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We consider dissipative systems resulting from the Gaussian and alpha-stable
noise perturbations of measure-preserving maps on the d dimensional torus. We
study the dissipation time scale and its physical implications as the noise level e

vanishes. We show that nonergodic maps give rise to an O(1/e) dissipation
time whereas ergodic toral automorphisms, including cat maps and their
d-dimensional generalizations, have an O(ln(1/e)) dissipation time with a con-
stant related to the minimal, dimensionally averaged entropy among the auto-
morphism’s irreducible blocks. Our approach reduces the calculation of the
dissipation time to a nonlinear, arithmetic optimization problem which is solved
asymptotically by means of some fundamental theorems in theories of con-
vexity, Diophantine approximation and arithmetic progression. We show that
the same asymptotic can be reproduced by degenerate noises as well as mere
coarse-graining. We also discuss the implication of the dissipation time in
kinematic dynamo.

KEY WORDS: Dissipation; noise; toral automorphisms; dynamo.

1. INTRODUCTION

Irreversibility and approach to equilibrium are fundamental problems in
statistical mechanics and dynamical systems and its complete solution is
still elusive (see, e.g., ref. 14). There are possibly many routes to irreversi-
bility.

One view is that macroscopic systems are exceedingly difficult to
isolate from their environments for a time comparable to their dynamical
time scales. The noise as a result of interaction with environment may
further trigger irreversibility, such as approach to equilibrium, in the



systems. The initial uncertainty involved in preparing a physical system and
the random perturbation due to measurements as well as Gibbs’ coarse-
graining procedure can all be viewed as certain noises. The point is that
noises, intrinsic as a result of internal stochasticity or extrinsic as a result of
random influence from surrounding environment, can induce effects that
would be weak or absent without noise.

In this paper we investigate one such effect, called dissipation, for
discrete time, conservative dynamical systems under the influence of noise.
In particular we study the time scale, called the dissipation time, on which
the dissipation as measured in Lp-norm, 1 < p < ., has an order one effect
even as the magnitude of noise vanishes. Clearly the dissipation time
depends on the ergodic properties of the noiseless dynamics as well as the
noise level.

The noisy dynamical system considered in this paper can be viewed as
a discrete generalization of the dynamics of a passive scalar in a periodic,
incompressible velocity field v

dx e(t)=v(x e(t)) dt+`e dw(t)

N · v(x)=0,
(1)

where the standard Brownian motion w and the molecular diffusivity e

represent the stochastic perturbations as a result of random molecular
collisions (see, e.g., refs. 13 and 8). The discrete-time dynamical system will
be defined on the d-dimensional torus Td=Rd/Zd. The velocity field v will
be replaced by arbitrary Lebesgue-measure preserving map F defined on Td

(periodicity condition).
In order to study the dynamics generated by F it is useful to consider

its Koopman operator UF defined by a composition UF f :=f p F, with f
belonging to some Banach space of functions on Td. We will be mainly
concerned with the standard Banach spaces Lp(Td), 1 [ p [ ., and their
subspaces Lp

0 (Td) of functions with zero mean OfP=0, where OfP denotes
the average of f w.r.t. the Lebesgue measure. In case of L1(Td) one can
consider UF as the Frobenius–Perron operator associated with F−1.

In the time-discrete version we consider general a-stable noise operator
Ge, a: L2

0(Td) W L2
0(Td), with a ¥ (0, 1], defined by means of the Fourier

transform of corresponding a-stable noise kernel ge, a

Ge, a f(x)=F
T

d
ge, a(x − y) f(y) dy= C

k ¥ Z
d

e−e |k|2a

f̂(k) ek(x),
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where

ge, a(x) := C
k ¥ Z

d
e−e |k|2a

ek(x),

with ek(x) :=e2pik · x, k ¥ Zd. Here, just like in (1), e > 0 represents the level
of the noise. Putting a=1 one recovers standard heat kernel.

The operator Te, a on L2
0(Td) generating the noise-perturbed dynamical

system considered in this paper is thus given by

Te, a f :=Ge, aUF f=ge, a f (f p F). (2)

Simple computations yield

||Tn
e, a ||=||Ge, aUF · · · Ge, aUF || [ ||Ge, a ||n=e−en. (3)

Here and throughout the paper || · || denotes the standard L2
0-norm or the

corresponding operator norm (any other norm will be equipped with suit-
able index).

We define the dissipation time as the time on which the contraction (3)
becomes of order one:

ndiss :=min {n ¥ Z+ : ||Tn
e, a || < 1/e}. (4)

Hence the dissipation time is a function of e, a as well as the underlying
dynamics. The choice of the threshold e−1 in the definition is a convenient
one and for the purpose of the paper can be any positive number less than
one (see Proposition 1). The fact that for all e > 0, ||Tn

e, a || is monotonically
decreasing ensures that ndiss is well defined. By contrast, when e=0, the
fine-grained Boltzmann–Gibbs entropy as well as Lp-norm of the initial
state remains constant in the course of evolution. In other words this is a
‘‘dissipation’’ effect and hence the term ‘‘dissipation time.’’ On the dissipa-
tion time scale the system is, in a sense, ‘‘half way’’ through its irreversible
route to the equilibrium state. The dissipation time provides a measure of
the instability of the dynamics w.r.t. the stochastic perturbations which
result in the ‘‘aging’’ of the system toward the final state.

The main purpose of this paper is to investigate the asymptotics of the
dissipation time as e tends to zero. Due to the non-normality of the opera-
tor Te, a, the dissipation time can not be determined from its spectral radius.
Indeed, as we will see below, the operator Te, a corresponding to any ergodic
toral automorphism F is quasi-nilpotent for any e > 0 (thus the time scale
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estimated from the spectral radius is infinite) whereas the dissipation time
is of the order ln(1/e).

To briefly describe the main results we pause to note the following
asymptotic notation. Given two sequences ae, be indexed by the parameter
e > 0 we write

ae M be, if lim sup
e Q 0

ae

be

< .

ae % be, if lim
e Q 0

ae

be

=1.

Moreover we write ae ’ be, if both ae M be and be M ae hold simultaneously.
The first result is that the dissipation time ndiss ’ 1/e for nonergodic

or, more general, non-weakly-mixing maps (cf. Theorem 1 and its
corollaries, Section 2.3), which is also the longest possible time scale for
dissipation in view of (3) (see also Lemma 1, Section 2.2). In other word,
such systems are most stable w.r.t. stochastic perturbations.

The main aim, however, is to investigate the cases in which the dissi-
pation is much faster due to rapid mixing in F. We show (Theorem 2,
Section 2.3) that, for a toral automorphism F, ndiss ’ log(1/e) if and only if
the map F is ergodic (which in this case is also an Anosov diffeo-
morphism). In particular our results hold for all classical cat maps (hyper-
bolic automorphisms of 2-torus) and their d-dimensional generalizations.
In addition, we provide a general lower bound for the constant of the log-
arithmic asymptotics (Theorem 2). We further show that the lower bound
is achieved for diagonalizable automorphisms, namely

ndiss % (2aĥ(F))−1 ln(1/e) (5)

where ĥ(F) denotes the minimal, dimensionally averaged entropy among
F’s irreducible blocks (Theorem 3, Section 2.3). Dimensionally averaged
entropy for each irreducible sub-block of the toral automorphism is the
Kolmogorov–Sinai (KS) entropy per dimension of an irreducible factor of
the whole map. Essentially all mixing Anosov diffeomorphisms should
have the log 1/e dissipation time but it is not immediately clear what the
constant should be.

Our method involves solving asymptotically a quadratic arithmetic
optimization (i.e., quadratic integer programming) problem by obtaining
sharp upper and lower bounds using number theoretical tools including
multidimensional Diophantine approximation theorems (Schmidt’s subspace

338 Fannjiang and Wołowski



theorem), Minkowski’s theorem on linear forms and Van der Waerden’s
theorem on arithmetic progressions. This is done in Section 3.

In Section 5 we show that the same result (5) holds when the noise is
replaced by coarse-graining the initial and terminal states. This is reminis-
cent of the well-know results of statistical stability in the literature, namely,
the Bernoulli systems are stable under the sufficiently small intrinsic
random perturbation in the rough sense that the perturbed system is close
to the direct product of the unperturbed one and some auxiliary viewer
system (see refs. 13 and 21). In other words, for those systems, the process
that results from small intrinsic random perturbation can be reproduced
exactly by looking at the unperturbed system through a viewer that distorts
randomly but slightly. In spite of the above the asymptotic (5) indicates the
perturbed system is irreversibly far from the unperturbed one even on the
relatively short dissipation time scale. From this perspective, such a system
is statistically unstable.

In Section 4 we consider a class of highly degenerate noises and show
that the same conclusions about the dissipation hold if the degenerate
noises satisfy an additional generic condition.

In Section 6 we consider the relation between the dissipation time and
some characteristic time scales relevant to kinematic dynamo. We show
that fast dissipation generally inhibits dynamo action. When there is no
fast dynamo action the noisy push-forward map dissipates the magnetic
field energy on the dissipation time scale. However, the magnetic field
energy can still grow to relatively large magnitude as inverse power-law of
the small noise with the exponent proportional to the ratio of the loga-
rithmic spectral radius of the toral automorphism to the minimal, dimen-
sionally averaged entropy among the automorphism’s irreducible blocks
(cf. (65)).

The notion of dissipation time has a natural bearing on the problems
of quantum chaos with noise. The family of symplectic toral auto-
morphisms constitute important examples of quantizable chaotic dynamics
on compact manifolds for which various quantization procedures have
been intensively studied (see, for example, refs. 19 and 22). We will address the
issue of decoherence time for quantized symplectic toral automorphisms
with noise in a forthcoming paper.

The organization of the rest of the paper is as follows. In Section 2 we
develop the general theory of dissipation time and its relation to the
Boltzmann–Gibbs entropy. We also formulate the dissipation time calcula-
tion for total automorphisms as an arithmetic minimization problem and
state the main results. In Appendix A we generalize the dissipation time
asymptotic result to the affine transformations. The proofs of some
elementary facts are presented in Appendix B for the sake of completeness.
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2. DISSIPATION TIME

In its general form the dissipation time ndiss(p) can be defined in terms
of the norm || · ||p, 0 on the space Lp

0 (Td) w.r.t. a threshold g ¥ (0, 1)

ndiss(p, g) :=min{n ¥ Z+ : ||Tn
e, a ||p, 0 < g}, 1 [ p [ .. (6)

Note that ||Tn
e, a ||p, 0=||(Tg

e, a)n||q, 0, p−1+q−1=1, 0 < p, q < . and thus
ndiss(p, g, F)=ndiss(q, g, F−1). First we show that the value of the threshold
g in (6) does not affect the order of divergence of ndiss(p, g), as e tends to
zero.

Proposition 1. For any 0 < g̃, g < 1, ndiss(p, g̃) ’ ndiss(p, g).

Proof. Assume 0 < g̃ < g < 1. Obviously ndiss(p, g̃) \ ndiss(p, g). On
the other hand let k be a positive integer such that gk < g̃. Then

||Tndiss(p, g)
e, a ||p, 0 < g S ||Tkndiss(p)

e, a ||p, 0 < gk < g̃. (7)

Hence kndiss(p, g) \ ndiss(p, g̃), which implies ndiss(p, g) ’ ndiss(p, g̃). L

Following the argument of ref. 23 one can use the Riesz convexity
theorem to establish also the asymptotic equivalence of the ndiss(p), for all
1 < p < ..

Proposition 2.

(i) For any 1 < q, p < ., ndiss(q) ’ ndiss(p).

(ii) For any 1 < p < ., ndiss(p) M ndiss(1) and ndiss(p) M ndiss(.).

The details of the proof can be found in Appendix B.
Our particular choice of the exponent p=2 and threshold g=e−1 in

(4) is computationally convenient and will be used throughout the paper.
We will use the convention that ndiss(p)=ndiss(p, e−1).

We say that operator Te, a or associated with it measure preserving map
F has a simple (slow) dissipation time when ndiss ’ 1/e and that it has a
logarithmic (fast) dissipation time when ndiss ’ ln(1/e).

In the particular case of fast dissipation, with a logarithmic dissipation
time, in order to estimate precisely the rate of dissipation, one needs to
determine the value of the dissipation rate constant Rdiss, defined as

Rdiss :=lim
e Q 0

ndiss

ln(1/e)
. (8)
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Similarly in case of simple dissipation time the dissipation rate constant can
be defined as

Rdiss :=lim
e Q 0

endiss. (9)

2.1. Dissipation Time and Boltzmann–Gibbs Entropy

In this section we briefly discuss the connection between dissipation
time and Boltzmann–Gibbs entropy.

First we note that on the scale of ndiss the Boltzmann–Gibbs entropy
approaches the maximal equilibrium value (i.e., 0) as can be seen from the
following simple estimate. (16) Let us first restrict considerations to bounded
initial states, i.e., f \ 0, f ¥ L. and ||f||1=1. Let

g(u)=˛ − u ln u, u > 0
0, u=0

and let Dn={x ¥ Td : 1 [ Tn
e, af}. On one hand, we have

: F
Dn

g(Tn
e, af(x)) dx :

[ F
Dn

:FTn
e, a f(x)

1

dg(u)
du

du : dx

[ sup
1 [ u [ ||Tn

e, a f||.

(1+ln u) F
Dn

|Tn
e, af(x) − 1| dx

[ (1+ln ||Tn
e, af||.) ||Tn

e, af − 1||1

[ (1+ln ||f||.) ||Tn
e, af − 1||1. (10)

On the other hand, we have

0 \ F
T

d
g(Tn

e, af(x)) dx \ F
Dn

g(Tn
e, af(x)) dx.

In view of the inclusion relation: L.(Td) … L2(Td) … L1(Td), we then
obtain that for n ± ndiss

sup
f \ 0, ||f||. [ c

:F
T

d
g(Tn

e, af(x)) dx :|0e a 0 0, -c > 0.
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For unbounded initial states, we note that, by Young’s inequality,

||Tn
e, af||. [ ||Te, a f||. [ ||ge, a ||. ||f||1=||ge, a ||.

from which we have, instead of (10), the following estimate

:F
Dn

g(Tn
e, af(x)) dx : [ (1+ln ||ge, a ||.) ||Tn

e, af − 1||1

where

ln ||ge, a ||. ’ ln(1/e).

Therefore for sufficiently fast diverging n ± ndiss(1) such that

ln(1/e) ||Tn
e, a(f − 1)||1, 0 |0

e a 0 0 (11)

one obtains

sup
f \ 0, ||f||1=1

:F
T

d
g(Tn

e, af(x)) dx :|0e a 0 0.

The condition (11) typically results in a slightly longer time scale than
ndiss(1).

On the other hand, we can bound the L1 distance between the proba-
bility density function f and the Lebesgue measure by their relative
entropy via Csiszár’s inequality (6)

F
T

d
|f(x) − g(x)| dx [ =2 F

T
d

f(x) ln(f(x)/g(x)) dx

with g(x)=1. We see immediately that the decay rate of

sup
f \ 0, ||f||1=1

:F
T

d
g(Tn

e, af(x)) dx :

provides an estimate for ndiss(1) and, consequently, for ndiss(p), p ¥ (1, .).

2.2. Calculating the Dissipation Time

For greater generality and transparency of arguments we consider, in
this section, a slightly more general family of operators Te, a defined, as
previously, by the first equality in (2), but with arbitrary unitary or isome-
tric (not necessary Koopman) operator U (and hence in these cases we
drop the subscript F).
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Lemma 1. For any isometric operator U, the dissipation time of Te, a

satisfies following constraints

||R(1; Te, a)|| M ndiss M 1/e, (12)

where R(1; Te, a) denotes the resolvent of Te, a at 1.

Proof. In view of (4) and (3), for n=ndiss one has

e−1 [ ||T (ndiss − 1)
e, a || [ e−e(ndiss − 1),

which clearly implies the second estimate of (12). In order to prove the
other inequality we proceed as follows.

||R(1; Te, a)||=> C
.

n=0
Tn

e, a
>=> C

n0 − 1

n=0
Tn

e, a+Tn0
e, a C

.

n=0
Tn

e, a
>

[ C
n0 − 1

n=0
||Tn

e, a ||+||Tn0
e, a || > C

.

n=0
Tn

e, a
> [ n0+||Tn0

e, a || ||R(1; Te, a)||.

Hence taking in the above inequality n0=ndiss one gets

||R(1; Te, a)|| (1 − e−1) [ ||R(1; Te, a)|| (1 − ||Tndiss
e, a ||) [ ndiss,

which gives the first estimate of (12). L

The above lemma provides an absolute upper bound for dissipation
time. Taking F=I one easily finds that this bound is best possible in
general. The lower bound is useful in the case when one can estimate from
below the norm of the resolvent (see proof of Theorem 1).

Theorem 1. If U acting on L2
0(Td) possesses nonempty pure point

spectrum and at least one of its eigenfunctions belongs to H2a(Td), then
Te, a has simple dissipation time.

Proof. In view of Lemma 1 it is enough to find a lower bound for
the norm of the resolvent R(1; Te, a). Let h ¥ H2a be one of the eigenfunc-
tions of U. Since U is isometric we have

Uh=e ifh.

We first assume that f=0. Since 1 ¨ s(Te, a), I − Te, a is a homeomorphism
and hence

||R(1; Te, a)||= sup
f ¥ L2

0

||(I − Te, a)−1 f||
||f||

= sup
f ¥ L2

0

||f||
||(I − Te, a) f||

\
||h||

||(I − Te, a) h||
.
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Now expressing h in the Fourier series we get

||(I−Te, a) h||2= C
0 ] k ¥ Z

d
|ĥ(k)|2 |1−e−e |k|2a

|2 [ C
0 ] k ¥ Z

d
(e |ĥ(k)| |k|2a)2 [ e2 ||h||2

H2a.

Hence

||R(1; Te, a)|| \
||h||

e ||h||H2a

=:
C
e

.

Thus in view of (12) and above calculations

1/e M ||R(1; Te, a)|| M ndiss M 1/e,

which ends the proof in the case f=0.
If f ] 0, we put Û=e−ifU, which implies Ûh=h.
The proof is completed by applying the above reasoning to operator

T̂e, a=Ge, aÛ and observing that the dissipation times for Te, a and T̂e, a are
identical. L

When U is a Koopman operator associated with a map F, then the
property that U considered on L2

0(Td) possesses nonempty pure point
spectrum is equivalent to the fact that F is not weakly mixing (see ref. 5).
Thus we have

Corollary 1. If F is not weakly mixing and its Koopman operator
possesses H2a eigenfunction in L2

0(Td), then Te, a has simple dissipation
time.

Another immediate consequence is

Corollary 2. If F is not ergodic and its nontrivial invariant measure
possesses H2a density function, then Te, a has simple dissipation time.

A typical example of ergodic but not weakly mixing transformations
for which the above corollary applies is the family of ‘‘irrational’’ shifts on
Td, i.e., maps Fx=x+c on Td, where c=(c1,..., cd) is a constant vector
such that the numbers 1, c1,..., cd are linearly independent over rationals.
More general and less trivial examples of ergodic maps giving rise to a
simple dissipation time will be discussed in Appendix A (cf. Remark 1).

In general the problem of computing the dissipation time is rather
complicated. In some cases it can be reformulated as an asymptotic
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optimization problem. To see it, one can represent the action of a given
unitary operator U in the Fourier basis

Uek= C
0 ] kŒ ¥ Z

d
uk, kŒekŒ,

where for each k

C
0 ] kŒ ¥ Z

d
|uk, kŒ |2=1. (13)

Next we introduce the notation

Un(k0, kn)= C
0 ] k1,..., kn − 1 ¥ Z

d
uk0, k1

· · · ukn − 1, kn
e−e ; n

l=1 |kl |
2a

Sn(kn)={k0 ¥ Zd 0{0} : Un(k0, kn) ] 0}.

Then for any f ¥ L2
0(Td) we have

||Tn
e, af||2=> C

0 ] k0 ¥ Z
d

f̂(k0) Tn
e, aek0

>2

=> C
0 ] k0 ¥ Z

d
f̂(k0) C

0 ] kn ¥ Z
d
Un(k0, kn) ekn

>2

= C
0 ] kn ¥ Z

d

: C
0 ] k0 ¥ Z

d
f̂(k0) Un(k0, kn) :

2

= C
0 ] kn ¥ Z

d

: C
k0 ¥ Sn(kn)

f̂(k0) Un(k0, kn) :
2

. (14)

The following general upper bound for ||Tn
e, af|| holds.

Lemma 2. For any f ¥ L2
0(Td),

||Tn
e, af||2 [ C

0 ] kn ¥ Z
d

C
k0 ¥ Sn(kn)

|f̂(k0)|2 C
k0 ¥ Sn(kn)

|Un(k0, kn)|2. (15)

For the proof we refer the reader to Appendix B.
When uk, kŒ is a Kronecker’s delta function

uk, kŒ=dAk, kŒ, (16)

where A: Zd
W Zd is a linear surjective map, the upper bound (15) can be

used to obtain an identity for ||Tn
e, a ||. First observe that

Un(k0, kn)=e−e ; n
l=1 |Alk0|2a

dAnk0, kn
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and hence (15) becomes

||Tn
e, af||2 [ C

0 ] k0 ¥ Z
d

|f̂(k0)|2 e−2e ; n
l=1 |Alk0|2a

[ ||f||2 max
0 ] k ¥ Z

d
e−2e ; n

l=1 |Alk|2a

.

On the other hand for any nonzero k ¥ Zd, one can take in (14) f=ek and
get

||Tn
e, af||2=e−2e ; n

l=1 |Alk|2a

and therefore

||Tn
e, a ||= max

0 ] k ¥ Z
d

e−e ; n
l=1 |Alk|2a

=e−e min0 ] k ¥ Zd ; n
l=1 |Alk|2a

. (17)

Let us now determine the class of maps F such that the corresponding
Koopman operator UF satisfies (16). The relation (16) implies

UFek=eAk=e2piOAk, xP.

On the other hand

UFek(x)=ek(Fx)=e2piOk, FxP.

Thus

Ok, FxP=OAk, xP mod 1, -x ¥ Rd, k ¥ Zd,

that is, A is linear and A† equals the lifting of F from Td onto Rd. More-
over, the matrix A has integer entries and determinant equal to ± 1, i.e., A
(and F) is a toral automorphism. Hence, for toral automorphisms, the
calculation of the dissipation time reduces to the following nonlinear,
asymptotic (large n) arithmetic minimization problem

min
0 ] k ¥ Z

d
C
n

l=1
|A lk|2a. (18)

We will show in Section 3 that for any ergodic toral automorphism this
minimum value grows geometrically in n with the base related to the
dimensionally-averaged KS-entropy of the total automorphism.

2.3. Dissipation Time of Toral Automorphisms

It is well known (see ref. 1) that (the lifting map corresponding to) any
toral homeomorphism H: Td

W Td can be decomposed into three parts
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H=L+P+c, where L, the linear part, is an element of SL(d, Z)—the set
of all matrices with integer entries and determinant equal to ± 1, P is
periodic, i.e., P(x+v)=P(x) for any v ¥ Zd, and c is a constant shift
vector.

Every algebraic and measurable automorphism of the torus is contin-
uous. Each continuous toral automorphism is a homeomorphism with zero
periodic and constant parts and hence can be identified with an element of
SL(d, Z). And vice versa, each element of SL(d, Z) uniquely determines a
measurable, algebraic toral automorphism. Thus from now on the term
toral automorphism will simply be reserved for elements of SL(d, Z). We
recall here that all Anosov diffeomorphisms on Td are topologically con-
jugate to the toral automorphisms (refs. 9 and 18).

Below we summarize some ergodic properties of toral automorphisms
(cf. ref. 11, p. 160, refs. 3 and 12).

Proposition 3. Let F be a toral automorphism. The following
statements are equivalent

(a) no root of unity is an eigenvalue of F.
(b) F is ergodic.
(c) F is mixing.
(d) F is a K-system.
(e) F is a Bernoulli system.

In the sequel we will use the following result (cf. ref. 26).

Proposition 4. The entropy h(F) of any toral endomorphism F is
computed by the formula

h(F)= C
|lj| \ 1

ln |lj |, (19)

where lj denote the eigenvalues of A.

From the formula (19) one immediately sees that a toral automorphism
has zero entropy if and only if all its eigenvalues are of modulus 1. In fact
much stronger result holds.

Proposition 5. A toral automorphism has zero entropy if and only
if all its eigenvalues are roots of unity. In particular all ergodic toral
automorphisms have positive entropy.

Given any toral automorphism F we denote by P its characteristic
polynomial and by {P1,..., Ps} the complete set of its distinct irreducible
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(over Q) factors. Let dj denote the degree of polynomial Pj and hj the KS-
entropy of any toral automorphism with the characteristic polynomial Pj.
For each Pj we define its dimensionally averaged KS-entropy as

ĥj=
hj

dj
. (20)

For the whole matrix F we define its minimal dimensionally averaged
entropy (denoted ĥ(F)) as

ĥ(F)= min
j=1,..., s

ĥj.

Now we state two main theorems of the present paper.

Theorem 2. Let F be any toral automorphism, UF the Koopman
operator associated with F, Ge, a a-stable noise operator and Te, a=Ge, aUF.
Then

(i) Te, a has simple dissipation time if and only if F is not ergodic.
(ii) Te, a has logarithmic dissipation time if and only if F is ergodic.

(iii) If Te, a has logarithmic dissipation time then the dissipation rate
constant satisfies the following constraint

1

2aĥ(F)
[ Rdiss [

1

2ah̃(F)
,

where h̃(F) is a positive constant satisfying h̃(F) [ ĥ(F).

Part (i) of the above theorem follows immediately from Theorem 1.
For details of a simple proof we refer to Appendix B.

The natural question arises, whether the lower bound for the dissipa-
tion rate constant given in the above theorem is best possible. The next
theorem and its corollary provides a strong argument in favor of this
conjecture.

Theorem 3. If F is ergodic and diagonalizable then

ndiss %
1

2aĥ(F)
ln(1/e).

That is, the dissipation rate constant of Te, a is given by

Rdiss=
1

2aĥ(F)
.
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The proof of parts (ii) and (iii) of Theorem 2 and of Theorem 3 con-
stitute the most important part of this work and will be presented in
Section 3.3 after necessary tools are developed.

We end this section with the the results for two and three dimensional
tori. Ergodicity of two dimensional toral automorphisms is equivalent to
hyperbolicity. Two dimensional hyperbolic toral automorphisms are often
referred to as the cat maps.

Using Corollary 4 and applying Theorem 3 to two and three dimen-
sions one gets the following

Corollary 3. Let F be any ergodic, two or three dimensional toral
automorphism. Then

ndiss %
1

2aĥ(F)
ln(1/e).

3. ASYMPTOTIC ARITHMETIC MINIMIZATION PROBLEM

In this section we find the asymptotics, as n goes to infinity, of the
following quadratic arithmetic minimization problem

min
0 ] k ¥ Z

d
C
n

l=1
|A lk|2a, (21)

where A ¥ SL(d, Z). When A is not ergodic the asymptotics of (21) is of the
order O(n). For the rest of the paper we will consider only the ergodic case.
For d=2 the problem (21) can be solved easily as follows. Consider first
the case that A is symmetric and a=1. From det(A)=1 we see that eigen-
values are l, l−1 with |l| > 1. We have

min
0 ] k ¥ Z

d
C

2n+1

l=1
|A lk|2

= min
0 ] k ¥ Z

d
C
n

l=−n
|A lk|2

= min
0 ] k=k1+k2 ¥ Z

d
1 |k|2+ C

n

l=1
|l|2l |k1|2+|l|−2l |k2|2+ C

n

l=1
|l|−2l |k1|2+|l|2l |k2|22

= min
0 ] k ¥ Z

d
C
n

l=−n
|l|2l |k|2= C

n

l=−n
|l|2l.
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Hence there exist constants C1 and C2 such that

C1eh(A) n [ min
0 ] k ¥ Z

d
C
n

l=1
|A lk|2a [ C2eh(A) n

where h(A) denotes the KS-entropy of A. The estimates for the general case
of non-symmetric A and a ] 1 are similar.

In higher dimensions, the solution to (21) is much more involved
because of the presence of different eigenvalues with absolute values bigger
than one. We have the following general estimate

Theorem 4. Let A ¥ SL(d, Z) be ergodic. There exist constants C1

and C2 such that for any 0 < d < 1 and sufficiently large n

C1e (1 − d) 2ah̃(A) n [ min
0 ] k ¥ Z

d
C
n

l=1
|A lk|2a [ C2ne2aĥ(A) n (22)

where as before ĥ(A) denotes minimal dimensionally averaged entropy of A
and h̃(A) denotes a constant satisfying 0 < h̃(A) [ ĥ(A), with equality
achieved for all diagonalizable matrices A.

The question whether the equality h̃(A)=ĥ(A) holds for all ergodic
matrices remains open.

The proof of the theorem relies on nontrivial use of three number-
theoretical results stated below.

I. Minkowski’s Theorem on Linear Forms. Let L1,..., Ld be linearly
independent linear forms on Rd which are real or occur in conjugate
complex pairs. Suppose a1, a2,..., ad are real positive numbers satisfying
a1a2 · · · ad=1 and ai=aj, whenever Li=L̄j. Then there exists a nonzero
integer vector k ¥ Zd such that for every j=1,..., d,

|Ljk| [ Daj, (23)

where D=|det[L1,..., Ld]|1/d.
Minkowski’s Theorem on linear forms will be used to obtain a sharp

upper bound on the asymptotic solution of the arithmetic minimization
problem. The proof of the above theorem and its generalization to arbi-
trary lattices can be found in ref. 20 (Chap. VI).

II. Schmidt’s Subspace Theorem. Let L1,..., Ld be linearly inde-
pendent linear forms on Rd with real or complex algebraic coefficients.
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Given d > 0, there are finitely many proper rational subspaces of Rd such
that every nonzero integer vector k with

D
d

j=1
|Ljk| < |k|−d (24)

lies in one of these subspaces.
Schmidt’s Subspace Theorem will be used in conjunction with Van der

Waerden’s Theorem on arithmetic progressions (see below) to obtain a
sharp lower bound for the asymptotic solution of the arithmetic minimiza-
tion problem. The proof of Schmidt’s Subspace Theorem can be found in
ref. 24 (Theorem 1F, p. 153).

Definition 1. For a given set of linear forms and for fixed d > 0, the
smallest collection of proper rational subspaces of Rd which contain all
nonzero integer vectors satisfying (24), is called the exceptional set and
denoted by Ed.

A main difficulty to be resolved in using Schmidt’s Subspace Theorem
is to show that the minimizer of either the original problem (21) or an
equivalent problem does not lie in the respective exceptional set which is in
general unknown. We will pursue the latter route by using Van der Waer-
den’s Theorem on arithmetic progressions to show that one can always
construct an equivalent minimization problem whose minimizer is
guaranteed to lie outside the corresponding exceptional set. To this end we
note that Schmidt’s Subspace Theorem is true when the standard lattice Zd

is replaced by any other rational lattice, that is any lattice of the form
L=Q(Zd) where Q ¥ GL(d, Q). Schmidt’s subspace theorem can be gen-
eralized to this situation by considering the set of new forms L̃j=LjQ. The
fact that Q ¥ GL(d, Q) implies immediately that L̃j are still linearly inde-
pendent forms on Rd with real or complex algebraic coefficients.

III. Van der Waerden’s Theorem on Arithmetic Progressions.

Let k and d be two arbitrary natural numbers. Then there exists a natural
number ng(k, d) such that, if an arbitrary segment of length n \ ng of the
sequence of natural numbers is divided in any manner into k (finite) sub-
sequences, then an arithmetic progression of length d appears in at least
one of these subsequences.

The original proof was published in ref. 25; Lukomskaya’s simplifica-
tion can be found in ref. 17.

Before presenting the proof of our main results we state a number of
technical facts concerning the structure of toral automorphisms.
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3.1. Algebraic Structure of Toral Automorphisms

In this section we denote by GL(d, Q) the group of nonsingular d × d
matrices with rational entries or the group of linear operators on Euclidean
space Rd, which are represented in standard basis by such matrices. We
generally use the same symbol to denote both operator and its matrix.

In the sequel a vector x ¥ Rd will be called an integer (or integral)
vector if all its components are integers, and similarly a rational, an alge-
braic vector if all its components are rational or respectively algebraic
numbers. The term rational subspace of Rd will then refer to a linear sub-
space of Rd spanned by rational vectors (cf. ref. 24, p. 113).

Definition 2. A ¥ GL(d, Q) is called irreducible (over Q) if its char-
acteristic polynomial is irreducible in Q[x].

Lemma 3. The following statements about a matrix A ¥ GL(d, Q)
are equivalent.

(a) A is irreducible.

(b) A does not possess any proper rational A-invariant subspaces
of Rd.

(c) No rational proper subspace of Rd is contained in any proper
A-invariant subspace of Rd.

(d) For any nonzero q ¥ Qd and any arithmetic progression of integer
numbers n1,..., nd, the set {An1q, An2q,..., Andq} forms a basis of Rd.

(e) A† is irreducible.

(f) No nonzero q ¥ Qd is orthogonal to any proper A-invariant
subspace of Rd.

(g) No proper A-invariant subspace of Rd is contained in any proper
rational subspace of Rd.

Definition 3. We say that operator A ¥ GL(d, Q) is completely
decomposable over Q if there exists a rational basis of Rd in which A
admits the following block diagonal form

r A1 0 · · · 0
0 A2 · · · 0

· · · · · · · · · · · ·
0 0 · · · Ar

s , (25)

where for each j=1,..., r [ d, Aj ¥ GL(dj, Q) is irreducible and ;r
j=1 dj=d.
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In general, any matrix A ¥ GL(d, Q) admits a rational block diagonal
representation [Aj]j=1,..., r. The smallest rational blocks to which A can be
decomposed are called elementary divisor blocks. The characteristic poly-
nomial corresponding to any elementary divisor block is of the form pm,
where p is an irreducible (over Q) polynomial (see, e.g., ref. 7). Although
elementary divisor blocks cannot be decomposed over Q into smaller
invariant blocks, some elementary divisor blocks may not be irreducible.
This happens iff m > 1 iff A is not completely decomposable over Q. One
has the following elementary fact (see Appendix B for a proof ).

Proposition 6. A ¥ GL(d, Q) is completely decomposable over Q iff
A is diagonalizable.

However, even if A ¥ GL(d, Q) is not completely decomposable, each
elementary divisor block of A can be uniquely represented (in a rational
basis) in the following block upper triangular form

rB C
0 D

s , (26)

where B is the unique rational irreducible sub-block associated with
A-invariant rational subspace of that elementary divisor and C, D denote
some rational matrices.

Proposition 7. All the eigenvalues of an irreducible matrix
A ¥ GL(d, Q) are distinct (complex) algebraic numbers. In particular all
irreducible matrices are diagonalizable.

The proofs of the above propositions can be found in Appendix B.
Finally we note that since the leading coefficient and constant term of

a characteristic polynomial of any toral automorphism are equal to 1, the
only possible rational eigenvalues of such map are ± 1 or ± i. The latter
fact implies that ergodic toral automorphisms do not possesses rational
eigenvalues. Thus we have the following

Corollary 4. Let F be an ergodic, two or three dimensional toral
automorphism. Then F is irreducible (and hence diagonalizable).

3.2. Proof of Theorem 4

This section is entirely devoted to the proof of Theorem 4.
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Let [Aj]j=1,..., r be a rational block-diagonal decomposition of A into
elementary divisor blocks. Since A ¥ SL(d, Z), there exist a transition
matrix Q ¥ SL(d, Q) such that for every l ¥ Z,

A l=Q−1([Aj]) l Q (27)

and moreover each elementary divisor block [A]j is represented in its block
upper triangular form (26).

The matrix Q defines a new lattice L=Q(Zd) and acts bijectively
between this lattice and the standard lattice Zd. Hence

min
0 ] k ¥ Z

d
C
n

l=1
|Alk|2a= min

0 ] k ¥ Z
d

C
n

l=1
|Q−1([Aj])l Qk|2a= min

0 ] q ¥ L
C
n

l=1
|Q−1([Aj])l q|2a.

Moreover

||Q||−2a |([Aj]) l q|2a [ |Q−1([Aj]) l q|2a [ ||Q−1||2a |([Aj]) l q|2a, -l, j, a.

Now we decompose L into the direct sum of lower dimensional sublattices
Lj corresponding to invariant blocks [Aj]. So that

min
0 ] q ¥ L

C
n

l=1
|([Aj]) l q|2a= min

j ¥ {1,..., r}
min

0 ] q ¥ Lj

C
n

l=1
|(Aj) l q|2a. (28)

Thus, without loss of generality, we may specialize to the case that A is
already indecomposable over Q, i.e., A does not possesses any proper ele-
mentary divisor blocks. To simplify the notation we will work with the
standard lattice L=Zd. According to the remarks following the statements
of Minkowski’s and Schmidt’s Theorems the proof can be easily adapted
for any rational lattice L=Q(Zd).

Since the technique of the proof differs depending on diagonalizability
of A we consider two cases:

3.2.1. Diagonalizable Case

Here we concentrate on the case when A is diagonalizable and hence
due to its in-decomposability irreducible (cf. Proposition 6).

We denote by lj (j=1,..., d) the eigenvalues of A. Following Proposi-
tion 7 we note that lj are distinct (possibly complex) algebraic numbers
and hence there exists a basis (of Cd) {vj}j=1,..., d composed of normalized
algebraic eigenvectors corresponding to eigenvalues lj.
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We denote by [Pj]
d
j=1 the projections on [vj], and by [Lj] the corre-

sponding linear forms. It is easy to check that [Lj] are given, in the Riesz
identification, by the eigenvectors [uj] of the matrix A† which are co-
orthogonal to [vj], i.e., Oui, vjP=0 for i ] j. [uj] and [vj] are real or occur
in complex conjugate pairs. We have

x= C
d

j=1
Pjx= C

d

j=1
(Ljx) vj= C

d

j=1
Ox, ujP vj, -x ¥ Rd.

The equivalence between any two norms in a finite dimensional vector
space, implies the existence of absolute constants C1, C2 such that

C1 C
d

j=1
|Pjx|2 [ |x|2 [ C2 C

d

j=1
|Pjx|2.

Using the above inequalities, the monotonicity of a map x W xa and an
obvious inequality (a+b)a [ aa+ba, which holds for all positive a, b, and
a ¥ (0, 1] one obtains the following estimates

C
n

l=1
|A l k|2a [ C

n

l=1

1C2 C
d

j=1
|PjA lk|22a

=Ca
2 C

n

l=1

1 C
d

j=1
|lj |2l |Pjk|22a

[ Ca
2 C

n

l=1
C
d

j=1
|lj |2al |Pjk|2a=Ca

2 C
d

j=1

1 C
n

l=1
|lj |2al2 |Pjk|2a

and on the other hand

C
n

l=1
|A lk|2a \ 1 C

n

l=1
|A lk|22a

\ 1 C
n

l=1
C1 C

d

j=1
|PjA lk|22a

=Ca
1
1 C

n

l=1
C
d

j=1
|lj |2l |Pjk|22a

=Ca
1
1 C

d

j=1

1 C
n

l=1
|lj |2l2 |Pjk|22a

.

Now we introduce some notation

l̂j :=max{1, |lj |}, (29)

l̂geo :=1D
d

j=1
l̂j
21/d

. (30)

One can easily observe that there exists a constant C such that

Cl̂2an
j [ C

n

l=1
|lj |2al [ nl̂2an

j .
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In the sequel we do not distinguish between particular values of constants
appearing in computations. The symbols C1, C2,... are used to denote any
generic constants independent of n.

The normalization condition |vj |=1 implies the following relation

|Pjx|=|Ljx|. (31)

Combining the above estimates one gets the following general bounds

C1
1 C

d

j=1
l̂2n

j |Ljk|22a

[ C
n

l=1
|A lk|2a [ C2n C

d

j=1
l̂2an

j |Ljk|2a. (32)

Therefore in order to estimate (21) it suffices, essentially, to estimate

min
0 ] k ¥ Z

d
C
d

j=1
l̂2an

j |Ljk|2a. (33)

We denote by zn the sequence of minimizers, i.e., nonzero integral vectors
solving (33).

Upper Bound. For the upper bound we assign to the set of linear
forms Lj the set A composed of all real vectors a=(a1,..., ad) satisfying the
conditions aj > 0, for j=1,..., d and ai=aj whenever Li=L̄j and

D
d

j=1
aj=1. (34)

From Minkowski’s theorem on linear forms, we know that for any a ¥ A,
there exists nonzero integral vector ka satisfying |Ljka | [ Daj, j=1,..., d,
where D=|det[L1,..., Ld]|1/d.

Thus

C
d

j=1
l̂2an

j |Ljka |2a [ D C
d

j=1
l̂2an

j a2a
j . (35)

The minimizing property of zn implies that for any a ¥ A,

C
d

j=1
l̂2an

j |Ljzn |2a [ C
d

j=1
l̂2an

j |Ljka |2a. (36)
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Thus combining (35) and (36), and applying the Lagrange multipliers
minimization with the constraint (34) (and using the fact that l̂i=l̂j

whenever Li=L̄j), we get

C
d

j=1
l̂2an

j |Ljzn |2a [ D min
a ¥ A

C
d

j=1
l̂2an

j a2a
j =dD 1D

d

j=1
l̂2an

j
21/d

=dD l̂2an
geo . (37)

Thus the following upper bound holds

min
0 ] k ¥ Z

d
C
n

l=1
|A lk|2a [ C2nl̂2an

geo . (38)

Lower Bound. Let m denote an arbitrary natural number. Using the
fact that A acts bijectively on Zd we can restate the minimization problem
(33) in the following form

min
0 ] k ¥ Z

d
C
d

j=1
l̂2an

j |Ljk|2a= min
0 ] k ¥ Z

d
C
d

j=1
l̂2an

j |LjA−mAmk|2a (39)

= min
0 ] k ¥ Z

d
C
d

j=1
l̂2an

j |lj |−2am |LjAmk|2a. (40)

That is

C
d

j=1
l̂2an

j |Ljzn |2a= C
d

j=1
l̂2an

j |lj |−2am |LjAmzn |2a. (41)

We choose arbitrary d > 0 and consider the exceptional set Ed (see Defini-
tion 1) associated with the system of linear forms [Lj]. Since [Lj] corre-
spond to the eigen-pairs [l̄j, uj] of A† they are linearly independent linear
forms with (real or complex) algebraic coefficients. Thus the subspace
theorem asserts that Ed is a finite collection of proper rational subspaces
of Rd. We denote by kd the number of subspaces forming Ed.

Now we want to show that for all sufficiently large n there exist an
integer m [ n such that Amzn does not lie in any element of Ed. To this end
we assume to the contrary that all Amzn lie in the subspaces forming Ed and
we divide the sequence of natural numbers 1,..., n into kd classes in such a
way that two numbers m1 and m2 are in the same class if Am1zn and Am2zn

lie in the same element of Ed. Now let ng(kd, d) be the number given in the
van der Waerden theorem and let n \ ng. Then there exists an arithmetic
progression m1,..., md in one of these subsequences. By Lemma 3 (d) the set
of vectors {Am1zn, Am2zn,..., Amdzn} forms a basis of the whole space Rd,
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which contradicts the fact that they lie in one fixed rational proper sub-
space. Hence for any d > 0 and n \ ng there exists mg [ n such that Am*zn

does not lie in any element of Ed.
Now, introducing the notation

ẑn=Am*zn (42)

one concludes from (41) that for any d > 0 and all n \ ng the following
equality and estimate hold

C
d

j=1
l̂2an

j |Ljzn |2a= C
d

j=1
l̂2an

j |lj |−2am* |Lj ẑn |2a (43)

D
d

j=1
|Lj ẑn | \

1
|ẑn |d

. (44)

Inequality (44) may be rewritten as

D
d

j=1
|Lj ẑn |=

1
f(|ẑn |)d

(45)

with some f: R+
Q R+ such that f(r) [ r, -r > 0.

Using (42) and (37) we obtain the existence of a constant l > 1 such
that

f(|ẑn |) [ |ẑn |=|Am*zn | [ l̂m*max |zn | [ l̂n
max C

d

j=1
l̂n

j |Ljzn | [ dD(l̂max l̂geo)n [ ln.
(46)

Note that <j lj=1. So, by (45) the quantities Bj, n=(|lj |−m* f(|ẑn |)d/d

|Lj ẑn |)2a, j=1,..., d satisfy the constraint

D
d

j=1
Bj, n=1, -n > ng. (47)

Thus applying (46) and the Lagrange multipliers minimization with the
constraint (47) one gets

C
d

j=1
l̂2an

j |lj |−2am* |Lj ẑn |2a=f(|ẑn |)−2ad/d C
d

j=1
l̂2an

j Bj, n \ l−2and/dl̂2an
geo=: l̂2an(1 − d̂)

geo .
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This and equality (43) yields the following lower bound for (33)

min
0 ] k ¥ Z

d
C
d

j=1
l̂2an

j |Ljk|2a \ l̂2an(1 − d̂)
geo . (48)

3.2.2. Non-Diagonalizable Case

We move on to the general case where A is not irreducible (but, as
assumed at the beginning of the proof, indecomposable over Q). We denote
by B the invariant irreducible sub-block of A given by its block upper
triangular decomposition (26) and by S the rational invariant subspace
associated with this block. We note that B as an irreducible matrix is
diagonalizable.

Upper Bound. Note that

min
0 ] k ¥ Z

d
C
n

l=1
|A lk|2a [ min

0 ] k ¥ S 5 Z
d

C
n

l=1
|B lk|2a. (49)

The corresponding upper bound (38) for B is then also an upper bound for
the whole matrix A. We note that geometric average of l̂j over S is equal to
the geometric average of all l̂j associated with matrix A (i.e., over the
whole space Rd).

Lower Bound. According to our assumption A is indecomposable
and thus the characteristic polynomial of A is of the form pm for some
irreducible p. All Jordan blocks of A have the same size m and different
Jordan blocks correspond to distinct eigenvalues. Denote by b the number
of the Jordan blocks in A and by lj, where j=1,..., l all these distinct
eigenvalues . Since each lj has algebraic multiplicity m, we get d=mb.
Let {vj, h}j=1,..., b; h=0,..., m − 1 be a basis (of Cd) in which A admits the
Jordan canonical form. As usually Lj, h will denote the corresponding linear
forms. Each vj, h can be regarded as a generalized eigenvector of A associated
with an eigenvalue lj. We assume that these generalized eigenvectors are
ordered according to their degree, i.e., vj, h satisfies the equation
(A − ljI)1+h vj, h=0. Reordering the eigenvalues, if necessary, we can also
assume that l1 has the largest modulus among all eigenvalues of A and
hence l̂1=|l1 |. Let zn be the sequence of minimizers solving (21). We first
note that for each n there exists 0 [ h [ m − 1 such that L1, hzn ] 0. Indeed,
otherwise for all h=0,..., m − 1, L1, hzn=0 and consequently for any n and
h L1, hAnzn=0. The latter implies that the set of consecutive iterations
{zn, A1zn, A2zn,...} spans a proper rational A-invariant subspace of Rd

which does not have any intersection with the subspace spanned by the
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generalized eigenvectors of A associated with eigenvalue l1. This clearly
contradicts the irreducibility of p. Now, for given n we denote by h(n) the
biggest index h for which the condition L1, hzn ] 0 holds.

We have the following estimate

l̂2an
1 |L1, h(n)zn |2a [ 1 C

b

j=1
C

m − 1

h=0

: C
m − 1 − h

i=0
ln − i

j
1n

i
2 Lj, h+izn

:22a

(50)

[ C1 |Anzn |2a [ C1 C
n

l=1
|A lzn |2a [ C2nl̂2an

geo , (51)

where the last inequality follows from previously established upper bound.
From the Diophantine approximation and the assumption that

|L1, h(n)zn | ] 0, there exists b > 0 such that (see ref. 24, p. 164)

|L1, h(n)zn | \
1

|zn |b
. (52)

Thus combining (50) with (52) one gets

l̂2an
1 |zn |−2ab [ l̂2an

1 |L1, h(n)zn |2a [ C2nl̂2an
geo .

After rearrangements one obtains the following lower bound estimate
for (21)

C
n

l̂2an [ C |zn |2a [ C
n

l=1
|A lzn |2a= min

0 ] k ¥ Z
d

C
n

l=1
|A lk|2a, (53)

where

l̂=1 l̂1

l̂geo

21/b

. (54)

We note that ergodicity of A implies l̂1 > l̂geo > 1 (see (30), (19), and
Proposition 5) which ensures non-triviality of this lower bound.

Now in order to finish the proof is suffices to combine the estimates
(38), (48), and (53), and note that

l̂2an
geo=e2a

h(A)
d n=e2aĥ(A) n

which yields (22). L
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3.3. Proofs of Theorem 2 (ii), (iii), and Theorem 3

In this section we apply Theorem 4 to prove main theorems of Section 2.
In order to determine the dissipation time of Te, a one has to determine

the asymptotics of ||Tn
e, a || when n goes to infinity. According to formulas

(17) and (18) this problem reduces to problem (21) solved in previous
sections.

Thus in view of Theorem (4) there exist constants C1 and C2 such that
for any d, dŒ > 0 and sufficiently large n

C1e (1 − d) 2ah̃(A) n [ min
0 ] k ¥ Z

d
C
n

l=1
|A lk|2a [ C2ne2aĥ(A) n [ C2e (1+dŒ) 2aĥ(A) n.

Using formula (17)

e−eC2e(1+dŒ) 2aĥ(A) n
[ ||Tn

e, a || [ e−eC1e(1 − d) 2ah̃(A) n
.

Now when n=ndiss, we have

C1e (1 − d) 2ah̃(A) ndiss [
1
e

[ C2e (1+dŒ) 2aĥ(A) ndiss

and

1

(1+dŒ) 2aĥ(A)
(ln(1/e) − ln C2) [ ndiss [

1

(1 − d) 2ah̃(A)
(ln(1/e) − ln C1),

which proves part (ii) of Theorem 2, i.e., the logarithmic growth of dissi-
pation time as a function of 1/e.

Moreover, using the definition of dissipation rate constant

Rdiss=lim
e Q 0

ndiss

ln(1/e)

we obtain

1

(1+dŒ) 2aĥ(A)
[ Rdiss [

1

(1 − d) 2ah̃(A)
.

Finally letting d Q 0 and dŒ Q 0 we arrive at the following results:

• The general case—Theorem 2 (iii)

d

2aĥ(F)
[ Rdiss [

1

2ah̃(F)
.
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• The diagonalizable case—Theorem 3

Rdiss=
1

2aĥ(F)
.

This completes the proof. L

4. DEGENERATE NOISE

In this section we compute the dissipation time for non-strictly con-
tracting generalizations of a-stable transition operators. Instead of consid-
ering standard a-stable kernels of the form (2) one can allow for some
degree of degeneracy of noise in chosen directions by introducing the
following family of noise kernels

ge, a, B(x) := C
k ¥ Z

d
e−e |Bk|2a

ek(x), (55)

where B denotes any d × d matrix with det B=0.
We denote by Ge, a, B the noise operator associated with ge, a, B. The

degeneracy of B immediately implies that ||Ge, a, B ||=1 and hence the general
considerations of Sections 1 and 2 do not apply here. The answer to the
question whether or not the dissipation time is finite depends on the choice
of matrix B.

For simplicity we concentrate on the case when B is diagonalizable.
We call the eigenvector of B nondegenerate if it corresponds to

nonzero eigenvalue.

Theorem 5. Let F be any toral automorphism and Te, a, B=Ge, a, BUF.
Assume that B is diagonalizable. Then

(i) If all nondegenerate eigenvectors of Bg lie in one proper invariant
subspace of F then dissipation does not take place, i.e., ndiss=..

(ii) Otherwise the following statements hold.

(a) Te, a has simple dissipation time iff F is not ergodic.

(b) Te, a has logarithmic dissipation time iff F is ergodic.

(c) If Te, a, B has logarithmic dissipation time then the dissipation
rate constant satisfies the following bounds

1

2aĥ(F)
[ Rdiss [

1

2ah̃(F)
,
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with some constant h̃(F) [ ĥ(F). The equality is achieved for all diago-
nalizable automorphisms F.

Proof. We continue to use the convention A=F†. The general
formula derived previously for ||Tn

e, a || (see (17)), will now take the form

||Tn
e, a, B ||= sup

0 ] k ¥ Z
d

e−e ; n
l=1 |BAlk|2a

=e
−e inf

0 ] k ¥ Z
d ; n

l=1 |BAlk|2a

. (56)

Thus we need to estimate

inf
0 ] k ¥ Z

d
C
n

l=1
|BA lk|2a.

To this end we denote by mj (j=1,..., d) the eigenvalues of B and we con-
struct a basis (of Cd) {vj}j=1,..., d composed of normalized eigenvectors
corresponding to eigenvalues mj. We denote by Pjj=1,..., d

the set of eigen-
projections on vj, and by Lj the set of corresponding linear forms, given by
the eigenvectors uj of B†, which are of course co-orthogonal to vj, i.e.,
Oui, vjP=0 for i ] j. We have

x= C
d

j=1
Pjx= C

d

j=1
(Ljx) vj= C

d

j=1
Ox, ujP vj, -x ¥ Rd.

In subsequent computations the symbols C1, C2 denote some absolute
constants values of which are subject to change during calculations.

We consider two cases.

(i) All nondegenerate eigenvectors of B† lie in one proper subspace
of F. We have the following estimates

|BA lk|2 \ C1 C
d

j=1
|PjBA lk|2=C1 C

d

j=1
|mj |2 |PjA lk|2

=C1 C
d

j=1
|mj |2 |OA lk, ujP|2=C1 C

d

j=1
|mj |2 |Ok, F lujP|2

and

|BA lk|2 [ C2 C
d

j=1
|PjBA lk|2=C2 C

d

j=1
|mj |2 |PjA lk|2

=C2 C
d

j=1
|mj |2 |OA lk, ujP|2=C2 C

d

j=1
|mj |2 |Ok, F lujP|2.
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Since at least one of mj is zero and all nondegenerate vectors uj lie in a
proper invariant subspace of F, one easily sees that for each fixed n

inf
0 ] k ¥ Z

d
C
n

l=1
|BA lk|2a= inf

0 ] k ¥ Z
d

C
n

l=1
C
d

j=1
|mj |2a |Ok, F lujP|2a=0.

(ii) In this case we have the following upper bound

inf
0 ] k ¥ Z

d
C
n

l=1
|BA lk|2a [ ||B||2a inf

0 ] k ¥ Z
d

C
n

l=1
|A lk|2a=||B||2a min

0 ] k ¥ Z
d

C
n

l=1
|A lk|2a. (57)

In order to provide an appropriate lower bound we note that the set of
vectors {Fhuj}, where 1 [ h [ d and j runs through the indices of all non-
degenerate eigenvectors of B, spans the whole space (otherwise all nonde-
generate uj would lie in one proper invariant subspace of F). We denote by
{Fhiuji

} (1 [ i [ d) a basis extracted from the above set. We can define now
a new norm | · |u on Rd by

|x|2
u= C

d

i=1
|Ox, Fhiuji

P|2

and compute

C
dn

l=1
|BA lk|2a= C

n − 1

l=0
C
d

h=1
|BAdl+hk|2a \ C

n − 1

l=0
C
d

h=1
C1 C

d

j=1
|PjBAdl+hk|2a

=C1 C
n − 1

l=0
C
d

h=1
C
d

j=1
|mj |2a |PjAdl+hk|2a \ C1 C

n − 1

l=0
C
d

i=1
|OAdl+hik, uji

P|2a

=C1 C
n − 1

l=0
C
d

i=1
|OAdlk, Fhiuji

P|2a=C1 C
n − 1

l=0
|Adlk|2a

u .

Using the equivalence between norms | · | and | · |u and combining (57) with
the above estimate we get

C1 min
0 ] k ¥ Z

d
C
n − 1

l=0
|Adlk|2a [ inf

0 ] k ¥ Z
d

C
dn

l=1
|BA lk|2a [ ||B||2a min

0 ] k ¥ Z
d

C
dn

l=1
|A lk|2a.

This together with the obvious fact that ĥ(Ad)=dĥ(A) and the general
estimate (22) reduces the proof back to the nondegenerate case considered
in the previous section. L
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5. TIME OF DECAY OF e-COARSE-GRAINED STATES

The uncertainties in the initial preparation and the final measurement
of the noiseless system give rise to non-cumulative random perturbations to
the system. Alternatively, one can coarse-grain the initial and final states of
the noiseless system by convoluting with the e-noise kernel. That is, instead
of the original operator Te, a, we consider the operator T̂n

e, a defined as

T̂n
e, a=Ge, aUn

FGe, a=Ge, aUFnGe, a (58)

and compute the number of iterations required to have the L2-norm of the
final state being e−1 times that of the initial state. We will show that for
ergodic toral automorphisms the required number of iterations is essen-
tially the same asymptotically as the dissipation time computed in the pre-
vious sections.

One can represent the action of UF or more generally Un
F in the

Fourier series

Un
Fek= C

0 ] kŒ ¥ Z
d

u (n)
k, kŒekŒ,

where u (1)
k, kŒ coincides with uk, kŒ defined previously (cf. (13)) and

u (n)
k, kŒ= C

0 ] k1,..., kn − 1 ¥ Z
d

uk, k1
uk1, k2

· · · ukn − 1, kŒ

which satisfies

C
0 ] kŒ ¥ Z

d
|u (n)

k, kŒ |
2=1, - n, k. (59)

Then

T̂n
e, aek0

=Ge, aUn
FGe, aek0

=Ge, aUn
Fe−e |k0|2

ek0
=e−e |k0|2

Ge, a C
0 ] kn ¥ Z

d
u (n)

k0, kn
ekn

=e−e(|k0|2+|kn|2) C
0 ] kn ¥ Z

d
u (n)

k0, kn
ekn

.

Now we define

Sn(kn)={k0 ¥ Zd 0{0} : u (n)
k0, kn

] 0}.

Similar computations to these performed in Section 2 give the following
general upper bound for ||T̂n

e, a ||

||T̂n
e, af||2 [ C

0 ] kn ¥ Z
d

C
k0 ¥ Sn(kn)

|f̂(k0)|2 C
k0 ¥ Sn(kn)

|u (n)
k0, kn

|2. (60)
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For a toral automorphism one easily sees that

u (n)
k0, kn

=e−e(|k0|2a+|Ank0|2a)dkn, Ank0
(61)

and hence

||T̂n
e, a ||=e−e min0 ] k ¥ Zd(|k0|2a+|Alk0|2a).

The arithmetic minimization problem (18) corresponding to the dissipation
time of T̂e, a now becomes

min
0 ] k ¥ Z

d
(|k|2a+|Ank|2a). (62)

The key observation is that, by the same arguments as before, similar
estimates to these given in (32) hold

C1
1 C

d

j=1
l̂2n

j |Ljk|22a

[ |k|2a+|Ank|2a [ C2 C
d

j=1
l̂2an

j |Ljk|2a. (63)

The remaining computations are the same verbatim so the dissipation time
of Te, a and T̂e, a are equal asymptotically.

6. TIME SCALES IN KINEMATIC DYNAMO

In this section we briefly discuss the connection between the dissipa-
tion time and some characteristic time scales associated with kinematic
dynamo, which concerns the generation of electromagnetic fields by
mechanical motion. For a general setup and discussion we refer the reader
to refs. 4 and 15 and references therein. Here we restrict ourselves only to
necessary definitions.

Let B ¥ L2
0(Td, Rd) denote periodic, zero mean and divergence free

magnetic field and let F be the time-1 map associated with the fluid velocity.
We define the push-forward map

FgB(x)=dF(F−1(x)) B(F−1(x)).

The noisy push-forward map Pe, a on L2
0(Td, Rd) is then given by

Pe, aB :=Ge, aFgB, (64)

where the convolution (the action of Ge, a) is applied component-wise.
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It is said that the kinematic dynamo action (positive dynamo effect)
occurs if the dynamo growth rate is positive, i.e.,

Rdyn= lim
n Q .

1
n

ln ||Pn
e, a || > 0.

Moreover if

lim
e Q 0

lim
n Q .

1
n

ln ||Pn
e, a || > 0,

then the dynamo action is said to be fast; otherwise it is slow. The anti-
dynamo action takes place if

lim
n Q .

1
n

ln ||Pn
e, a || < 0.

Now we introduce the threshold time scale as

nth=max{n: ||Pn
e, a || > e such that ||Pn − 1

e, a || or ||Pn+1
e, a || [ e}.

The threshold time nth(e) is of order O(1) as e Q 0 for all fast kinematic
dynamo systems. In the case of anti-dynamo action, nth(e) captures the
longest time scale on which the generation of the magnetic field still takes
place. Finally nth(e) is not defined for systems with do not exhibit any
growth of magnetic field throughout the evolution. In the case of anti-
dynamo we consider the time scale on which the generation of the magnetic
field achieves its maximal value

np=min{n: ||Pn
e, a ||=sup

m
||Pm

e, a ||}

which is called the peak time of the anti-dynamo action.
Our next theorem establishes the relation between np, nth, and ndiss for

toral automorphisms. Thus dF=F and

Pe, aB=ge, a f F(B p F−1).

Theorem 6. Let F be any toral automorphism. Then

(i) If F is nonergodic and has positive entropy then for all
0 < e < Rdiss ln rF the fast dynamo action takes place with dynamo growth
rate satisfying

Rdyn=ln rF − eR−1
diss ||Q

e Q 0 ln rF > 0,
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where rF denotes the spectral radius of F. The threshold time nth is of order
O(1) and if F is diagonalizable then nth % [R−1

dyn].
(ii) If F is nonergodic and has zero entropy then anti-dynamo action

occurs and for nondiagonalizable F,

np ’
nth

ln(nth)

’ ndiss

% Rdiss
1
e

.

Moreover there exists a constant 0 < c [ d such that ||Pnp
e, a || ’ (1/e)c. If F is

diagonalizable then ||Pn
e, a || is strictly decreasing (in n) and, hence, np=0

and nth is not defined.
(iii) If F is ergodic then anti-dynamo action occurs and

np % ndiss.

In particular if F is diagonalizable then

np % nth − Rdiss ln(nth)

% Rdiss ln(1/e)

=
1

2aĥ(F)
ln(1/e)

and

||Pnp
e, a || ’ (1/e)

ln rF
2aĥ(F) . (65)

We see that even in the case of anti-dynamo action the magnetic field
can still grow to relatively large magnitude when the noise is small (power-
law in 1/e).

Proof. Representing the initial magnetic field B=(b1,..., bd) in
Fourier basis

B= C
0 ] k ¥ Z

d
B̂(k) ek

one obtains

Pe, aB= C
0 ] k ¥ Z

d
FB̂(k) e−e |Ak|2a

eAk,
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where we set A=(F−1)†. After n iterations

Pn
e, aB= C

0 ] k ¥ Z
d

FnB̂(k) e−e ; n
l=1 |Alk|2a

eAnk.

Thus

||Pn
e, aB||2 [ C

0 ] k ¥ Z
d

|FnB̂(k)|2 e−2e ; n
l=1 |Alk|2a

[ max
0 ] k ¥ Z

d
e−2e ; n

l=1 |Alk|2a

C
0 ] k ¥ Z

d
|FnB̂(k)|2

=e−2e min0 ] k ¥ Zd ; n
l=1 |Alk|2a

|FnB|2=e−2e ; n
l=1 |Alkn|2a

|FnB|2

[ e−2e ; n
l=1 |Alkn|2a

||Fn||2 |B|2,

where kn denotes a solution of the minimization problem

min
0 ] k ¥ Z

d
C
n

l=1
|A lk|2a.

The above calculation provides the following upper bound

||Pn
e, a || [ e−e ; n

l=1 |Alkn|2a

||Fn||.

On the other hand let vn denote a unit vector satisfying ||Fn||=|Fnv|. One
immediately sees that the above upper bound for ||Pn

e, a || is achieved for
magnetic field of the form B=vnekn

. Thus

||Pn
e, a ||=e−e ; n

l=1 |Alkn|2a

||Fn||. (66)

Now we consider the cases mentioned in the statement of the theorem

(i) Nonergodic, nonzero entropy case.
For any nonergodic map we have

C
n

l=1
|A lkn |2a % R−1

dissn.

This implies the following asymptotics

||Pn
e, a || % e−eR − 1

dissn ||Fn|| % e (−eR − 1
diss+ln rF) n+c1ln n+c2, (67)
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where c1, c2 \ 0 are constants (both equal 0 iff F is diagonalizable). Thus
for e < Rdiss ln rF we have

Rdyn=ln rF − eR−1
diss ||Q

e Q 0 ln rF > 0.

The threshold time is clearly of order O(1) and in diagonalizable case can
be written as

nth %
1

ln rF − eR − 1
diss

||Q
e Q 0 1

ln rF
.

(ii) Nonergodic, zero entropy case.
In this case ln rF=0. Thus if F is nondiagonalizable then (67) reads

||Pn
e, a || % e−eR − 1

dissn ||Fn|| % e−eR − 1
dissn+c1ln n+c2,

with 0 < c1 [ d. This immediately yields

np % Rdiss
c1

e
,

nth

ln(nth)
’

1
e

.

And moreover ||Pnp
e, a || ’ (1/e)c1.

If F is diagonalizable then ||Fn||=1 and in this case ||Pn
e, a || % e−eR − 1

dissn

which implies np=0.

(iii) If F is diagonalizable, then form (22) we know that for any
0 < d < 1 and sufficiently large n

ln
−d=e (1 − d) 2aĥ(A) n [ min

0 ] k ¥ Z
d

C
n

l=1
|A lk|2a [ e (1+d) 2aĥ(A) n=ln

+d. (68)

Thus for large n we have

max
n

e−el
n
+drn

F [ max
n

||Pn
e, a || [ max

n
e−el

n
−drn

F.

We obtain the following constraints for np

1
ln l+d

ln 1 ln rF

ln l+d

2+
1

ln l−d

ln 11
e
2 [ np [

1
ln l−d

ln 1 ln rF

ln l−d

2+
1

ln l−d

ln 11
e
2 .

This gives

1
ln l+d

[ lim
e Q 0

np

ln(1/e)
[

1
ln l−d

.
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Now since l± d Q e2aĥ(F) for d Q 0 the above estimation yields the following
asymptotics

np %
1

2aĥ(F)
ln(1/e) % ndiss, nth − Rdiss ln(nth) % ndiss.

Similar asymptotic estimates (except for the constant) hold for nondiago-
nalizable F. L

APPENDIX A: AFFINE TRANSFORMATIONS

In this appendix we present a slight generalization of the results
obtained in the paper. We consider here general affine transformations of
the torus. The term affine transformations will be used here to refer to
homeomorphisms of the torus with zero periodic but not necessary zero
constant part (cf. Section 2.3), i.e., transformations of the form F̃=F+c,
where F is a toral automorphism and c is a constant shift vector.

We begin with a short discussion of the ergodicity of affine trans-
forms.

The relation between ergodicity of a given affine transform F̃ and
associated with it toral automorphism F is summarized in the following
proposition (for the proof we refer to Appendix B)

Proposition 8. Let F be any toral automorphism. Then

(i) If F is ergodic then F̃ is also ergodic.

(ii) If F is not ergodic then F̃ is ergodic iff 1 is the only root of unity
in the spectrum of F and c · k ¨ Zd for any integer eigenvector k of F†.

Proof.

(i) Assume F is ergodic and for some c, F̃=F+c is not ergodic.
Then there exists non-constant f ¥ L2

0(Td) satisfying f=f p F̃ or in the
Fourier representation

C
k ¥ Z

d
f̂(k) ek= C

k ¥ Z
d

e2piA − 1k · cf̂(A−1k) ek (69)

where A=F†. Comparing the absolute values of the coefficients we get

|f̂(k)|=|f̂(A−nk)| (70)

for any integer n and any k. However, ergodicity of F implies that A−nk ] k
for all k ] 0, which contradicts our assumption that f ¥ L2

0(Td).
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(ii) We will use the following fact, which can be proved by simple
application of rational canonical decomposition. For any A ¥ SL(d, Z) the
following conditions are equivalent

(a) A possesses in its spectrum a root of unity not equal to one.

(b) There exists nonzero k ¥ Zd and a positive integer n such that
k+Ak+ · · · +An − 1k=0.

Now assume that 1 is the only root of unity in spectrum of F (and
hence of A) and c · k ¨ Zd for any integer eigenvector k of A, and that both
F and F̃ are not ergodic. The latter assumption implies the existence of a
non-constant f ¥ L2

0(Td) satisfying equations (69) and (70). Relation (70)
clearly implies that if f̂(k) ] 0 then Ank=k for some n. Moreover, since 1
is the only root of unity in spectrum of A, we have, in view of (b) that
Ak=k. Thus the only possible non-constant invariant functions of F̃ are
single Fourier modes ek corresponding to integer eigenvectors of A. But if
such a Fourier mode is invariant under F̃ then directly form (A1) one
concludes that e2pik · c=1 or equivalently k · c ¥ Zd, for some integer eigen-
vector of A. To prove the converse we assume that F is not ergodic and
consider two cases:

Case 1. A possesses in its spectrum a root of unity not equal to one.
In this case according to condition (b) there exists nonzero k ¥ Zd and a
positive integer n such that k+Ak+ · · · +An − 1k=0, which implies in
particular that Ank=k and Ak ] k. Now we define the function

f=ek+e2pik · ceAk+ · · · +e2pi( ; n − 2
l=0 Alk) · ceAn − 1k

which clearly satisfies the condition f=f p F̃. This proves that F̃ is not
ergodic.

Case 2. There exists integer eigenvector of A such that k · c ¥ Zd.
Then clearly for such k, f=ek is F̃-invariant and hence again F̃ is not
ergodic. L

We recall that c=(c1,..., cd) generates ergodic shift on the torus iff
1, c1,..., cd are linearly independent over rationals. Thus as a direct conse-
quence of the above proposition we get

Corollary 5. If F is not ergodic and 1 is the only root of unity in the
spectrum of F then F̃ is ergodic for all vectors c generating ergodic shifts
on the torus.
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Now we are in a position to state and prove the generalization of
Theorem 2 from Section 2.3 to the case of affine transforms (the corre-
sponding generalizations of Theorem 3 and Corollary 3 are straightfor-
ward).

Theorem 7. Let F̃ be any affine transformation on the torus Td, F
associated with F̃ toral automorphism and Te, a=Ge, aUF̃. Then

(i) Te, a has simple dissipation time iff F is not ergodic.

(ii) Te, a has logarithmic dissipation time iff F is ergodic.

(iii) If Te, a has logarithmic dissipation time then the dissipation rate
constant satisfies the following constraint

1
2aĥ(F)

[ Rdiss [
1

2ah̃(F)
,

where h̃(F) [ ĥ(F) is certain positive constant.

Remark 1. The dissipation time of an affine transformation F̃ is
determined by ergodic properties of its linear part F and hence not by
ergodic properties of F̃ itself. In particular all ergodic affine transforma-
tions associated with nonergodic toral automorphisms (cf. Proposition 8)
have simple dissipation time.

Proof of Theorem 7. Specializing the general calculations of dissi-
pation time presented in Section 2.2 to the case of affine transformations
F̃=F+c, with nonzero c, one easily finds the following counterparts of
formulas (16) and (17)

uk, kŒ=e2pik · cdAk, kŒ,

Un(k0, kn)=e2pi( ; n − 1
l=0 Alk) · ce−e ; n

l=1 |Alk|2a

dAnk0, kn
.

Now, in order to determine the dissipation time of Te, a=Ge, aUF̃ one has to
determine the asymptotics of ||Tn

e, a || as n goes to infinity. According to the
above formulas and formulas (15) and (17) from Section 2.2 the value of
||Tn

e, a || does not depend on c, which reduces the proof to the case c=0
considered in the main body of the paper. L

APPENDIX B: PROOFS OF SOME ELEMENTARY FACTS

Proof of Proposition 2. The proof will be based on the Riesz con-
vexity theorem (see ref. 27, pp. 93–100) which states that for any operator
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T defined on Lp(Td), 1 [ p [ ., ln ||T||p is a convex function of p−1. On the
space Lp(Td) we consider the operator T̃ :=Te, a −O ·P and we have the
relation T̃nf=Tn

e, a(f −OfP), -f ¥ Lp(Td), n \ 1 because Te, a is conserva-
tive. Now since ||f −OfP||p [ 2 ||f||p, it follows that

||T̃n||p [ 2 ||Tn
e, a ||p, 0 [ 2 (71)

||Tn
e, a ||p, 0 [ ||T̃n||p (72)

for 1 [ p [ ., n \ 1. The Riesz convexity theorem implies that if p < q < .

ln ||T̃n||q [
p
q

ln ||T̃n||p+11 −
p
q
2 ln ||T̃n||. (73)

while if 1 < q < p

ln ||T̃n||q [ 11 − 1/q
1 − 1/p

2 ln ||T̃n||p+11 −
1 − 1/q
1 − 1/p

2 ln ||T̃n||1. (74)

From (73)–(74) we have the interpolation relations

||T̃n||q [ ||T̃n||p/q
p ||T̃n||1 − p/q

. , p < q < . (75)

||T̃n||q [ ||T̃n|| (1 − q − 1)/(1 − p − 1)
p ||T̃n||1 − (1 − q − 1)/(1 − p − 1)

1 , 1 < q < p (76)

which, along with (71)–(72), imply

||Tn
e, a ||q, 0 [ 2 ||Tn

e, a ||p/q
p, 0 , p < q < .

||Tn
e, a ||q, 0 [ 2 ||Tn

e, a || (1 − q − 1)/(1 − p − 1)
p, 0 , 1 < q < p.

This proves that the order of divergence of ndiss(p) are the same for
1 < p < .. Estimates (B5)–(B6) also show that the order of divergence of
ndiss(1) and ndiss(.) is at least as high as ndiss(p), 1 < p < .. L

Proof of Lemma 2. Using the notation introduced in Section 2.2
one has

Tn
e, aek0

=(Ge, aU)n ek0
=(Ge, aU)n−1 C

0 ] k1 ¥ Z
d

uk0, k1
e−e |k1|2a

ek1

= C
0 ] k1,..., kn ¥ Z

d
uk0, k1

uk1, k2
· · ·ukn−1, kn

e−e ; n
l=1 |kl|

2a

ekn
= C

0 ] kn ¥ Z
d
Un(k0, kn) ekn

.
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We note that for any n and kn ¥ Zd, the sequence Un(k0, kn) (indexed
by k0 ¥ Zd) belongs to l2(Zd). Indeed, using the Cauchy–Schwarz inequality
and identity (13) one gets for n=2,

C
0 ] k0 ¥ Z

d
|U2(k0, k2)|2

= C
0 ] k0 ¥ Z

d

: C
0 ] k1 ¥ Z

d
uk0, k1

uk1, k2
e−e(|k1|2a+|k2|2a) :2

[ C
0 ] k0 ¥ Z

d
C

0 ] k1 ¥ Z
d

|uk0, k1
|2 e−e |k1|2a

C
0 ] k1 ¥ Z

d
|uk1, k2

|2 e−e |k1|2a

e−2e |k2|2a

[ C
0 ] k1 ¥ Z

d
e−e |k1|2a

C
0 ] k1 ¥ Z

d
e−e |k1|2a

e−2e |k2|2a

=Ke−2e |k2|2a

,

where K denotes a constant depending only on e and a. Similar estimates
hold for n > 2.

Now applying the Cauchy–Schwarz inequality in (14) we get

||Tn
e, af||2 [ C

0 ] kn ¥ Z
d

C
k0 ¥ Sn(kn)

|f̂(k0)|2 C
k0 ¥ Sn(kn)

|Un(k0, kn)|2. L (77)

Proof of part (i) of Theorem 2. In view of Theorem 1 it suffices to
construct an eigenfunction of UF which belongs to L2

0(Td) 5 H2a(Td).
Directly from Proposition 3 one concludes that F, and hence also A, pos-
sesses a root of unity in its spectrum. This means that Amk0=k0, for some
m and certain nonzero vector k0, which can be chosen to be an integer.
Now we define

f=ek0
+eAk0

+ · · · +eAm − 1k0
.

Obviously f ¥ L2
0(Td) 5 H2a(Td), for any a. To complete the proof it

suffices to notice that

UF f=eAk0
+eA2k0

+ · · · +eAmk0
=ek0

+eAk0
+ · · · +eAm − 1k0

=f. L

Proof of Proposition 3. For the purposes of the proof we use the
following abbreviation

• PRS(Rd)—proper rational subspace of Rd.

• PIS(A, Rd)—proper A-invariant subspace of Rd.

• PRIS(A, Rd)—proper rational A-invariant subspace of Rd.

(a) S (b) Suppose there exists PRIS(A, Rd) S1. Let A1 be a matrix
representing invariant rational block associated with S1. Then A1 is rational
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matrix and its characteristic polynomial P1 belongs to Q[x]. Let P denote
the characteristic polynomial of A. Then P=P1P2 and since both P, P1 ¥

Q[x] then also P2 ¥ Q[x], which means P and hence A is not irreducible.

(b) S (c) Assume there exists PRS(Rd) S contained in PIS(A, Rd) V.
Take any rational vector q ¥ S and let d0=dim V then the set {q, Aq,...,
Ad0 − 1q} spans PRIS(A, Rd).

(c) S (d) Assume that for given q and an arithmetic sequence
n1,..., nd, the set S={An1q, An2q,..., Andq} does not form a basis. Since for
some fixed integer r, nl=n1+(l − 1) r, we have Anlq=(Ar) l − 1 An1q=
(A r) l − 1 q̂, where q̂=An1q. Now consider the biggest subset S0={q̂, A rq̂,
(A r)2 q̂,..., (A r)d0 − 1 q̂} such that d0 < d and S0 is linearly independent.
Obviously S0 spans a PRIS(Ar) which is also a PRIS(A).

(d) S (a) Suppose that characteristic polynomial P of A is not
irreducible in Q[x]. Then P=P1P2, with P1, P2 ¥ Q[x]. From the
Cayley–Hamilton theorem we get that 0=P(A)=P1(A) P2(A). Hence for
any nonzero rational vector q, either (1) P2(A) q=0 or (2) q̂ :=P2(A) q ] 0
and P1(A) q̂=0. Since max{deg(P1, P2)} < d, there exists a nonzero ratio-
nal vector q̃ (namely q or q̂) such that the set of iterations {q̃, Aq̃,
A2q̃,..., Ad − 1q̃} does not form a basis of Rd.

(e) S (f) Assume there exist nonzero q ¥ Qd orthogonal to certain
PIS(A, Rd) V. Then for any n and any f ¥ V, O(A†)n q, fP=Oq, AnfP=0
and hence S={q, A†q, (A†)2 q,..., (A†)d − 1 q}, cannot form a basis, which in
view of equivalence (a) Z (d) implies reducibility of A†.

( f ) S (g) Suppose there exists PIS(A, Rd) V contained in certain
PRS(Rd) S. Since S is rational, S + is also rational. Consider any rational
vector q ¥ S + , then Oq, fP=0 for any f ¥ V.

(g) S (b) If there exists PRIS(Rd), then this subspace is
A-invariant and contained in PRS(Rd), i.e., in itself.

Now since (b) is equivalent to (a) it is enough to establish the equivalence
between (a) and (e) to complete the proof. But the latter equivalence is
obvious in view of the fact that A and A† have the same characteristic
polynomial. L

Proof of Proposition 5. Suppose A is a toral automorphism of zero
entropy. The latter property is equivalent to the fact that all the eigenvalues
of A are of modulus 1. Let PA be a characteristic polynomial of A. Con-
sider any irreducible over Z factor P of polynomial PA and construct a
toral automorphism B such that its characteristic polynomial is equal to P.
Obviously all the eigenvalues of B are also the eigenvalues of A, and each
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eigenvalue of A can be found among eigenvalues of some matrix B of this
type. Irreducibility of P implies irreducibility and hence diagonalizability
of B.

Thus for any nonzero vector k ¥ Zd and any positive integer n the
following estimate holds |Bnk| [ |k|, which implies the existence (for each k)
of some integer r such that B rk=k.

The latter shows that all the eigenvalues of B (and hence also of A) are
roots of unity. L

Proof of Proposition 6. We first show that irreducible polynomials
P ¥ Q[x] do not have repeated roots. Indeed suppose l is a root of P of
multiplicity greater that 1, then l is also a root of a derivative polynomial
PŒ ¥ Q[x]. Since the minimal polynomial of l must divide both P and PŒ

and deg(PŒ) < deg(P) one immediately concludes that P is not irreducible.
Now, suppose A ¥ GL(d, Q) is completely decomposable over Q and let
(25) be its block diagonal decomposition into irreducible blocks. Each PAj

,
as a characteristic polynomial of Aj, is irreducible over Q and hence does
not possesses repeated roots, which implies diagonalizability of each Aj and
hence of A. On the other hand if A is diagonalizable then its minimal
polynomial does not possesses repeated roots, which implies that all char-
acteristic polynomials associated with elementary divisors are (first powers
of ) irreducible polynomials. This implies irreducibility of each block in
representation (25). L

Proof of Proposition 7. Let PA be the characteristic polynomial of
an irreducible matrix A ¥ GL(d, Q). Since PA is an irreducible element of
Q[x] it does not possesses repeated roots (see the proof of Proposi-
tion (6). L
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