the three kinds: Brownian motion(H = 1/2), persistent fractional Brownian motion(1/2 <

H < 1) or regular, or smooth, motion(H = 1). The relationH = 1/(2q) holds forα < 1 with supercritical
infrared cut-off but neither for subcritical cut-offs nor forα > 1 (in these situations,H < 1/(2q), instead). For
the critical cut-offγ = γc, the Hurst exponent is not well-defined. However, an asymptotic Hurst exponent may
be defined and it is equal to 1/2. The diffusive regime(q = 1, H = 1/2) is most robust in that the scaling law
is independent of any infrared cut-offs. The fractional Brownian motion limit of Regime II and III as well as the
regular motion limit of Regime IV are not affected by supercritical cut-offs. All other regimes are cut-off dependent
explicitly.

In the case of subcritical infrared cut-offs, with the rescaling of the velocity field, the diagram can be understood by
means of three types of diffusion limit theorems in the literature: (i) one for which the spatial dependence of velocity
is negligible and the effective diffusivity is explicitly given by the Eulerian Taylor–Kubo formula [8,24,25,29,30],
(ii) another for which the temporal dependence of velocity is negligible, but molecular diffusion is assumed to be
present and the effective diffusivity is implicitly given by a pair of variational principles [13,14,19] or a Stieltjes
integral formula [4], and (iii) the other for which space and time dependence of velocity play comparable roles and
is referred to as turbulent diffusion theorems (two such theorems are proved in [15]). As in (ii), the turbulent eddy
diffusivity can be written as a variational principle similar to (30). After rescaling, Type (i) limit theorems apply to
Regime V; Type (ii) limit theorems apply to Regime VI and part of Regime I; Type (iii) limit theorems apply to part
of Regime I or on the phase boundaryα + 2β = 2, 0 < α < 2. All these types of limit theorems are insensitive to
the dimension.

Similarly, there should be three types of fractional-Brownian-motion limit theorems: one completely determined
by time dependence (Regime II), another determined by the space dependence (Regime III) and the other determined
by both the time and space dependence of velocity (the phase boundaryα + 2β = 2, 0 < α < 1).

In the case of supercritical infrared cut-offs new phenomena emerge: dominant sampling drift, fractional Brow-
nian motion limits, critical infrared cut-off and related cut-off dependent effects. Although these phenomena are
introduced and analyzed for motion in three-dimensional, isotropic flows, they also arise in two-dimensional flows
or anisotropic flows such as random shear-layer flows. An important difference lies in the role in molecular diffusion
which is much more prominent for anisotropic or two-dimensional flows (see discussion in the next section). New
variational principles for the cut-off dependent eddy diffusivity are formulated and used to obtain general bounds
for the eddy diffusivity.

Contrary to subcritical and supercritical cut-offs, regimes (II′, III ′, and IV′) with critical cut-offs produce limits
that are not self-similar and do not possess a well-defined Hurst exponent.

Scaling limts of turbulent transport in flows with a non-zero mean drift have different phase diagrams (see
[2,26,45]) and will be reported in a forthcoming paper.

6.1. Role of molecular diffusion

Molecular diffusion has at least two roles: (i) to eliminate possible dependence of scaling limit on the initial
point, as particles may be trapped by closed or bounded streamlines, so that the process may be homogenized; (ii)
to reduce dynamic velocity correlation in time, and thus, change the scaling law to one with larger scaling exponent



A.C. Fannjiang / Physica D 136 (2000) 145–174 171

q. The first role of molecular diffusion is prominent for transport in steady flows; without it, localized streamlines
would prevent homogenization from happening (see [18]). In this connection, molecular diffusion also helps to
blend the effects of streamlines of different scaling behaviors. In the present work, we assume homogenization and
focus on the second role of molecular diffusion.

Molecular diffusion is negligible in Regimes II, III, IV, where the sampling drift dominates the transport, as well
as Regime V and part of Regime I (i.e.,α +β < 1), where velocity decorrelation in time is significant. But its effect
is not so clear in Regimes VI and the other part of Regime I (i.e.,α +β ≥ 1, α < 0), where the spatially fluctuating
wave numbers dominate.

In this regard, when high wave numbers are negligible, as forα + β > 1, one can go further by comparing the
term representing molecular diffusion,κ∆, and the term representing the flow,A, in (17), and see that, forβ ≤ 1,
the effect of molecular diffusion should not affect the scaling law. As the velocity dependence on space dominates
over that on time, the scaling law is independent ofβ. In view of the discussion in Section 4.5 on effect of molecular
diffusion, we expect the scaling law forβ > 1 can be extrapolated from that forβ ≤ 1 to conclude the scaling law
of Regime VI is independent of molecular diffusion as well asβ.

As α on the phase boundary(α = 0) is bigger than that in the region(α +β ≥ 1, α < 0), for givenβ, the scaling
exponentq in the region, with a vanishing molecular diffusion, should not be less than that of the phase boundary,
which is 1. Therefore,q = 1 in this region and the diffusivity stugs bounded with a vanishing molecular diffusion.
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Appendix A. Variational principle for eddy diffusivity

To derive the variational principle (30) we consider a pair of period cell problems for an arbitrary constant unit
vectore

A(ε,n)χ
(ε,n)
+ + (cccε + Ṽ(ε,n)) · ∇χ

(ε,n)
+ + Ṽ(ε,n) · e = 0, inΩΩΩ(n) (A.1)

A(ε,n)χ
(ε,n)
− − (cccε + Ṽ(ε,n)) · ∇χ

(ε,n)
− − Ṽ(ε,n) · e = 0, inΩΩΩ(n) (A.2)

where bothχ(ε,n)
+ andχ

(ε,n)
− satisfy the periodice boundary condition. Note that (A.2) is simply the adjoint of (A.1)

asṼ(ε,n) is divergence free.
Adding and subtracting (A.1) and (A.2) we obtain

A(ε,n)χ(ε,n) + (cccε + Ṽ(ε,n)) · ∇χ(ε,n)′ = 0 (A.3)

A(ε,n)χ(ε,n)′ + (cccε + Ṽ(ε,n)) · ∇χ(ε,n) − Ṽ(ε,n) · e = 0 (A.4)

where

χ(ε,n) = 1
2(χ

(ε,n)
+ + χ

(ε,n)
− ), χ(ε,n)′ = 1

2(χ
(ε,n)
+ − χ

(ε,n)
− ). (A.5)

First we established some useful identities for

D(ε,n)(e) = D(ε,n)e · e = −〈A(ε,n)χ
(ε,n)′
+ χ

(ε,n)
+ 〉n.
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Proposition 1.

D(ε,n)(e) = 〈χ(ε,n)
+ Ṽ(ε,n) · e〉n = −〈χ(ε,n)

− Ṽ(ε,n) · e〉n = −〈A(ε,n)χ
(ε,n)
− χ

(ε,n)
− 〉n. (A.6)

The first identify in (A.6) follows from integration by parts after multiplication of Eq. (A.1) byχ
(ε,n)
+ . To verify the

second, we make use Eqs. (A.1), (A.2) and the divergence free property ofṼ(ε,n) in the following calculation

D(ε,n)(e) = 〈(−A(ε,n) − (cccε + Ṽ(ε,n)) · ∇)χ
(ε,n)
+ χ

(ε,n)
+ 〉n

= 〈[−A(ε,n)χ
(ε,n)
+ − (cccε + Ṽ(ε,n)) · ∇)χ

(ε,n)
+ − Ṽ(ε,n) · e]χ(ε,n)

+ 〉n + 〈χ(ε,n)
+ Ṽ(ε,n) · e〉n

=
(A.1)

〈[−A(ε,n)χ
(ε,n)
+ − (cccε + Ṽ(ε,n)) · ∇)χ

(ε,n)
+ − Ṽ(ε,n) · e]χ(ε,n)

− 〉n + 〈χ(ε,n)
+ Ṽ(ε,n) · e〉n

= 〈[−A(ε,n)χ
(ε,n)
− + (cccε + Ṽ(ε,n)) · ∇)χ

(ε,n)
− ]χ(ε,n)

+ 〉n − 〈χ(ε,n)
− Ṽ(ε,n) · e〉n + 〈χ(ε,n)

+ Ṽ(ε,n) · e〉n
= 〈[−A(ε,n)χ

(ε,n)
− + (cccε + Ṽ(ε,n)) · ∇)χ

(ε,n)
− + Ṽ(ε,n) · e]χ(ε,n)

+ 〉n − 〈χ(ε,n)
− Ṽ(ε,n) · e〉n

=
(A.7)

〈χ(ε,n)
− Ṽ(ε,n)) · e〉n.

Here we have used the identity

〈[(cccε + Ṽ(ε,n)) · ∇χ
(ε,n)
+ ]χ(ε,n)

+ 〉n = 1
2∇ · 〈(cccε + Ṽ(ε,n))(χ

(ε,n)
+ )2〉n = 0

as a result of the incompressibility ofcccε + Ṽ(ε,n) and the space-homogeneity of〈(cccε + Ṽ(ε,n))(χ
(ε,n)
+ )2〉n.

Thus, in view of (A.5), the following result in clear.

Proposition 2.

D(ε,n)(e) = 〈χ(ε,n)′Ṽ(ε,n) · e〉n = −〈A(ε,n)χ(ε,n)′χ(ε,n)′ 〉n = 〈Ṽ(ε,n) · ∇χ(ε,n)χ(ε,n)′ 〉n.

Next, we derive the variational principle (30).
Let g be the minimizer of the convex functional in (30) andg′ be the periodic solution of the equation

A(ε,n)g′ + (cccε + Ṽ(ε,n)) · ∇g + Ṽ(ε,n) · e = 0. (A.7)

Taking the first variation of the functional in (30) atg we have

−〈A(ε,n)gδg〉n − 〈A(ε,n)g′δg′〉n = 0 (A.8)

where the variationδg′ is related to the variationδg by

A(ε,n)δg′ + (cccε + Ṽ(ε,n)) · ∇δg = 0 (A.9)

following (A.7). Substituting (A.9) into (A.8) and integrating by parts we get

〈A(ε,n)gδg〉n + 〈(cccε + Ṽ(ε,n)) · ∇g′δg〉n = 0

for all admissible variationsδg. Thus

A(ε,n)g + (cccε + Ṽ(ε,n)) · ∇g′ = 0 (A.10)

Since Eqs. (A.3) and (A.4) (also (A.7), (A.10)) are well posed, we conclude thatg = χ(ε,n), g′ = χ(ε,n)′ up to
constants.

By reversing the above argument, it is easy to see thatg = χ(ε,n), g′ = χ(ε,n)′ with χ(ε,n), χ(ε,n)′ given by (A.5)
are the minimizer of (30).
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