
An Introduction to Propagation, Time Reversal and Imaging in
Random Media

Albert C. Fannjiang∗

Department of Mathematics, University of California, Davis, CA 95616-8633

Contents

I. Scalar Diffraction Theory 2
A. Introduction 2
B. Kirchhoff’s theory of diffraction 5
C. Huygens-Fresnel principle 8
D. Fresnel and Frauhoffer diffraction 9
E. Focal spot size and resolution 11

II. Approximations: weak fluctuation 13
A. Born approximation 13
B. Rytov approximation 13
C. The extended Huygens-Fresnel principle 15
D. Paraxial approximation 15

III. The Wigner Distribution 20

IV. Parabolic Markovian approximation 24
A. White-noise scaling 24
B. Markovian limit 26

V. Two-frequency transport theory 28
A. Parabolic waves 28

1. Two-frequency radiative transfer equations 30
2. The longitudinal and transverse cases 31

B. Spherical waves 32
1. Geometrical radiative transfer 34
2. Spatial (frequency) spread and coherence bandwidth 34
3. Small-scale asymptotics 35

VI. Application: Time reversal 36

∗Electronic address: fannjiang@math.ucdavis.edu; I thank the organizers, in particular Professor T. Hou
and J. Liu, for the opportunity of visiting Fudan University.



A. Anomalous focal spot 38
B. Duality and turbulence-induced aperture 40
C. Coherence length 41
D. Broadband time reversal communications 42

VII. Application: Imaging in random media 43
A. Imaging of phase objects 43
B. Long-exposure imaging 45
C. Short-exposure imaging 47
D. Coherent imaging of multiple point targets in Rician media 49

1. Differential scattered field in clutter 50
2. Imaging functions 51
3. Numerical simulation with a Rician medium 53

E. Coherent imaging in a Rayleigh medium 55

References 58

I. SCALAR DIFFRACTION THEORY

A. Introduction

One of the most useful partial differential equations in applied mathematics is the (scalar
or vector) wave equation. It describes propagation of linear waves and has a great variety
of applications some of which will be discussed below. For instance, the acoustic wave is
governed by the scalar wave equation while the electromagnetic wave in dielectric media is
governed by the vector wave equation for its vector potential. In media such as the earth’s
turbulent atmosphere there is negligible depolarization. Thus, by restricting the source to be
linearly polarized or by considering two orthogonal polarization components independently,
the scalar wave equation is suitable. In this review, we will focus on the scalar waves. Main
references for this topic include [3], [43].

Monochromatic waves correspond to the time-harmonic solution u(r)e−iωt where ω is the
frequency. The spatial component u then satisfies reduced wave equation is[

∇2 + k2(1 + ε̃(r))
]
u = f, r ∈ R3 (1)

where f represents source, ε̃ the deviation from the constant background and k = 2π/λ the
wavenumber. Suitable boundary conditions are required to solve eq. (1). ε̃ is related to the
relative fluctuation of index of refraction ñ as ε̃ ≈ 2ñ for ñ� 1.

The free, undisturbed propagation is described by the free-space Green function

G0(r, r′) = − 1

4π|r− r′|
eik|r−r′|
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FIG. 1: Non-diffracting Bessel beam with m = 0 (adapted from [36]).

which solves [
∇2 + k2

]
G0 = δ(r)

and satisfies the outward radiation condition∣∣∣∂G0

∂r
− ikG0

∣∣∣ = O(
1

r2
), r = |r|.

The wave field u should satisfy the same radiation condition at far field.
Two main phenomena are present when there are multiple sources or fluctuations in the

medium: diffraction and interference.
It is important to realize that there is no physical difference between interference and

diffraction. However, it is traditional to consider a phenomenon as interference when it
involves the superposition of only a few waves, and as diffraction when a large number of
waves are involved.

Another aspect that is important to understand is that every optical instrument only uses
a portion of the full incident wavefront. Because of this, diffraction plays a significant role in
the detailed understanding of the light train through the device. Even in all of the potential
defects in the lens system were eliminated, the ultimate sharpness of the image would be
limited by diffraction.

In the modern treatment, diffraction effects are not connected with light transmission
through apertures and obstacles only. Diffraction is examined as a natural property of
wavefield with the nonhomogeneous transverse intensity distribution. It commonly appears
even if the beam is transversally unbounded. The Gaussian beam is the best known example.
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FIG. 2: A Bessel beam is formed after an incident plane wave passes through a conical lens.

In optics, nondiffracting propagation of the beam-like fields can be obtained in convenient
media such as waveguides or nonlinear materials. The beams then propagate as waveguide
modes and spatial solitons, respectively. In the free space, one can easily verify that the field

u(ρ, z) = eiβz
∫ 2π

0

A(φ)eiα(x cosφ+y sinφ)dφ, ρ =
√
x2 + y2, (2)

with α2 +β2 = k2 and an arbitrary, complex-valued A satisfies the Helmholtz equation. The
choice of A = 1/(2π) leads to the zeroth order Bessel beam

u(ρ, z) = eiβzJ0(αρ)

where J0 is the zeroth order Bessel function. Such a beam is non-diffracting because the in-
tensity distribution on the transverse plane does not change with the distance of propagation.
More generally, we have the higher-order non-diffracting beams

u(ρ, φ, z) = Jm(αρ)eimφeiβz, m ∈ N

[13]. The most useful case is m = 0 which gives rise to a cental bright spot.
Formula (2) suggests that a Bessel beam can be formed by a plane wave passing through

an axicon, Fig. 2. The summation, or interference of all these waves leads to a bright spot
in the centre of the beam. However, since J2

0 (αρ) decays like 1/ρ, a Bessel beam requires
infinite energy and can not be physically realized exactly.
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B. Kirchhoff’s theory of diffraction

As said, diffraction corresponds to boundary value problem for the reduced wave equation.
For simplicity we consider first the free space with ε̃ = 0.

Let a point source be situated at the origin. Green’s second identity says that for any
u, v ∈ C2 ∫

D

[
v∇2u− u∇2v

]
dr0 =

∫
∂D

[
v
∂u

∂n
− u∂v

∂n

]
dσ(r0) (3)

where D is the domain of interest, say the space behind an aperture or obstacle. For a fixed
probing point r consider the test function

v =
eikr

′

r′
, r′ = |r− r0|

on the punctured-at-r domain D where r′ the distance between the point of probing r and
the point of integration r0. Due to the radiation condition, the far-field boundary on the
right hand side of (3) would not contribute at all. And we can use (3) for an unbounded
domain D.

Consider the finite boundary S ∪ A where S is the (black) screen and A the aperture
(pupil). St. Venant’s hypothesis states that the optical field in an aperture is the same as
if the aperture were not present and u = 0 on the screen. Kirchhoff’s hypothesis is even
stronger

A : u = ui,
∂u
∂n

= ∂ui
∂n

(free, undisturbed propagation)
S : u = 0, ∂u

∂n
= 0, (vanishing excitation, black screen)

where ui = 4πaG0 is the incident wave assuming a point source of strength a. With it, we
obtain

u(r) = −
∫
A

[
G0(r, r0)

∂ui
∂n
− ui

∂G0(r, r0)

∂n

]
dσ(r0). (4)

Since the problem is linear, eq. (4) holds for an arbitrary incident wave ui.
Kirchhoff’s diffraction formula is an exact solution of the Helmholtz equation but does

not satisfy Kirchhoff’s boundary conditions exactly since one can specify only the Dirichlet
or the Neumann condition, but not both in general. In a sense, Kirchhoff’s formula is not
self-consistent but it is a good approximation when the aperture is sufficiently large and the
field point is sufficiently away from the aperture/screen as compared with the wavelength
and when the diffraction angle is small. As such, Kirchhoff theory can be viewed as attempt
to turn the boundary value problem into an initial value problem with data posed on the
screen and aperture.

Self-consistency can be obtained so that only one boundary condition is specified but
nothing essential is gained. For example one can consider the following test functions for a
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FIG. 3: Geometry of a diffracting aperture

planar diffracting surface

v =
eikr

′
1

r′1
∓ eikr

′
2

r′2
, r′1 = |r− r0|, r′2 = |ri − r0|

where r′1 is the distance between the field point and the point on the diffracting surface, r′2
the distance between the image point of the field point and the diffracting surface, ri is
the image point of r w.r.t. the planar screen. For such test functions we have v = 0 and
∂v/∂n = 0, respectively, on ∂D and therefore

u(r) = − 1

4π

∫
∂D

u
∂v

∂n
dσ(r0) =

1

2π

∫
∂D

u
∂

∂n

eikr
′
1

r′1
dσ(r0)

u(r) =
1

4π

∫
∂D

v
∂u

∂n
dσ(r0) = − 1

2π

∫
∂D

eikr
′
1

r′1

∂u

∂n
dσ(r0),

respectively. They are called Rayleigh’s diffraction formulae of the first and the second kind,
respectively, and solves the Dirichlet and the Neumann boundary value problem, respectively.
The Rayleigh diffraction formulae are mathematically consistent but they are limited to
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FIG. 4: The beam propagates from left to right. The beam is blocked at the marked position and
is seen to reform a short distance later. Credit: David McGloin

planar diffraction surfaces and are not necessarily in closer agreement with observation than
the Kirchhoff diffraction formula as the exact boundary values of a black screen is not known
[3].

From Green’s third identity we know

ui(r) = −
∫
∂D

[
G0
∂ui
∂n
− ui

∂G0

∂n

]
dσ

and hence

u(r) = ui(r)−
∫
S

[
G0
∂ui
∂n
− ui

∂G0

∂n

]
dσ. (5)

This implies Babinet’s theorem: Let u1 be the solution for one setting and u2 the solution if
the aperture and the screens are interchanged. Then, u1 is the left hand side of (5) and u2

is the second term on the right hand side of (5). Therefore we have

u1(r) + u2(r) = ui(r).

Babinet’s theorem connects diffraction by an finite obstacle to diffraction through a finite
aperture.

Now we apply Babinet’s theorem to show the self-repair property of a Bessel beam. Let
the incident field ui be a Bessel beam propagating through an obstacle of a finite extent. The
wave field behind the obstacle is u2 which equals ui−u1 by Babinet’s theorem. The scattered
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field u1, as given by (4) with A being the obstacle, decays like 1/z pointwise where z is the
distance behind the obstacle. Thus, for a sufficiently large distance u2 is approximately ui.
In other words, a Bessel beam reforms after passing through an obstacle [5].

Physically, this can be understood as follows. If the bright centre of the beam is distorted
it creates a shadow after the distortion. Parts of the light waves far removed from the centre
are able to move past the obstacle unhindered and recreate the beam centre at some distance
beyond the obstacle. Of course, the same argument applies to an incident, plane wave which
is also nondiffracting except the higher intensity at the central spot of a Bessel beam makes
this self-repair property more apparent.

C. Huygens-Fresnel principle

Eq. (4) is a manifestation of the Huygens-Fresnel principle of the 3 − d wave equation,
namely every unobstructed point of a wavefront, at a given instant in time, serves as a source
of spherical secondary wavelets, with the same frequency as that of the primary wave. The
amplitude of the optical field at any point beyond is the superposition of all these wavelets,
taking into consideration their amplitudes and relative phases.

First we note that

∂v

∂n
= ∂

∂n
eikr
′

r′
= |n̂ · r̂′| ∂

∂r′
eikr

′

r′
= |n̂ · r̂′|ik e

ikr′

r′

(
1− 1

ikr′

)
, (6)

∂u

∂n
= ∂

∂n
eikr0
r0

= −|n̂ · r̂0|
∂

∂r0

eikr0

r0

= −|n̂ · r̂0|ik
eikr0

r0

(
1− 1

ikr0

)
(7)

It follows that

u(r) = − a

4π

∫
A

eik(r′+r0)

r0r′
ik
[
|n̂ · r̂0|

(
1− 1

ikr0

)
+ |n̂ · r̂′|

(
1− 1

ikr′
)]
dσ (8)

where r′ = |r− r0| and r0 = |r0|.
We would like to work out a simplification of (8) under the assumption

kr0 � 1, kr′ � 1

that is, the Kirchhoff diffraction formula

u(r) = −ika
4π

∫
A

eik(r′+r0)

r0r′

(
| cos θ0|+ | cos θ′|

)
dσ (9)

which means that the wave field is the repropagation of the wave front aeikr0/r0 by the
Green function G0 times the inclination factor. We note that this is not the first term of
any iterative scheme of the boundary value problem for the reduced wave equation.
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For a planar screen we can write r′ = (z,x − y) where z is the longitudinal coordinate
and x (or y) are the transverse coordinates of the aperture. In the case of planar incident
wave u0 = aeikz or a faraway source, then θ0 = 0 and (9)

u(r) = − ik
4π
aeikz0

∫
A

eikr
′

r′

[
1 + cos θ′

]
dσ (10)

= − ik
2π
aeikz0

∫
A

eikr
′

r′
cos2 θ

′

2
dσ. (11)

Note that the Kirchhoff diffraction formula does not predict u = 0 on the screen (i.e.
θ′ = π/2) as does the Rayleigh diffraction formula of the first kind. Instead, the Kirch-
hoff diffraction formula predicts u = 0 in the back-propagation direction (i.e. θ′ = π).

Using the Huygens-Fresnel principle we can generalize Kirchhoff’s formula to the case
with arbitrary source and aperture (transmission) function τ(r0)

u(r) = −ik
∫
A

τ(r0)ui(r0)
eikr

′

r′

(
| cos θ0|+ | cos θ′|

)
dσ(r0) (12)

where the contribution from θ0 represents a “history” term.
For example for a thin parabolic lens the aperture (transmission) function is given by

τ(x) ≈ |τ(x)|e−ik|x|2/(2f).

In the case of plano-convex lens we have f = R/(n − 1); in the case of bi-convex lens with
radii of curvature R1, R2 we have

1

f
= (n− 1)

( 1

R1

+
1

R2

)
.

The axicon (Fig. 2) can be replaced with an annular slit (the aperture) at the focal plane
of a thin parabolic lens as depicted in Fig. 5. After the incident plane wave passing through
the annular slit each point of the slit becomes a point source of a spherical wave which is
converted back into a plane wave again with a transverse wavevector given by minus the
transverse coordinates of the point on the aperture plane. A annular slit produces the entire
set of the wavevectors of an axicon. An incident plane wave corresponds to a constant A in
(2) and thus the zeroth order Bessel beam.

D. Fresnel and Frauhoffer diffraction

We derive the Fresnel diffraction formula which is the parabolic approximation of (11)
under the small-diffraction-angle condition A,Lx � z. Namely the approximation of the
radius function by the quadratic approximation

|r| ≈ z +
|x− y|2

2z
.

9



point source which the lens transforms into a plane wave.
The wavevectors of these plane waves lie on a cone. As
mentioned earlier, this is a defining characteristic of Bessel
beams. Using standard scalar diffraction theory, it can be
shown that the field close to the optic axis is given by Eq.
!2".

III. EXPERIMENT AND RESULTS

A 1 mW He–Ne laser !Melles-Griot 05-LHP-211" is used
to illuminate the annular slit. The He–Ne laser beam is ex-
panded using a microscope objective and lens to a diameter
of about 1 cm. An annular slit is placed in the back focal
plane of a lens of focal length 150 mm.
Initially the student can hold a piece of paper in the beam

at various distances from the lens. One can clearly observe
by eye !for a He–Ne laser power of 1 mW or greater" a
central maximum in the beam that appears !as one moves
further away from the annular slit" to approximately retain its
size. After some point this central maximum diminishes and
dies away as the Bessel beam fades. This allows the student
to determine the propagation distance of the beam. For a
more detailed study a CCD camera !Pulnix 2015" and com-
puter frame grabbing card/software were used to record the
beam and its profile at various points. The beam was tele-
scoped !magnification of around 2.5" to increase its size on
the camera. A picture of a typical Bessel beam taken with

our setup is shown in Fig. 2. The profile of the beam for
three different positions is shown in Fig. 3. To eliminate
slight asymmetries, the profiles were azimuthally averaged
on a computer. As seen in Fig. 3, the central maximum of the
beam retains its size as the beam propagates for more than
500 mm. Knowing the pixel size and magnification of our
telescope system, the size of the central maximum was found
to be approximately 20 microns.

IV. RECONSTRUCTION OF A BESSEL BEAM

A further simple experiment may also be undertaken by
the student. This involves observing what happens to a
Bessel beam when obstructed by an obstacle. As expected,
diffraction dominates though, interestingly, after some dis-
tance beyond the obstacle, the outer lobes of the Bessel beam
act to replenish the central maximum and thus the beam is
reconstructed. This startling effect can be reproduced simply
in the laboratory by placing a transparent slide with a very
small dark spot in the Bessel beam path. Subsequent to this,
the beam was observed at points beyond the obstacle. Figure
4 shows what may be observed. Just beyond the obstacle, the
beam profile is shown to have deviated dramatically from the
Bessel profile. However, as the camera was moved further
away from the obstacle the beam was seen to regenerate
itself and reform into a Bessel beam. The profile taken of the
beam shows this to be the case. Figure 5 compares this re-
constructed profile to that of the original Bessel beam. No-
tably, the power in the central maximum is only partially
diminished. This reconstruction effect for Bessel beams was
recently explained in terms of Babinet’s principle in optics.7

V. DISCUSSION

Bessel beams are interesting as they have a central region
that appears to overcome the effects of diffraction. When the
central maximum of a zeroth-order Bessel beam is compared
to a Gaussian beam of the same size, the central maximum of
the Bessel beam does not exhibit diffractive spreading. The
propagation length of a Bessel beam can be shown to be8

Zmax!
fD

R
, !4"

with the terms defined on Fig. 1. For our beam, we have an

annular slit whose total diameter was measured to be R

!3.8mm and the clear aperture of our lens was measured to

Fig. 1. The experimental arrangement. A He–Ne laser is used to illuminate the annular slit to produce the Bessel beam.

Fig. 2. Picture of a Bessel beam taken at a distance of 400 mm from the

lens.

913 913Am. J. Phys., Vol. 67, No. 10, October 1999 McQueen, Arlt, and Dholakia

FIG. 5: A He-Ne laser is used to illuminate the annular slit to produce the Bessel beam (adapted
from [44])

This leads to the Fresnel diffraction formula

u(z,x) = u0(·) ∗G(z, ·)

where u0 = auiτ cos2 θ′

2
and

G(z,x) = eikz
k

i2πz
exp

[
i
k

2z
|x|2
]
.

Note that the Fresnel formula satisfies the equation( ∂
∂z
− ik

)
u =

i

2k
∆xu (13)

with u0 as initial data.
For far field, the Fraunhofer diffraction formula is a good approximation under the con-

dition Lf =
√
λz � A. This means Fresnel number

γ =
z

kA2
� 1.

This leads to negligible quadratic phase factor and the curvature of the wave front and the
approximation of spherical waves by planar waves of different angles (or spatial frequencies):

u(z,x) = eikzei
k|x|2

2z
k

i2πz

∫
A

u0(y) exp (−ip · y)dy (14)

with the Fourier variables, called spatial frequencies

p = 2π
x

λz
=
kx

z
.
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E. Focal spot size and resolution

Let us consider the Fraunhoffer diffraction by a slit and a circular aperture.
Consider the planar incident wave u0 = aeikz. Let A be the x-width of the y-infinitely

long slit. Then the Fraunhoffer formula amounts to the Fourier transformation of a finite
interval of length A modulo a phase factor independent of the transverse variable x. We
obtain

|u|2(x) = |a|2
∣∣∣sin (pA/2)

p/2

∣∣∣2, p = kx/z

which has the minima for pA/2 = ±π,±2π, · · · .
The size of the main lobe determines the resolution of the system. We set pA/2 = π and

obtain

ρ =
λz

A

which is called the Rayleigh (or Abbe) resolution formula. Note that as the derivation relies
on (14) the Rayleigh formula is not valid for z/A→ 0.

In the case of a circular aperture of diameter A, the Fraunhoffer diffraction formula
amounts to the Fourier transform of a circular disk of diameter A modulo a phase factor,
i.e.

|u|2(ρ) = |a|2
∣∣∣J1(kA tan θ/2)

kA tan θ/2

∣∣∣2
where θ is the diffraction angle and

J1(ξ) =
1

π

∫ π/2

−π/2
sin (ξ cosφ) cosφdφ
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FIG. 7: Rayleigh resolution criterion

is the Bessel function of order one. The first zero of J1(ξ) is at ξ = 1.22π. Consequently, the
first dark ring occurs at the diffraction angle

tan θ1 = 1.22
λ

A
. (15)

For the resolving power of a microscope we need to consider the optical geometry of the
instrument as shown in Figure 6. We use the unprimed notion for the quantities on the
object plane and the primed notion for those on the image plane. Let us observe the relation

PO tanα = P ′O′ tanα′

which follows from the following string of identities

P ′O′

PO
=
O′Q

OQ
=
O′Q/QM

OQ/QM
=

tanα

tanα′
,

cf. Fig 6. A more accurate relation, called the sine condition,

OP sinα = O′P ′ sinα′. (16)

can be derived by using the Fermat principle in geometrical optics [3].
According to Rayleigh’s criterion (15) θ needs to be large than θ1 for P ′ and O′ to be

distinguishable. This implies by the sine condition that

OP > 1.22
λ

n tanα
.

Therefore the ultimate resolution of a microscope with a circular lens is limited by 1.22λ/(2n).
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II. APPROXIMATIONS: WEAK FLUCTUATION

First we consider several widely used approximation for propagation in the weak fluctu-
ation regime where ε̃ is small.

A. Born approximation

We rewriting (1) in the form

(∇2 + k2)u = −k2ε̃u

and convert it into the Lippmann-Schwinger integral equation

u(r) = u0(r)− k2

∫
G0(r− r′)ε̃(r′)u(r′)dr′

where u0 is the wave field in the absence of the heterogeneity. This formulation suggests
the iteration scheme for solving for u which produces the Born series for u. Substituting u0

in the right hand side of the above integral we obtain the first term u1 in the Born series.
Repeating this process we can develop the entire Born series.

B. Rytov approximation

The Rytov approximation employs the exponential transformation

u(r) = u0e
φ, (17)

where u0 is the solution of the Helmholtz equation in the absence of medium fluctuation, and
develop a series solution for φ in a way analogous to the Born approximation. The equation
for φ is

(∇2 + k2)(u0φ) + u0

∣∣∣∇φ∣∣∣2 + k2ε̃u0 = 0.

Note that the equation is nonlinear but the multiplicative heterogeneity becomes additive.
Once again we can formulate the equation as the integral equation

φ(r) = − 1

u0(r)

∫
G0(r− r′)u0(r′)

[∣∣∣φ(r′)
∣∣∣2 + k2ε̃(r′)

]
dr′

and develop a series expansion for φ. The Rytov approximation amounts to neglecting the
quadratic term in φ:

φ1(r) = − k2

u0(r)

∫
G0(r− r′)u0(r′)ε̃(r′)dr′.

13
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FIG. 8: Multiple phase screens

The Rytov approximation is consistent with the Born approximation in that the latter is the
two-term approximation of u0e

φ1 = u0(1 +φ1 + · · · ) in view of the fact u0φ1 = u1. However,
the Rytov approximation is generally believed to be superior to the Born approximation for
propagation in turbulent media. The Rytov approximation is the basic propagation model
in diffractive tomography of which the computerized tomography is a limit case as k → ∞
[46]. One can find a comprehensive treatment of the Rytov method in [53].

More generally, let us divide a heterogeneous medium as a series of thin layers for each
of which the Rytov approximation applies. Let u0 be the incident wave. Then after the 1-st
layer the wave field is u0u1 where u1 = eφ1 is the Rytov solution. For the second layer, u0u1 is
the incident wave and u0u1u2 is the transmitted wave where u2 = eφ2 . In this way, the total
output field becomes u0u1u2u3 · · · = u0 exp (φ1 + φ2 + φ3 + · · · ). Namely the exponential
representation (17) turns the product of many contributions into a summation which is
more convenient to analyze. That is why the Rytov method is more suitable for the so-
called line-of-sight propagation. On the other hand, for the single scattering problem where
the output field is a sum of contributions from different parts of the medium fluctuation, the
sum form u = u0 + u1 is more suitable [8], [37]. In reality, however, the true picture is the
combination of the two.
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C. The extended Huygens-Fresnel principle

The extended Huygens-Fresnel principle is the extension of (12) as

u(r) = −2ik

∫
ui(r0)G0(r− r0)eφ1(r,r0) cos2 θ

′

2
dσ (18)

where φ1 is the first Rytov approximation.
In the paraxial regime (18) can be approximated by

u(r) = − ik

2πz

∫
eikzei

k|x−x0|
2

2z eφ1ui(r0)dσ. (19)

A useful application of the Huygens-Fresnel principle is in treating the case where the ex-
tended medium can be approximated by a series of phase screens. A phase screen is defined
as having the transmission function of the form τ(x) = eφ(x) where φ may be complex-valued
and zero reflection coefficient. Mathematically this amounts to the forward-scattering (or
paraxial) approximation [38], [14].

Consider a series of phase screens with the transmission functions τj = eiφj as in Figure 3.
By iterating the extended Huygens-Fresnel principle we obtain the wave field at the end of
the screens [51]

u(z,x) =

∫
dx0 · · ·

∫
dxnui(x0)eφ1+···+φnG0(z0,x1 − x0)G0(z1,x2 − x1) · · ·G0(zn,x− xn).

The concept of phase screen is not restricted to electromagnetic wave propagation. For
example, the basis of image formation in the transmission electron microscope is the interac-
tion of the electron with the object. In most applications, the elastic scattering interaction
can be described as phase shift of the incident wave traveling in the z direction

Φ(x) =

∫
C(z,x)dz (20)

where C(z,x) is the Coulomb potential within the object and the incident wave u0 is modified
according to

u(x) = u0e
iΦ(x).

In contrast, tomography concerns mostly the inelastic scattering (absorption). The Born
approximation would then lead to u = u0(1 + iΦ) [32]. In diffraction theory, a field, rather
than a material object, can often be modeled as a phase object, cf. Section VII A.

D. Paraxial approximation

The forward-scattering (or parabolic) approximation concerns the propagation of modu-
lated high-frequency carrier wave written as

E(x) = Ψ(z,x)eikz
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with k � 1. The equation for Ψ is

∂2

∂z2
Ψ +∇2

⊥Ψ + 2ik
∂

∂z
Ψ + 2k2ñΨ = 0 (21)

where ñ is the relative fluctuation of the index of refraction. Then under the assumption

|Ψzz| � 2k|Ψz|,

we obtain

i
∂

∂z
Ψ +

1

2k
∆Ψ + kñΨ = 0. (22)

A more formal approach is to factorize eq. (21) as( ∂
∂z

+ ik + ikQ
)( ∂

∂z
+ ik − ikQ

)
Ψ + ik

[
Q,

∂

∂z

]
Ψ = 0 (23)

where

Q =
(

1 +
1

k2
∇2
⊥ + 2ñ

)1/2

and
[
Q, ∂

∂z

]
= Q ∂

∂z
− ∂

∂z
Q is the commutator. For Q to be well-defined, it is necessary that

it acts on a wave field whose maximum transverse wavenumber is smaller than k (i.e. the
evanescent waves are negligible) and ñ is sufficiently small. For weak fluctuation ñ � 1 or
z-independent ñ the commutator can be dropped and the remaining equation is the product
of two nearly commutative operators describing forward and backward propagating waves. If
only the forward-propagating term of eq. (23) is retained, we have the generalized parabolic
wave equation ( ∂

∂z
+ ik − ikQ

)
Ψ = 0. (24)

The parabolic approximation turns the two-sided boundary value problem for the reduced
wave equation into the one-sided initial value problem for the Schrödinger equation [51], [50].

The standard parabolic wave equation is the simplest approximation of (24) by Taylor
expanding Q around the identity and using

Q′ = 1 +
1

2k2
∇2
⊥ + ñ

to approximate Q. The resulting equation is (22). Formally this approximation requires
that ñ is small and that the transverse wavenumber of Ψ is much smaller than k (i.e. small
diffraction angle).

In the graded-index optical fibers the index of refraction has the profile

n2 =

{
n2

0[1− 2σ|x|2/a2], 0 < |x| < a
n2

0[1− 2σ], |x| > a.
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parabolic index fiber

homogeneous-core fiber

FIG. 9: Homogeneneous vs. graded index wave guide

Note that in this case
[
Q, ∂

∂z

]
= 0. The parabolic index fiber can reduce pulse dispersion in

optical communication because the rays making larger angles with the axis also traverse a
larger path length in a region of lower refractive index [33]. In the wave-guide with infinitely
extended parabolic profile

n2 = n2
0

[
1− |x|

2

a2

]
the eigenfunctions of the paraxial wave equation can be solved for exactly. The resulting
eigenfunctions form a complete and orthogonal set of solutions for the square-integrable
functions on the transverse plane. When the transverse coordinate is one-dimensional, the
normalized eigenfunctions are the Hermite functions

Ψm(x) =

√
1√

π2mm!
Hm(x)e−

x2

2 , m = 0, 1, 2, ... (25)

where Hj(x) stands for the Hermite polynomial of order j defined iteratively as H0(x) =
1, H1(x) = 2x,Hj+1(x) = 2xHj(x) − 2jHj−1(x). A laser beam profile can be decomposed
into the so called Hermite-Gaussian modes, each mode being characterized by two integer
numbers n and m

TEMmn(x, y) = w(z)−1Ψm(
x

w(z)
)Ψn(

y

w(z)
)e−

ik(x2+y2)
2R(z)

−i(kz−φm(z)−φn(z)) (26)
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FIG. 10: Graphs of TEMmn, m, n = 0, 1.The fundamental mode TEM00 has a Gaussian profile in
the transverse plane while TEM10 exhibits a left-right asymmetry.

where Φmn is the Guoy phase defined as

φm(z) = (m+ 1/2) arctan

(
λz

πw2
0

)
.

The set of modes is characterized at every point along the propagation axis by two func-
tions: R(z) and w(z) as shown on Fig. 11. The first describes the radius of curvature of the
wavefront that intersects the propagation axis, while the second parameter, with respect to
the fundamental mode TEM00, gives the radius in the transverse plane for which the am-
plitude of the field has decreased by a factor e−1 with respect to the amplitude value along
the propagation axis. The transversal intensity distribution of the TEM00 has a Gaussian
dependence and its radius w(z) contracts to a minimum w0 known as the waist of the beam.
The two parameters R(z) and w(z) are determined by the waist size w0 and by the distance
z from the waist position:

w2(z) = w2
0

[
1 +

(
λz

πw2
0

)2
]

(27)

R(z) = z

[
1 +

(
πw2

0

λz

)2
]
. (28)
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FIG. 11: Longitudinal profile of a laser beam

The longitudinal profile of a laser beam is a hyperbola with asymptotes forming an angle

θ∞ =
λ

πw0

with the propagation axis, which defines the divergence of the beam.
Nevertheless, the paraxial wave equation is not exactly solvable in general. A general way

of understanding and numerical solution of the standard parabolic equation is through the
step-splitting method. By Trotter’s product formula we can write the solution to (22) for a
small step as

Ψ(z + dz,x) ≈ ei
k
2

∆dzeik
R z+dz
z ñ(z′,x)dz′Ψ(z,x)

The evolution with only ñ present is the effect of medium fluctuation represented as a
simple phase screen in the geometrical optics while the evolution with only ∆ present is the
diffraction effect in the free space. Thus the entire propagation consists of a series of phase
screens separated by uniform medium in between cf. Fig. 3. When dz is greater than the
correlation length of medium fluctuation the phase screens can be considered statistically
independent. The phase screens cause the fluctuation in phase and the diffraction causes the
fluctuation in amplitude (and phase). This algorithm is the discrete analog of path-integral
method of the parabolic wave equation in the limit of dz → 0 [51]. Moreover, the multiple
phase screen model is not restricted to the parabolic wave equation and can be extended to
deal with point source and spherical wave by writing the equation in spherical coordinates.

We will be mostly interested in a randomly heterogeneous medium such as the turbulent
atmosphere for which ñ(r) is a random function. We shall use 〈·〉 and E to denote the
averaging w.r.t. the ensemble of noise and media, respectively. There are two regimes of
interest: the weak fluctuation regime and the strong fluctuation regime and they require
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different treatments. The weak fluctuation regime can be defined as

E(I − EI)2

|EI|2
< 1, I = |Ψ|2

whose left hand side is also known as the scintillation index. The strong fluctuation regime
is when the scintillation index is much larger than one.

III. THE WIGNER DISTRIBUTION

In this section, we discuss a useful phase-space tool for analyzing imaging properties of
optical elements [12, 31]. This is a quadratic transform of the wave field.

The standard Wigner distribution (or transform) for a wave field Ψ is defined as

W [Ψ](x,p) =
1

(2π)d

∫
e−ip·yΨ

(
x +

y

2

)
Ψ∗
(
x− y

2

)
dy (29)

from which the wave amplitude Ψ can be recovered up to a constant phase factor by using

Ψ(x1)Ψ∗(x2) =

∫
W [Ψ](

1

2
(x1 + x2),q) exp [iq · (x1 − x2)]dq.

For example, the Gaussian beam

Ψ(x) = Ce
− (x−x0)2

2w2
0

+ip0x

gives rise to a Gaussian Wigner distribution as shown in Fig. 12.
The Wigner distribution is the Fourier transform in the phase space of the ambiguity

function

A(y,q) =
1

(2π)d

∫
e−iq·xΨ

(
x +

y

2

)
Ψ∗
(
x− y

2

)
dx

widely used in radar signal processing, also called the Fourier-Wigner transform of Ψ [35].
While the ambiguity function is an expression for correlative structure, the Wigner distribu-
tion describes the energy distribution in the phase space. This is manifest in the following
properties. For instance, partial integration of W gives rise to the marginal distributions∫

W [Ψ](x,p)dp = |Ψ(x)|2∫
W [Ψ](x,p)dx = (2π)d |Ψ̂(p)|2.

Also, the energy flux is given by

1

2i
(Ψ∇Ψ∗ −Ψ∗∇Ψ) =

∫
Rd

pW (z,x,p)dp. (30)

We consider the following operators and their action on the corresponding Wigner distri-
bution.
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FIG. 12: The Wigner distribution associated with the Gaussian beam.

FIG. 13: The Wigner distribution associated with Ψ1.
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FIG. 14: The Wigner distribution associated with Ψ4.

• Fourier transform FΨ(k) =
∫
e−ik·xΨ(x)dx (Fraunhoffer diffraction).

• Dilation Da, a > 0: DaΨ(x) = a−1Ψ(x
a
).

• Symmetry: SΨ(x) = Ψ(−x).

• Translation Ty,y ∈ R2: TyΨ(x) = Ψ(x− y).

• Modulation Mk,k ∈ R2: MkΨ(x) = eik·xΨ(x).

• Chirp multiplication Pk,k ∈ R2: PkΨ(x) = ei|k||x|
2
Ψ(x) (Lens effect)

• Chirp convolution Qk,k ∈ R2: QkΨ(x) = ei|k||x|
2
?Ψ(x) (free space propagation).

We have

• W [FΨ](x,p) = W [Ψ](−p,x)

• W [DaΨ](x,p) = W [Ψ](x
a
, ap)

• W [SΨ](x,p) = W [Ψ](−x,−p)

• W [TyΨ](x,p) = W [Ψ](x− y,p)

• W [MqΨ](x,p) = W [Ψ](x,p− q)
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• W [PkΨ](x,p) = W [Ψ](x,p− 2|k|x)

• W [QkΨ](x,p) = W [Ψ](x− p
2|k| ,p)

Moreover, W [Ψ∗](x,p) = W [Ψ](x,−p).
We note that all the above operations result in volume-preserving affine transformations

of the phase space coordinates. Another non-trivial operator leading to a linear transforma-
tion in the phase space coordinates is the Schrödinger semigroup eiαπH/2 for the harmonic
oscillator Hamiltonian H = −∆ + |x|2 − 1. We have

W [eiαπH/2Ψ](x,p) = W [Ψ](x cos
απ

2
+ p sin

απ

2
,p cos

απ

2
− x sin

απ

2
)

corresponding to απ/2 rotation [39]. Note that F = exp (iπH/2). In view of the fact the
Fourier transform corresponds to π

2
-rotation in the phase plane one can define eiαπH/2Ψ to be

the fractional Fourier transform Fα of order α. As a consequence of the above, the integration
of W on any hyperplane in the phase space is proportional to the square modulus of some
fractional Fourier transform of Ψ and hence is non-negative pointwise. It is noteworthy that
all the above transformation can be realized by simple optical systems [12].

Let us state a few more properties of the Wigner transform. If Ψ = Ψ1 ? Ψ2 where ?
stands for the spatial convolution then

W [Ψ] =

∫
W [Ψ1](x− y,p)W [Ψ2](y,p)dy

which is not obvious since the Wigner transform is quadratic. Likewise the pointwise product
leads to the momentum convolution

W [Ψ1Ψ2] =

∫
W [Ψ1](x,p− q)W [Ψ2](x,q)dq.

The next property is called the Moyal identity∫
W [Ψ1]W [Ψ2]dxdp =

1

(2π)d

∣∣∣ ∫ Ψ1Ψ∗2dx
∣∣∣2, ∀Ψ1,Ψ2 ∈ L2(Rd).

The fundamental property of the Wigner distribution in application to signal analysis is this
theorem [39]:

Theorem 1 Let Ψj, j ∈ N, be the sequence of L2-functions and let Wj be the Wigner dis-
tribution of Ψj. Then the following two properties are equivalent

Ψj, j ∈ N, is an orthonormal basis for L2 (31){∑
jWj(x,p) = 1, ∀x,p∫
WiWjdxdp =

δij
(2π)d

.
(32)
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The first property in (32) is the partition of unity in the phase-space coordinates. The
second property (32) is the consequence of the Moyal identity. As a result of the theorem,
the set of Wigner distributions associated with the Hermite functions {Ψm} satisfies (32),
i.e. partition of unity in the phase space and the orthogonality.

The most “troublesome” feature of the Wigner distribution is its possible negative value
(Fig. 13 and 14) and the resulting lack of uniform L1-estimate like∫ ∣∣∣W ∣∣∣dxdp < C (33)

for some constant C and all ‖Ψ‖2 = 1. As a result, the first property holds only in the sense
of distribution. On the other hand, the Wigner distribution satisfies uniform bound in L∞

and L2.
Before ending this section, let us note that if u(z,x) is governed by (13) then W [u] satisfies

∂

∂z
W +

p

k
· ∇xW = 0.

which can be solved by method of characteristics.

IV. PARABOLIC MARKOVIAN APPROXIMATION

For the weak fluctuation regime the Rytov method is suitable. The strong fluctuation
regime is harder. For the statistically homogeneous random media, the Markovian model is
fundamental and widely used [52].

A. White-noise scaling

We will take a somewhat different formulation in terms of the Wigner distribution. First
let us non-dimensionalize the paraxial wave equation by setting

z → z/Lz, x→ x/Lx (34)

where Lz is roughly the distance of propagation and Lx is some reference length. For example,
it is natural to choose Lx as the correlation length of the index fluctuation. We obtain

i
∂Ψ

∂z
+
γ

2
∆Ψ + kLzñ(zLz,xLx)Ψ = 0 (35)

where γ is the dimensionless Fresnel number

γ =
Lz
kL2

x

.
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The Fraunhoffer diffraction corresponds to γ → ∞ when, e.g. Lz → ∞ with k0, Lx fixed;
the Fresnel diffraction corresponds to γ = O(1); the geometrical optics limit corresponds to
γ → 0 when, e.g. k0 →∞ with Lz, Lx fixed.

Note that when k0 � 1 or Lz � 1 the fluctuation can be large even when ñ� 1. Below
we shall write

kLzñ(zLz,xLx) =

√
Lz
γ

V (zLz,x).

The purpose of this is to introduce the normalized potential V which has O(1) magnitude
and transverse correlation length so that the right hand side manifests the central-limit
scaling.

To study the long distance propagation Lz ≡ ε−2 →∞ limit while µ, γ are fixed.
For arbitrary Fresnel number we redefine the Wigner distribution as

W (x,k) =
1

(2π)d

∫
e−ik·yΨ(x +

γy

2
)Ψ∗(x− γy

2
)dy. (36)

All the nice properties of the Wigner distribution for γ = 1 survive with suitable rescaling.
The Wigner distribution satisfies an evolution equation, called the Wigner-Moyal equa-

tion,

∂W

∂z
+ p · ∇xW + VW = 0 (37)

with the initial data

W0(x,k) =
1

(2π)d

∫
eik·yΨ0(x− γy

2
)Ψ∗0(x +

γy

2
)dy , (38)

where the operator V is formally given as

VW = i

∫
eiq·xγ−1 [W (x,p + γq/2)−W (x,p− γq/2)] V̂ (

z

ε2
, dq).

Before taking the limit ε → 0, let us pause to comment on the geometrical optics limit
γ → 0. It is not hard to show that the Wigner-Moyal equation converges formally to

∂

∂z
W + p · ∇xW +∇xV · ∇pW = 0

which is known as the Liouville equation in classical Hamiltonian mechanics. The Liou-
ville equation is equivalent to the Hamiltonian system with the Hamiltonian |p|2/2 + V .
Conventionally, the geometrical optics limit is approached by using the WKB method.
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B. Markovian limit

Let us return to the limit with ε → 0. It can be proved under very general condition
that the weak solution of the Wigner-Moyal equation converges in law to the Markov process
governed by the Itô equation [16]

dWz = (−p · ∇x +Q0)Wz dz + dBzWz, W0(x) ∈ L2(R2d) (39)

or as the Stratonovich’s equation

dWz = −p · ∇x + dBz ◦Wz, W0(x) ∈ L2(R2d)

where Bz is the operator-valued Brownian motion with the covariance operator Q, i.e.

E [dBzθ(x,p)dBz′θ(y,q)] = δ(z − z′)Q(θ ⊗ θ)(x,p,y,q)dzdz′.

Here the covariance operators Q,Q0 are defined as

Q0θ =

∫
Φ(q)γ−2 [−2θ(x,p) + θ(x,p− γq) + θ(x,p + γq)] dq.

Q(θ ⊗ θ)(x,p,y,q) =

∫
eiq
′·(x−y)Φ(q′)γ−2 [θ(x,p− γq′/2)− θ(x,p + γq′/2)]

× [θ(y,q− γq′/2)− θ(y,q + γq′/2)] dq′.

If we take the simultaneous limit γ, ε→ 0 then the covariance operators become

Q0θ(x,p) = ∇p ·
∫

Φ(q)q⊗ q dq · ∇pθ(x,p)

Q(θ ⊗ θ)(x,p,y,q) = ∇pθ(x,p) ·
[∫

eiq
′·(x−y)Φ(q′)q′ ⊗ q′dq′

]
· ∇qθ(y,q).

The most useful feature of the Markovian model is that all the moments satisfy closed form
equations we arrive after some algebra the following equation

∂F (n)

∂z
= −

n∑
j=1

pj · ∇xjF
(n) +

n∑
j=1

Q0(xj,pj)F
(n) +

n∑
j,k=1
j 6=k

Q(xj,pj,xk,pk)F
(n) (40)

for the n−point correlation function

F (n)(z,x1,p1, . . . ,xn,pn) ≡ E [Wz(x1,p1) · · ·Wz(xn,pn)]

where Q0(xj,pj) is the operator Q0 acting on the variables (xj,pj) and Q(xj,pj,xk,pk) is
the operator Q acting on the variables (xj,pj,xk,pk).
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Eq. (40) can be compactly written as

∂F (n)

∂z
= −

n∑
j=1

pj · ∇xjF
(n) +

n∑
j,k=1

Q(xj,pj,xk,pk)F
(n) (41)

with the identification Q(xj,pj,xj,pj) = Q0(xj,pj). The operator

Qsum =
n∑

j,k=1

Q(xj,pj,xk,pk) (42)

is a non-positive symmetric operator.
In the case of the Liouville equation, eq. (41) can be more explicitly written as the

Fokker-Planck equation on the phase space

∂F (n)

∂z
=

n∑
j=1

pj · ∇xjF
(n) +

n∑
j,k=1

D(xj − xk) : ∇pj∇pkF
(n) (43)

with

D(xj − xk) =

∫
eiq·(xj−xk)Φ(q)q⊗ qdq.

Eq. (41) for n = 1 takes the following form

∂

∂z
W̄ + p · ∇xW̄ = Q0W̄

which is exactly solvable since Q0 is a convolution operator. The Green function is

Gw(z,x,p, x̄, p̄) =
1

(2π)2

∫
exp [i(q · (x− x̄)− y · (p− p̄)− zq · p̄)] (44)

× exp

[
− 1

γ2

∫ z

0

D∗(γy + qγs)ds

]
dydq

where the (medium) structure function D∗ is given by

D∗(x) =

∫
Φ(0,q)

[
1− eix·q

]
dq. (45)

We shall refer to exp
[
−γ−2

∫ z
0
D∗(γy + qγs)ds

]
as the wave structure function. The case

n = 2 can be approximately solved in certain circumstances. In the next section, we discuss
the application of these equations to the time reversal of waves in random media.

The most important quantity for us is the mutual coherence function Γ2(z,x1,x2; x̄1, x̄2) =

E
[
Ψ1(z,x1)Ψ2(z,x2)

]
with Ψ1(0,x1) = δ(x1 − x̄1) and Ψ2(0,x1) = δ(x1 − x̄2). From (36) it

follows that

W̄ (0,x,p) =
1

(2π)2
e
i
γ

(x̄2−x̄1)·pδ(2x− x̄1 − x̄2)
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which then yields by (44)

W̄ (z,x,p) =
1

(2π)2

∫
eiq·
(
x− x̄1+x̄2

2

)
ei
(

x̄2−x̄1
γ
−zq
)
·pe
− 1
γ2

R z
0 D∗(x̄2−x̄1−qγs)ds

dq

By (30) we have

Γ2(z,x1,x2; x̄1, x̄2) =

∫
W̄ (z,

1

2
(x1 + x2),p) exp [ip · (x1 − x2)/γ]dp.

and hence

Γ2(z,x1,x2; x̄1, x̄2) =
1

z2
e

i
2zγ

(
x1−x2−x̄1+x̄2

)
·
(
x1+x2−x̄1−x̄2

)
e
− z
γ2

R 1
0 D∗((1−s)(x̄2−x̄1)+s(x2−x1))ds

.(46)

V. TWO-FREQUENCY TRANSPORT THEORY

When the wavelength is comparable to the spatial scale of medium fluctuations then a
different scaling and approximation, called radiative transfer, is valid.

Instead of the standard one-frequency transport theory, we will present the two-frequency
formulation and deduce the one-frequency theory as a special case.

A. Parabolic waves

Analysis of pulsed signal propagation in random media often requires spectral decomposi-
tion of the time-dependent signal and the correlation information of two different frequency
components. In the conventional approach, the analysis is in terms of the two-frequency
mutual coherence function

Γ12(z,x,y) = E[Ψ1(z,x +
γy

2
)Ψ2(z,x− γy

2
)]

and uses various ad hoc approximations [38].
Let k1, k2 be two (relative) wavenumbers nondimensionlized by the central wavenumber

k0. We write the paraxial wave equation in the dimensionless form

i
∂

∂z
Ψj(z,x) +

γ

2kj
∇2Ψj(z,x) +

µkj
γ
V (

z

ε2
,

x

ε2α
)Ψj(z,x) = 0, j = 1, 2 (47)

where γ is the Fresnel number w.r.t. the central wavenumber.
An important regime for classical wave propagation takes place when the transverse cor-

relation length is much smaller than the propagation distance but is comparable or much
larger than the central wavelength which is proportional to the Fresnel number. This is the
radiative transfer regime for monochromatic waves described by the following scaling limit

γ = θε2α, µ = ε2α−1, θ > 0, such that lim
ε→0

θ <∞, (48)
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(see [15], [22] and references therein). With two different frequencies, the most interesting
scaling limit requires another simultaneous limit

lim
ε→0

k1 = lim
ε→0

k2 = k, lim
ε→0

γ−1k−1(k2 − k1) = β > 0. (49)

We shall refer to the conditions (48) and (49) as the two-frequency radiative transfer scaling
limit.

But in the radiative transfer regime the two-frequency mutual coherence function is not as
convenient as the two-frequency Wigner distribution, introduced in [17], which is a natural
extension of the standard Wigner distribution and is self-averaging in the radiative transfer
regime.

The two-frequency Wigner distribution is defined as

Wz(x,p) =
1

(2π)d

∫
e−ip·yΨ1(z,

x√
k1

+
γy

2
√
k1

)Ψ∗2(z,
x√
k2

− γy

2
√
k2

)dy (50)

where the scaling factor
√
kj is introduced so that Wz satisfies a closed-form equation (see

below).
The following property can be derived easily from the definition

‖Wz‖2 =

(√
k1k2

2γπ

)d/2
‖Ψ1(z, ·)‖2‖Ψ2(z, ·)‖2.

Hence the L2-norm is conserved ‖Wz‖2 = ‖W0‖2. The Wigner distribution has the following
obvious properties:∫

Wz(x,p)eip·ydp = Ψ1(z,
x√
k1

+
γy

2
√
k1

)Ψ∗2(z,
x√
k2

− γy

2
√
k2

) (51)∫
Rd
Wz(x,p)e−ix·qdx =

(
π2
√
k1k2

γ

)d
Ψ̂1(z,

p
√
k1

4γ
+

√
k1q

2
)Ψ̂∗2(z,

p
√
k2

4γ
−
√
k2q

2
) (52)

and so contains essentially all the information in the two-point two-frequency function.
The Wigner distribution Wz satisfies the Wigner-Moyal equation exactly [17]

∂W ε
z

∂z
+ p · ∇xW

ε
z +

1

ε
LzW ε

z = 0 (53)

where the operator Lz is formally given as

LzWz = i

∫
θ−1

[
eiq·x̃/

√
k1k1W

ε
z (x,p +

θq

2
√
k1

)− eiq·x̃/
√
k2k2W

ε
z (x,p− θq

2
√
k2

)

]
V̂ (

z

ε2
, dq)

with x̃ = x/ε2α being the ‘fast’ transverse variable.
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1. Two-frequency radiative transfer equations

Under the same assumptions as in the one-frequency theory [15, 22], one can show the
convergence to one of the two types of transport equations as ε tends to zero.

In the first case, let θ > 0 be fixed. The limit equation is

∂

∂z
W̄ + p · ∇W̄ =

2πk2

θ2

∫
K(p,q)

[
e−iβθq·x/(2

√
k)W̄ (x,p +

θq√
k

)− W̄ (x,p)

]
dq (54)

where the kernel K is given by

K(p,q) = Φ(0,q), for α ∈ (0, 1),

and

K(p,q) = Φ
(
(p +

θq

2
√
k

) · q,q
)
, for α = 1.

For α > 1, then with the choice of µ = εα the limit kernel becomes

K(p,q) = δ
(
(p +

θq

2
√
k

) · q
) ∫

Φ(w,q)dw.

In the second case, let limε→0 θ = 0. The limit equation becomes

∂

∂z
Wz + p · ∇Wz = k

(
∇p −

i

2
βx

)
·D ·

(
∇p −

i

2
βx

)
Wz (55)

where the (momentum) diffusion coefficient D is given by

D = π

∫
Φ(0,q)q⊗ qdq, for α ∈ (0, 1), (56)

D(p) = π

∫
Φ(p · q,q)q⊗ qdq, for α = 1. (57)

For α > 1, then with the choice of µ = εα the limit coefficients become

D(p) = π|p|−1

∫
p·p⊥=0

∫
Φ(w,p⊥)dw p⊥ ⊗ p⊥dp⊥. (58)

When k1 = k2 or β = 0, eq. (54) and (55) reduce to the standard radiative transfer
equations derived in [15].
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2. The longitudinal and transverse cases

To illustrate the utility of these equations, we proceed to discuss the two special cases for
the transverse dimension d = 2. For simplicity, we will assume the isotropy of the medium in
the transverse coordinates such that Φ(w,p) = Φ(w, |p|). As a consequence the momentum
diffusion coefficient is a scalar. In the longitudinal case D = DI with a constant scalar D
whereas in the transverse case D(p) = C|p|−1p̂⊥ ⊗ p̂⊥ with the constant C given by

C =
π

2

∫ ∫
Φ(w,p⊥)dw|p⊥|2dp⊥.

Here p̂⊥ ∈ R2 is an unit vector normal to p ∈ R2.
First of all, the equation (55) by itself gives qualitative information about three important

parameters of the stochastic channel: the spatial spread σ∗, the coherence length `c and the
coherence bandwidth βc, through the following scaling argument. One seeks the change of
variables

x̃ =
x

σ∗
√
k
, p̃ = p`c

√
k, z̃ =

z

L
, β̃ =

β

βc
(59)

where L is the propagation distance to remove all the physical parameters from (55) and to
aim for the form

∂

∂z̃
W + p̃ · ∇x̃W =

(
∇p̃ +

iβ̃

2
x̃

)
·

(
∇p̃ +

iβ̃

2
x̃

)
W (60)

in the longitudinal case and the form

∂

∂z̃
W + p̃ · ∇x̃W =

(
∇p̃ +

iβ̃

2
x̃

)
· p̂⊥ ⊗ p̂⊥
|p̃|

·

(
∇p̃ +

iβ̃

2
x̃

)
W (61)

in the transverse case. From the left side of (55) it immediately follows the first duality
relation `cσ∗ ∼ L/k. The balance of terms inside each pair of parentheses leads to the
second duality relation βc ∼ `c/σ∗. Finally the removal of D or C determines the spatial
spread σ∗ which has a different expression in the longitudinal and transverse case. In the
longitudinal case,

σ∗ ∼ D1/2L3/2, `c ∼ k−1D−1/2L−1/2, βc ∼ k−1D−1L−2

whereas in the transverse case

σ∗ ∼ k−1/6C1/3L4/3, `c ∼ k−5/6C−1L−1, `c ∼ βc ∼ k−2/3C−2/3L−5/3.
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In the longitudinal case, the inverse Fourier transform in p̃ renders eq. (60) to the form

∂W̃

∂z̃
− i∇ỹ · ∇x̃W̃ = −

∣∣ỹ − β̃

2
x̃
∣∣2W̃ (62)

which can be solved exactly and whose Green function at z̃ = 1 is

(1 + i)d/2β̃d/4

(2π)d sind/2
[
β̃1/2(1 + i)

] exp
[
i
|ỹ − y′|2

2β̃

]
exp

[
i
(ỹ − y′) · (x̃− x′)

2

]
exp

[
i
β̃|x̃− x′|2

8

]
× exp

[ 1− i
2β̃1/2

cot (β̃1/2(1 + i))
∣∣ỹ − β̃x̃/2− y′ − β̃x′/2

cos (β̃1/2(1 + i))

∣∣2]
× exp

[
− 1− i

2β̃1/2

∣∣∣y′ − β̃x′/2
∣∣∣2 tan (β̃1/2(1 + i))

]
, (63)

[19]. This solution gives asymptotically precise information about the cross-frequency corre-
lation, important for analyzing the information transfer and time reversal with broadband
signals in the channel described by the random Schrödinger equation [19]. It is unclear if
the transverse case is exactly solvable or not.

B. Spherical waves

The two-frequency radiative transfer theory can be extended to the spherical scalar wave
as follows [21].

Let Uj, j = 1, 2 be governed by the reduced wave equation

∆Uj(r) + k2
j

(
νj + Vj(r)

)
Uj(r) = fj(r), r ∈ R3, j = 1, 2 (64)

where νj and Vj are respectively the mean and fluctuation of the refractive index associated
with the wavenumber kj and are in general complex-valued. The source terms fj may result
from the initial data or the external sources. Here and below the vacuum phase speed is set
to be unity. To solve (64) one needs also some boundary condition which is assumed to be
vanishing at the far field.

Radiative transfer regime is characterized by the scaling limit which replaces νj + Vj in
eq. (64) with

1

θ2ε2

(
νj +

√
εVj(

r

ε
)
)
, θ > 0, ε� 1 (65)

where ε is the ratio of the scale of medium fluctuation to the O(1) propagation distance and
θ the ratio of the wavelength to the scale of medium fluctuation.

Anticipating small-scale fluctuation due to (65) we define the two-frequency Wigner dis-
tribution in the following way

W (x,p) =
1

(2π)3

∫
e−ip·yU1(

x

k1

+
θεy

2k1

)U∗2 (
x

k2

− θεy

2k2

)dy
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which satisfies the exact equation

p · ∇W − F =
i

2εθ
(ν1 − ν∗2)W +

1√
ε
LW (66)

where the operator L is defined as

LW (x,p) =
i

2θ

∫
V̂1(dq)e

i q·x
εk1W (x,p− θq

2k1

)− i

2θ

∫
V̂ ∗2 (dq)e

−i q·x
εk2W (x,p− θq

2k2

)

and the function

F = − i

2(2π)3

∫
e−ip·yf1(

x

k1

+
y

2k1

)U∗2 (
x

k2

− y

2k2

)dy

+
i

2(2π)3

∫
e−ip·yU1(

x

k1

+
y

2k1

)f ∗2 (
x

k2

− y

2k2

)dy (67)

depends linearly on U1 and U2.
To capture the cross-frequency correlation in the radiative transfer regime we also need

to restrict the frequency difference range

lim
ε→0

k1 = lim
ε→0

k2 = k,
k2 − k1

εθk
= β (68)

where k, β > 0 are independent of ε and θ. Assuming the differentiability of the mean
refractive index’s dependence on the wavenumber we write

ν∗2 − ν1

2εθ
= ν ′ (69)

where ν ′ is independent of ε, θ.
Using the multi-scale expansion we derive the two-frequency radiative transfer equation

for the averaged Wigner distribution W̄

p · ∇xW̄ + iν ′W̄ − EF (70)

=
πk3

θ4

∫
dqΦ

(k
θ

(p− q)
)
δ(|p|2 − |q|2)

[
eix·(p−q)βW̄

(
x,q

)
− W̄ (x,p)

]
.

The δ-function in the scattering kernel is due to elastic scattering which preserve the
wavenumber. When β = 0 (then ν1 = ν2 and iν ′ ∼ the imaginary part of ν), eq. (70)
reduce to the standard form of radiative transfer equation for the phase space energy den-
sity [7, 45]. For β > 0, the wave featue is retained in (70). When β →∞, the first term in
the bracket on the right hand side of (70) drops out, due to rapid phase fluctuation, so the
random scattering effect is pure damping:

p · ∇xW̄ + iν ′W̄ − EF = −πk
3

θ4

∫
dqΦ

(k
θ

(p− q)
)
δ(|p|2 − |q|2)W̄ (x,p).
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1. Geometrical radiative transfer

Let us consider the further limit θ � 1 when the wavelength is much shorter than the cor-
relation length of the medium fluctuation. To this end, the following form is more convenient
to work with

p · ∇xW̄ + iν ′W̄ − EF (71)

=
πk

2θ2

∫
dqΦ

(
q
)
δ
(
q · (p− θq

2k
)
)[
eix·qβθ/kW̄

(
x,p− θq

k

)
− W̄ (x,p)

]
which is obtained from eq. (70) after a change of variables. We expand the right hand side
of (71) in θ and pass to the limit θ → 0 to obtain

p · ∇xW̄ + iν ′W̄ − EF =
1

4k
(∇p − iβx) ·D · (∇p − iβx) W̄ (72)

with the (momentum) diffusion coefficient

D(p) = π

∫
Φ(q)δ(p · q)q⊗ qdq. (73)

The symmetry Φ(p) = Φ(−p) plays an explicit role here in rendering the right hand side
of eq. (71) a second-order operator in the limit θ → 0. Eq. (72) can be rigorously derived
from geometrical optics by a probabilistic method [20].

2. Spatial (frequency) spread and coherence bandwidth

Through dimensional analysis, eq. (72) yields qualitative information about important
physical parameters of the stochastic medium. To show this, let us assume for simplicity the
isotropy of the medium, i.e. Φ(p) = Φ(|p|), so that D = C|p|−1Π(p) where

C =
π

3

∫
δ
( p

|p|
· q

|q|

)
Φ(|q|)|q|dq (74)

is a constant and Π(p) the orthogonal projection onto the plane perpendicular to p. In
view of (72) C (and D) has the dimension of inverse length while the variables x and p are
dimensionless.

Now consider the following change of variables

x = σxkx̃, p = σpp̃/k, β = βcβ̃ (75)

where σx and σp are respectively the spreads in position and spatial frequency, and βc is the
coherence bandwidth. Let us substitute (75) into eq. (72) and aim for the standard form

p̃ · ∇x̃W̄ + iν ′W̄ − 〈F 〉 =
(
∇p̃ − iβ̃x̃

)
· |p̃|−1Π(p̃)

(
∇p̃ − iβ̃x̃

)
W̄ . (76)
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The 1-st term on the left side yields the first duality relation

σx/σp ∼ 1/k2. (77)

The balance of terms in each pair of parentheses yields the second duality relation

σxσp ∼
1

βc
(78)

whose left hand side is the space-spread-bandwidth product. Finally the removal of the con-
stant C determines

σp ∼ k2/3C1/3 (79)

from which σx and βc can be determined by using (77) and (78):

σx ∼ k−4/3C1/3, βc ∼ k2/3C−2/3.

We do not know if, as it stands, eq. (76) is analytically solvable but we can solve analyt-
ically for its boundary layer behavior.

3. Small-scale asymptotics

Consider the propagation distance less than the transport mean-free-path. The corre-
sponding two-frequency Wigner distribution would be highly concentrated at the longitu-
dinal momentum, say, p = 1. Hence we can assume that the projection Π(p) in (76) is
effectively just the projection onto the transverse plane coordinated by x⊥ and approximate
eq. (72) by [

∂z + p⊥ · ∇x⊥

]
W̄ + iν ′W̄ − EF =

C⊥
4k|p|

(∇p⊥ − iβx⊥)2 W̄ (80)

where the constant C⊥ is the paraxial approximation of (73) for |p| = 1:

C⊥ =
π

2

∫
Φ(0,q⊥)|q⊥|2dq⊥.

Note that the longitudinal (momentum) diffusion vanishes and that the longitudinal mo-
mentum p plays the role of a parameter in eq. (80) which then can be solved in the direction
of increasing z as an evolution equation with initial data given at a fixed z.

Let σ∗ be the spatial spread in the transverse coordinates x⊥, `c the coherence length
in the transverse dimensions and βc the coherence bandwidth. Let L be the scale of the
boundary layer. We then seek the following change of variables

x̃⊥ =
x⊥
σ∗k

, p̃⊥ = p⊥k`c, z̃ =
z

Lk
, β̃ =

β

βc
(81)
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to remove all the physical parameters from (80) and to aim for the form

∂z̃W̄ + p̃⊥ · ∇x̃⊥W̄ + Lkiν ′W̄ − LkEF =
(
∇p̃⊥ − iβ̃x̃⊥

)2

W̄ . (82)

The same reasoning as above now leads to

`cσ∗ ∼ L/k, σ∗/`c ∼ 1/βc, `c ∼ k−1L−1/2C
−1/2
⊥

and hence
σ∗ ∼ L3/2C

1/2
⊥ , βc ∼ k−1C−1

⊥ L−2.

The layer thickness L may be determined by `c ∼ 1, i.e. L ∼ k−2C−1
⊥ .

After the inverse Fourier transform eq. (82) becomes

∂z̃Γ− i∇ỹ⊥ · ∇x̃⊥Γ + Lkiν ′Γ− LkEF = −
∣∣ỹ⊥ + β̃x̃⊥

∣∣2Γ (83)

which is the governing equation for the two-frequency mutual coherence in the normalized
variables. With data given on z̃ = 0 and vanishing far-field boundary condition in the
transverse directions, Eq. (83) can be solved analytically and its Green function is analogous
to (63):

e−iLkν
′
(i4β̃)1/2

(2π)2z̃ sinh
[
(i4β̃)1/2z̃

] exp

[
1

i4β̃z̃

∣∣∣ỹ⊥ − β̃x̃⊥ − y′⊥ + β̃x′⊥

∣∣∣2] (84)

× exp

−coth
[
(i4β̃)1/2z̃

]
(i4β̃)1/2

∣∣∣∣∣ỹ⊥ + β̃x̃⊥ −
y′⊥ + β̃x′⊥

cosh
[
(i4β̃)1/2z̃

]∣∣∣∣∣
2


× exp

[
−

tanh
[
(i4β̃)1/2z̃

]
(i4β̃)1/2

∣∣∣y′⊥ + β̃x′⊥

∣∣∣2].

VI. APPLICATION: TIME REVERSAL

Time reversal is the process of recording the signal from a remote source, time-reversing
and back-propagating it to retrofocus around the source. Time reversal of acoustic waves
has been demonstrated to hold exciting technological potentials in subwavelength focusing,
dispersion compensation, communications, imaging, remote-sensing and target detection in
unknown environments ( see [29], [30], [41] and references therein). The same should hold for
the electromagnetic waves as well. Time reversal of electromagnetic waves is closely related
to optical phase conjugation [34].

In the time reversal procedure, a source Ψ0(x) located at z = L emits a signal with the
carrier wavenumber k toward the time reversal mirror (TRM) of aperture A located at z = 0
through a turbulent medium. The transmitted field is captured and time reversed at the
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requirement is analogous to having very little friction in a
particle-mechanics experiment. For instance, reversing the
trajectories of balls on a pool table is impractical because
there is no way to make the balls speed up correctly in the
time reverse of being slowed by friction and air resistance.

When such energy losses are small enough, the equations
governing the waves guarantee that for every burst of sound
that diverges from a source, there exists in theory a set of
waves that would precisely retrace the path of the sound
back to the source. This remains true even if the propagation
medium is complicated by
objects and variations in den-
sity, which reflect, scatter and
refract the sound. The re-
versed waves would follow
all these intricate pathways
and converge in synchrony at
the original source, as if time
were going backward. In
1988 my research group built
and tested such an acoustic
time-reversal mirror with ul-
trasonic waves in weakly het-
erogeneous media similar to
biological tissues.

You might think that the
array of transducers has to
have no gaps in it, so that the
reversed wave will be re-cre-
ated without gaps. But be-
cause of how waves diffract,
gaps as large as half the
wavelength will get filled in
as the wave propagates. Thus,
the transducers can be spaced
as far apart as half the small-
est wavelength without im-
pairing the quality of the re-
production. For the same
reason, however, the waves
will refocus to a spot no
smaller than half the smallest
wavelength. Any details of
the source smaller than that
are lost.

In the ideal situation, the
array of transducers would
cover all the walls and even
the floor and ceiling of the
room, so that the whole final
wave could be generated [see
illustration on opposite page].
In practice it is often impossi-
ble to entirely surround the source with transducers, and the
time reversal is usually performed with a limited area of
transducers, which we call a time-reversal mirror (TRM).
Of course, some information is lost, and as the aperture of
the mirror gets smaller, the size of the focal spot gets larger.
This is exactly analogous to the case in optics, where a tele-
scope with a large mirror can achieve finer resolution than
one with a small mirror. In fact, an analogue of the TRM
has been studied for about 20 years in optics: phase-conju-
gated mirrors. Such mirrors exhibit retroreflectance—the light

reflects back toward the source, wherever it is in relation to
the mirror. These phase-conjugated mirrors, however, do
not produce the time reverse of a varying light signal.

Chaotic Pinball

In 1994 my students Arnaud Derode and Philippe Roux
and I demonstrated ultrasonic time reversal through 

a medium analogous to the chaotic pinball machine men-
tioned earlier. The results were surprising. The obstacles

were made of a random set
of 2,000 parallel steel rods
immersed in a water tank
[see illustration at left]. The
wave started from a small
transducer as a pulse lasting
one microsecond (1 µs) and
propagated through this “for-
est” of rods to a line of 96
piezoelectric transducers. This
array detected an initial wave-
front that was the part of the
sound that threaded its way
directly through the forest,
followed by a long chaotic
wave lasting up to 200 µs.
The chaotic wave correspond-
ed to the portions of the initial
pulse scattered along all possi-
ble paths between the rods.

In the second step of the 
experiment, we time-reversed
these signals, and a hydro-
phone measured the wave ar-
riving at the source location.
Even though the array played
back a 200-µs signal through
the chaotically scattering for-
est, at the source location a
pulse of about 1 µs was regen-
erated. We also carried out
both steps of the experiment
in the absence of the rods.
Remarkably, the time-reversed
beam was focused to a spot
six times smaller with the
scattering rods than without
them. This paradoxical result
is explained by considering
that the multiple reflections
in the forest redirect toward
the mirror parts of the initial
wave that would otherwise

miss the transducer array. After the time-reversal operation,
the whole multiple-scattering medium acts somewhat like a
focusing lens, making the mirror appear to have an aperture
six times larger and thus improving its resolution sixfold.

The experiment also showed that the time-reversal pro-
cess is surprisingly stable. The recorded signals were sam-
pled with analog-to-digital converters that introduced quan-
tization errors. Moreover, if the array and the rods are
moved a small fraction of the wavelength (0.5 millimeter, or
0.02 inch) after doing the forward step, the time reversal
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FIG. 15: Acoustic chaotic pinball occurs when an underwater ultrasonic pulse emitted by the
transducer (at left in photograph) ricochets among 2,000 randomly placed steel rods before reaching
the 96-element time-reversing mirror at right. Each element of the array receives a chaotic-seeming
sound signal (a portion of one is shown in the middle plot) lasting much longer than the original
one-microsecond pulse. When the mirror plays back the chaotic signals, reversed and in synchrony,
they ricochet back through the maze of rods and combine to re-create a well-defined pulse, shown
in the bottom plot, at the transducer (adapted from [28]).
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TRM and then sent back toward the source point through the same turbulent medium, see
Figure 1, [25], [26].

The time-reversed, back-propagated wave field at z = L can be expressed as

Ψtr(x) =

∫
G(L,x,xm)G∗(L,xs,xm)Ψ∗0 (xs)IA(xm)dxmdxs

=

∫
eip·(x−xs)/γW (L,

x + xs
2

,p)Ψ∗0 (xs)dpdxs (85)

where IA is the indicator function of the TRM, G the propagator of the Schrödinger equation
and W the mixed-state Wigner distribution function

W (z,x,p) =

∫
W (z,x,p; xm)IA(xm)dxm

W (z,x,p; xm) =
1

(2π)2

∫
e−ip·yG(z,x + γy/2,xm)G∗(z,x− γy/2,xm)dy

which is the convex combination of the pure-state Wigner distributions W (·; xm). Here we
have used the fact that time reversing of the signal is equivalent to the phase conjugating of
its spatial component.

Let us consider a point source located at (z, 0) by substituting the Dirac-delta function
δ(x) for Ψ0 in (85) and calculate EΨtr with the Green function (44). We then obtain
the point-spread function for the time reversed, refocused wave field written as Ptr(x) =
P0(x)Ttr(x) with

P0(x) ≡
(

1

zγ

)2

exp

[
i
|x|2

2γz

]
ÎA
(

x

γz

)
Ttr(x) ≡ exp

[
− z

γ2

∫ 1

0

D∗(−sx)ds

]
. (86)

In the absence of random inhomogeneity the function Ttr is unity and the resolution scale ρ0

is determined solely by P0:

ρ0 ∼ 2π
γz

A
. (87)

In view of definition of γ this is evidently the classical Rayleigh resolution formula. Note
that we have used the dimensionless variables.

A. Anomalous focal spot

We shall see here that a turbulent medium such as the turbulent atmosphere can signifi-
cantly reduce the focal spot size below the Rayleigh limit.
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To this end we assume the inertial range asymptotic:

D∗(r) ≈ C2
∗r

2H∗ , `0 � r � L0 = 1 , (88)

where the effective Hölder exponent H∗ is given by

H∗ =

{
H + 1/2 for H ∈ (0, 1/2)
1 for H ∈ (1/2, 1)

(89)

and the structure parameter C∗ is proportional to σ
1/2
H . Outside of the inertial range we have

instead D∗(r) ∼ r2, r � `0 and D∗(r) → D∗(∞) for r → ∞ where D∗(∞) > 0 is a finite
constant. As in (34) we have chosen the correlation length L0 as the reference length Lx.

First we consider the situation where there may be an inertial range behavior. This
requires from (86) that

γ−2D∗(∞)� 1. (90)

In the presence of random inhomogeneities the retrofocal spot size is determined by P0 or
Ttr depending on which has a smaller support. For the power-law spectrum we have the
inertial range asymptotic

Ttr(x) ∼ exp
[
−C2

∗γ
−2z|x|2H∗(4H∗ + 2)−1

]
(91)

for `0 � |x| � 1. We define the turbulence-induced time-reversal resolution as

ρtr =

√∫
|x|2T 2

tr(x)dx/

∫
T 2

tr(x)dx (92)

which by (91) has the inertial range asymptotic

ρtr ∼
(

γλ

C∗
√
z

)1/H∗

, `0 � ρtr � 1. (93)

The nonlinear law (93) is valid only down to the inner scale `0 below which the linear law
prevails ρtr ∼ γλz−1/2.

We see that under (90) ρtr is independent of the aperture, has a superlinear dependence
on the wavelength in the inertial range and the resolution is further enhanced as the distance
z and random inhomogeneities (C∗) increase. This effect can be explained by the notion of
turbulence-induced aperture which enlarges as z and C∗ increase as the TRM is now able to
capture signals initially propagating in the more oblique directions.

To recover the linear law previously reported in [4], let us consider the situation where
ρtr = O(γ) and take the limit of vanishing Fresnel number γ → 0 in eq. (45) by setting
x = γy. Then we have

lim
γ→0

γ−2D∗(γy) = D0|y|2, D0 =
1

2

∫
Φ(0,q)|q|2dq.
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The resulting mean retrofocused field EΨtr(γy) is Gaussian in the offset variable y and the
refocal spot size on the original scale is given by

ρtr ∼ γλ(D0z)−1/2. (94)

Hence the linear law prevails in the sub-inertial range.

B. Duality and turbulence-induced aperture

Intuitively speaking, the turbulence-induced aperture referred to in the previous section
is closely related to how a wave is spread in the course of propagation through the turbulent
medium. A quantitative estimation can be given by analyzing the spread of wave energy.

To this end let us calculate the mean energy density with the Gaussian initial wave
amplitude

Ψ(0,x) = exp
[
−|x|2/(2α2)

]
. (95)

We obtain

E|Ψ(z,x)|2 =

(
α

2
√
π

)d ∫
exp

[
−|q|2[α2/4 + γ2z2/(4α2)]

]
× exp [iq · x] exp

[
− z

γ2

∫ 1

0

D∗(qsγ)ds

]
dq.

The reason we do not consider the point source right away is that for a point source E|Ψ|2 ∼
const. so to see the effect of the random diffraction we need to consider an extensive source.

From the above the turbulence-induced spread can be identified as convolution with the
kernel which is the inverse Fourier transform F−1T of the transfer function

T (q) = exp

[
− z

γ2

∫ 1

0

D∗(qsγ)ds

]
.

In view of (86), we obtain that

F−1T (x) =
1

γ2z2
F−1Ttr(

x

γz
). (96)

In this case it is reasonable to define the turbulence-induced forward spread σ∗ as

σ∗ =

√∫
|x|2 |F−1T |2 (x)dx/

∫
|F−1T |2 (x)dx

which, in view of (92) and (96), then satisfies the uncertainty inequality (see also [14])

σ∗ρtr ≥ γz. (97)

40



The equality holds when Ttr is Gaussian, i.e. when H∗ = 1 or in the sub-inertial range.
This strongly suggests the definition of the turbulence-induced aperture as A∗ = 2πγ z/ρtr

in complete analogy to (87). And we have the inequality

A∗ ≤ 2πσ∗

where equality holds true for a Gaussian wave structure function.

C. Coherence length

Another physical variable that is naturally dual to the wave spread is the coherence length.
The physical intuition is that the larger the spread the smaller the coherence length.

In the Markovian model with the Gaussian data (95) the coherence length has the fol-
lowing expression:

EΨ(z,x + y/2)Ψ(z,x− y/2) (98)

=

(
α√
2π

)2 ∫
exp

[
−|q|2α2/4

]
exp

[
−|y − γzq|

2

4α2

]
× exp [iq · x] exp

[
− 1

γ2

∫ z

0

D∗(−y + γqs)ds

]
dq.

In the point-source limit α→ 0, we have

EΨ(z,x + y/2)Ψ(z,x− y/2) (99)

≈

(√
2α2

γz

)2

exp

[
i

1

γz
y · x

]
exp

[
− z

γ2

∫ 1

0

D∗(−ys)ds

]
.

In view of (99) let us define the turbulence-induced coherence length δ∗ as

δ∗ =

√∫
|y|2T 2

2 (y)dy/

∫
T 2

2 (y)dy, T2(y) = exp

[
− z

γ2

∫ 1

0

D∗(−ys)ds

]
.

Since T2 = Ttr, δ∗ is equal to the turbulence-induced time-reversal resolution ρtr and is
related to the wave spread as

σ∗δ∗ ≥ γz

where the equality holds for a Gaussian wave structure function. Because of the identity of
δ∗ and ρtr the time reversal refocal spot size can be used to estimate the coherence length of
the wave field which is more difficult to measure directly.
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D. Broadband time reversal communications

Now we would like to discuss time reversal with broadband signals as a means of commu-
nication in random media. We consider the multiple-input-multiple-output (MIMO) broad-
cast channel described in [19], [18]. We assume that the random medium is described by the
parabolic Markovian model.

Let the M receivers located at (L, rj), j = 1, ...,M first send a pilot signal∫
ei
kt
γ g(k)dkδ(rj − ai) to the N -element TRA located at (0, ai), i = 1, ..., N which then

use the time-reversed version of the received signals
∫
ei
kt
γ g(k)GL(rj, ai; k)dk to modulate

streams of symbols and send them back to the receivers. Here GL is the Green function of

i∂Ψz
∂z

+ γ
2k

∆xΨz + k
γ
χz ◦Ψz = 0, x ∈ Rd, (100)

and g2(k) is the power density at k. For simplicity we take g2(k) = exp (− |k−1|2
2B2γ2 ). As shown

in [4], [10], when the TRA has an infinite time-window, the signal arriving at the receiver
plane with delay L+ t is given by

S(r, t) =
T∑
l=1

N∑
i=1

M∑
j=1

mj(τl)

∫
e−i

k
γ

(t−τl)g(k)

×GL(r, ai; k)G∗L(rj, ai; k)dk (101)

where mj(τl), l = 1, ..., T ≤ ∞ are a stream of T symbols intended for the j-th receiver
transmitted at times τ1 < τ2 < ... < τT . We assume for simplicity that |mj(τl)| = 1, ∀j, l.
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Consider the mean E(r, t) = γ−d
∫
f((x− r)/`c)ES(x, t)dx and the variance

V (r, t) = γ−2dE
[ ∫

f((x− r)/`c)S(x, t)dx
]2 − E2(r, t)

where the coupling with the test function f can be viewed as the averaging induced by
measurement. We have made the test function f act on the scale of the coherence length
`c, the smallest spatial scale of interest (the speckle size) in the present context. Different
choices of scale would not affect the conclusion of our analysis.

The primary object of our analysis is

ρ =
E2(rj, τl)

V (r, t)
, j = 1, ...,M, l = 1, ..., T (102)

which is the signal-to-interference ratio (SIR) if r = rj, t = τl and the signal-to-sidelobe ratio
(SSR) if |r − rj| � `c,∀j (spatial sidelobes) or |t − τl| � B−1,∀l (temporal sidelobes) (as
V (r, τ) ≈ E2(r, τ) as we will see below). We shall refer to it as the signal-to-interference-or-
sidelobe ratio ( SISR). In the special case of r = rj and |t−τl| � B−1,∀l, ρ−1 is a measure of
intersymbol interference. To show stability and resolution, we shall find the precise conditions
under which ρ→∞ and ES(r, t) is asymptotically

∑T
l=1

∑M
j=1mj(τl)Sjl(r, t) where

Sjl(r, t) ≈
N∑
i=1

∫
e−i

k(t−τl)
γ g(k)E

[
GL(r, ai; k)G∗L(rj, ai; k)

]
dk (103)

is a sum of δ-like functions around rj and τl = 0,∀l. In other words, we employ the TRA as a
multiplexer to transmit the M scrambled data-streams to the receivers and we would like to
turn the medium into a demultiplexer by employing the broadband time reversal technique.

Provided that the antenna spacing is greater than the coherence length and the frequency
separation is greater than the coherence bandwidth, the sufficient condition for achieving
the desired goal (i.e. stability and refocusing) is the multiplexing condition

NB �MC (104)

where C is the number of symbols per unit time in the datum streams intended for each
receiver [19], [18]. The proof makes a nontrivial use of the asymptotic solution (63).

In terms of resolution, the best experimental result in this direction so far has been
achieved by [42].

VII. APPLICATION: IMAGING IN RANDOM MEDIA

A. Imaging of phase objects
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Consider the electron transmission microscope whose image formation is based on the
interaction of electrons with the object. Two kinds of scattering are involved: elastic and
inelastic scattering. The former involves no transfer of energy and give rise to high-resolution
information. The latter involves transfer of energy and produces low resolution information.
The electron microscopy mainly uses the former for imaging.

In most applications, the elastic scattering interaction can be described as phase shift as
in (20). For weak phase object, the Born approximation Ψ = Ψ0(1 + iΦ) is valid [32]. The
Fraunhoffer diffraction can be used since the observation is always made in the far distance
from the object and close to the optical axis. In that approximation the wave function in
the back focal plane of the objective lens is – in the absence of aberration – the Fourier
transform of u. However, the lens aberrations and the defocusing have the effect of shifting
the phase of the scattered wave by an amount expressed by 2πχ(k) where χ is called the
wave aberration function. In a polar coordinate system (|k|, φ) we have [32]

χ(k, φ) = −1

2
λ
[
∆z +

z0

2
sin (2φ)

]
|k|2 +

1

4
λ3Cs|k|4

where λ is the electron wavelength; ∆z the defocus of the objective lens; za the focal difference
due to axial astigmatism; Cs the third-order spherical aberration constant.

An ideal lens will transform an incoming plane wave into a spherical wave front converging
into a single point on the back focal plane. Lens aberrations have the effect of deforming the
spherical wave front. In particular, the spherical aberration term Cs acts in a way that the
outer zones of the wave front are curved more than the inner zones, leading to a decreased
focal length in the outer zones.

The above discussion leads to the wave function

Ψb(k) = F[Ψ](k)ei2πχ(k)

in the back focal plane of the objective lens. Next, the wave function in the image plane is
obtained from the wave in the back focal plane, after modification by the aperture function
A(k), through an inverse Fourier transform

Ψi(y) = F−1[F[Ψ](k)A(k)ei2πχ(k)]

where A(k) can be taken as the indicator function of the aperture:

A(k) =

{
1, for |k| ≤ θ1/λ
0, else

where θ1 is the angle corresponding to the radius of the objective aperture. Finally, the
observed intensity in the image plane is

I(y) = |Ψi|2(y).
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FIG. 17: Pickering’s scale of rating atmospheric turbulence: the photographs show the image
(intensity distribution) of a star under various atmospheric conditions.

If we apply the Born approximation, assume Φ is real-valued and subtract the constant
background to consider only the contrast of the image intensity, then we obtain a linear
relationship betweenO(k) = F[Φ](k) and the Fourier transform of the image contrast F[I](k):

F[I](k) = O(k)A(k) sin (2πχ(k))

or equivalently

I(y) =

∫
Φ(y′)h(y − y′)dy′

where h(y) = F[A(k) sin (2πχ)] is called the point-spread function of the imaging system.
The function sin 2πχ is known as the phase contrast transfer function and the function
A(k) sin (2πχ) is the optical transfer function.

Optical imaging systems are often built out of lens, pinholes and mirrors. For optical waves
many objects can be treated as phase objects such as thin sheets or organic specimens, air
flows, vortices and shock waves, strains in transparent materials, density changes in heating.
The basic configuration of, for example, a microscope has 2 lenses of 4f geometry which is
equivalent to iterated (windowed) Fourier transforms and produces an inverted image. Then
the imaging quality of the system is determined by the point-spread function. The intensity
of the image is the convolution of the object intensity and the point-spread function.

B. Long-exposure imaging

The refractive index fluctuation in the turbulent atmosphere restricts the angular resolu-
tion of large, ground-based telescopes to the seeing limit of 0.5 arcsec. On the other hand,
the theoretical resolution of a 5m telescope is about 0.02 arcsec at wavelength 0.5µm. This
is more than 20 times of reduction in resolving power.

The seeing quality can be rated by Pickering’s scale which ranges from P-1(worst) to P-10
(best), Fig. 17. The Pickering scale is based on what a highly magnified star looks like when
carefully focused, in a small telescope. A star at high magnification, under perfect seeing
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(P-10) looks like a bull’s eye. A small central disk surrounded by one or more concentric
rings. At P-1, it is just an amorphous blob. The central disk is known as the Airy disk and
it’s size in inversely proportional to the size of the telescope objective.

Consider an object such as a faraway star or galaxy. The wave field incident on the
top of the atmosphere is Ψ0. For simplicity we consider spatially incoherent object i.e.
〈Ψ(x1)Ψ∗(x2)〉 = |Ψ(x1)|2δ(x1 − x2) where 〈·〉 denotes the averaging w.r.t. the random
phase of the object and is independent of the averaging w.r.t. the medium ensemble. In
the case of a single star the wave field is nearly a plane wave. Let GL(x, x̄) be the Green
function for the turbulent medium of thickness L. The wave field impinging on the lens is∫
GL(x, x̄)Ψ0(x̄)dx̄. The lens introduces a phase factor of the form e−

i
2γf
|x|2 and on the focal

plane the wave field is given by

Ψ(x) = e−
i

2γf
|x|2
∫

Ψ0(x̄)GL(x′, x̄)IA(x′)e
i
fγ

x·x′dx′dx̄ (105)

where IA(x′) is the indicator function of the lens. The observed intensity is then

I(x) =

∫
|Ψ0(x̄)|2GL(x′1, x̄)G∗L(x′2, x̄)IA(x′1)IA(x′2)e

i
fγ

x·(x′1−x′2)dx′1dx
′
2dx̄ (106)

Without the complete knowledge of GL it is difficult to solve the basic imaging equation
(106) and recover the impinging wave field Ψ0 from the observed intensity I.

Now let us consider the long-exposure imaging equation for a spatially incoherent ob-
ject. Assuming the ergodicity of the turbulent medium, after sufficiently long exposure, the
intensity in the focal plane is the statistical average:

EI(x) =

∫
|Ψ0(x̄)|2e

i
fγ

x·(x′1−x′2)Γ2(L,x′1 − x′2; 0)IA(x′1)IA(x′2)dx′1dx
′
1dx̄. (107)

Let

I0(x) =
1

L2

∫
e

i
2Lγ

(
x1−x2

)
·
(
x1+x2−2x̄

)
|Ψ0(x̄)|2e

i
fγ

x·(x′1−x′2)IA(x′1)IA(x′2)dx′1dx
′
1dx̄.

be the intensity in the absence of the turbulent medium. Then in view of (46) we can write
eq. (107) in the form

EI(x) =

∫
S(x− x′)I0(x′)dx′

where

S(x) =

∫
e
− L
γ2

R 1
0 D∗(s(x

′
2−x′1))ds

e
i
fγ

x·(x′1−x′2)dx′1dx
′
2

represents the turbulence-induced pattern of a point source. For the purpose of imaging, the
entire propagation modeling is to supply this function S.
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More realistically the inversion problem should be posed with inclusion of noise:

EI(x) =

∫
S(x− x′)I0(x′)dx′ +N(x)

or in the Fourier domain
EÎ(k) = Ŝ(k)Î0(k) + N̂(k).

If we write the solution of the inversion problem as

Ĩ0(k) = T̂ (k)EI(k)

then T can be determined from minimizing the mean-squared error

E =

∫
E|Î0(k)− Ĩ0(k)|2dk

where 〈·〉 stands for the average w.r.t. noise. The minimizer is called the Wiener fileter and
is given by

T̂ (k) =
Ŝ∗(k)

|Ŝ|2(k) + SSR−1

where SSR stands for the signal-to-noise ratio

SSR =
|EÎ(k)|2

E|N̂(k)|2
.

In the limit of vanishing noise, the Wiener filter reduces to the inverse filter while in the
large noise limit it reduces to the matched filter. Other solutions to the inverse problem in
the presence of noise can be obtained by the maximum likelihood method which seeks to

maximize the likelihood function P(EI
∣∣∣Î0) under the assumption of independent Poisson or

Gaussian noise [1].

C. Short-exposure imaging

The limitations on long-exposure imaging with a thin lens may be quite severe. In the case
of atmospheric imaging, this is mainly due to the phase distortion which causes imperfect
focus. A natural approach for circumventing the problem is to use an imaging method which
is insensitive to phase distortion. This is the essence of interferometric imaging techniques
which in their simplest forms, produce images of the object autocorrelation function rather
than the object itself. One technique is called the amplitude interferometry explainable in
terms of the Michelson stellar interferometer, see Figure 9.

A related technique is called the speckle interferometry. The general procedure is to take
a long series of short exposures and find the spatial power spectrum of the image [1]. The
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advantage of the speckle interferometry over the simple two-pinhole amplitude interferometry
is that the former measures all angular frequencies simultaneously.

The assumptions are that the phase of the light wave from the source obeys the Gaussian
statistics and the object is small enough to be contained in an atmospheric coherence area.
The latter ensures the isoplanicity condition to be satisfied and implies the following simpler
form than (106)

I(x) =

∫
Ss(x− x′)I0(x′)dx′ (108)

where Ss changes with each realization of turbulent media. After Fourier transform, we have

Î(k) = Ŝs(k)Î0(k).

Squaring modulus and averaging over a large number of short exposures we then have

E|Î(k)|2 = E|Ŝs(k)|2|Î0(k)|2. (109)

which can be solved by various inversion techniques once E|Ŝs(k)|2 is known. In view of the
discussion on the general linear inversion problem, we see that the isoplanicity assumption
can be relaxed. To recover the phase of Î0 we need to employ a phase retrieval technique,
see [9] and [54].

The success of the method depends on the relative insensitivity of E|Ŝs(k)|2 to the random

phase distortion, i.e. E|Ŝs(k)|2 is significantly greater than |EŜs(k)|2. When the phase of the

light wave obeys the Gaussian statistics it can be shown that E|Ŝs(k)|2 is proportional to that
of the homogeneous case for large value of k. As a consequence, the speckle interferometry
can yield near-diffraction-limited resolution. The effect of the large intensity fluctuations on
the resolution of speckle interferometry is less clear [1].
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Speckle masking is a triple correlation imaging technique which retains the phase infor-
mation [54]. The quantity considered is the bispectrum

EÎ(3)(k,k′) = E
[
Î(k)Î(k′)Î(−k− k′)

]
.

It follows that

EÎ(3)(k,k′) = EŜ(3)
s (k,k′)Î

(3)
0 (k,k′). (110)

The function Î
(3)
0 (k,k′) is the bispectrum of the object in the absence of the turbulent

medium provided that we have infinite lens aperture. The function EŜ(3)
s (k,k′) is known as

the speckle masking transfer function and can be derived from the speckle interferograms of
a point source or it can be calculated theoretically.

By (110) the phase φ
(3)
0 of Î

(3)
0 can be determined from EÎ(3)(k,k′) and EŜ(3)

s (k,k′).
Writing

Î0(k) = |Î0(k)|eiφ0(k)

we obtain

φ
(3)
0 (k,k′) = φ0(k) + φ0(k′) + φ0(−k− k′) (111)

from which a recursion relation relating φ0 to φ(3) can be developed. Eq. (111) is called a
closure phase relation. Since the speckle masking transfer function is greater than zero up
to the diffraction cutoff frequency, the diffraction-limited resolution can be achieved by the
speckle masking method [54].

D. Coherent imaging of multiple point targets in Rician media

A Rician (fading) medium is a random medium whose mean or coherent component is
non-vanishing and whose fluctuations obey a Gaussian distribution. Such a model is widely
used in wireless literature to describe certain wireless communication channels. The Rician
factor K of a Rician medium is the ratio of signal power in coherent component over the
fluctuating power. Typically a Rician channel arises when there is a line-of-sight between
the antennas and the targets. On the other hand, for a richly scattering environment, the
coherent component is so dim that K ≈ 0 effectively. Such a medium is called Rayleigh
fading. Clearly Rayleigh media pose a greater challenge to imaging obscured targets than
Rician media. In this section, we discuss the theory and practice of imaging multiple point
targets in a Rician medium. For more details, the reader is referred to [27] and the references
therein. We discuss briefly the case with Rayleigh media in the next section.

There are two main ingredients in this theory: the first is time reversal and averaging
with the mean (coherent) Green function at various frequencies; the second is the method of
differential fields. We consider two kinds of arrays: the passive array when the targets are
point sources and the active array when the targets are scattering objects. The differential
field method is used only in the active case.
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Target

FIG. 19: Double-passage interpretation of differential field.

1. Differential scattered field in clutter

Consider the reduced wave equation with a randomly heterogeneous background

∆u0(x) + k2µ0ε0(x)u0 = S (112)

where µ0 is the magnetic permeability assumed to be unity, ε0 the dielectric constant repre-
senting the random medium and S the source of illumination.

Suppose there is intrusion of a foreign object and as a result, the total dielectric constant
ε(x) is given by ε0(x) + ε̃(x) where ε̃(x) is a localized function representing the intrusion.
Then with the same illumination the resulting electric field u satisfies

∆u(x) + k2
(
ε0(x) + ε̃(x)

)
u = S. (113)

The differential (scattered) field, defined as ũ = u− u0, then satisfies

∆ũ(x) + k2ε0(x)ũ = −k2ε̃u. (114)

Let H0 and H be the transfer operators associated with eq. (112) and (113) respectively.
Namely, u0 = H0S and u = HS. By (114) we can write

ũ = −k2H0

[
ε̃HS

]
One can visualize the multiple scattering events by noting the following perturbation

expansion

H =
(

1− k2H0ε̃+ k4
(
H0ε̃

)2 − k6
(
H0ε̃)

3 + · · ·
)
H0 (115)
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from which we obtain the expansion for the differential field

ũ = −k2H0ε̃H0S + k4H0

(
ε̃H0ε̃)H0S − k6H0

(
ε̃H0ε̃H0ε̃

)
H0S + · · · (116)

The terms in parentheses of (116) correspond the multiple scattering events between the
target and the clutter.

For the simplicity we assume a weakly scattering target such that the multiple scattering
between the target and the medium is negligible. This leads to the following simplification
for the differential field

ũ = −k2H0ε̃H0S. (117)

In this setting, the imaging problem is to determine ε̃ from the information about ũ without
detailed information about H0.

2. Imaging functions

For a passive array, the signals are sampled by the antenna array and phase conjugated.
The imaging method consists of back-propagating the resulting signals in computation do-
main by using an imaging filter P (ω) related to the mean Green function at frequency ω.
Let τi(ω) be the strength of i-th point sources i = 1, ...,M . The resulting imaging field is

u(x) =
B∑
l=1

N∑
j=1

M∑
i=1

τi(ωl)P (x,yj;ωl)Hij(ωl).

We write P(ω) = [Pij(ω)] with Pij(ω) = P (xi,yj;ω).
In the case of an active array, we apply the method of the differential (response) field.

In this approach, probing signals of various frequencies are first used to survey the random
media in the absence of targets. Then in the presence of targets (with unknown locations)
the same set of probing signals are used again to survey the media which is assumed to be
fixed. The differences between these two responses is called the differential response which
is then used to image the targets.

Let τi(ω) be the scattering strength (reflectivity) of the i-th target, i = 1, ...,M at
frequency ω and let H = [Hij] be the transfer matrix between the point targets and
the antenna array. We shall assume weakly scattering targets so that the multiple scat-
tering between the targets and the clutter is negligible and the only multiple scattering
effect is in the clutter. In this approximation, the differential responses are given by∑M

i=1 τi(ωl)Hij(ωl)Hin(ωl), j = 1, ..., N, l = 1, ..., B where the index n = 1, ..., N indicates
the array elements emitting the probing signals. The imaging field in this case is given by

u(x) =
B∑
l=1

M∑
i=1

N∑
j,n=1

τi(ωl)P (x,yj;ωl)Hij(ωl)Hin(ωl)P (yn,x;ωl)
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FIG. 20: Typical transverse (left) and longitudinal (right) profiles of the intensity of the Green
function with 1000 randomly distributed particles corresponding to K ∼ 1.

or more generally

u(x) =
B∑
l=1

f(ωl)
M∑
i=1

N∑
j,n=1

τi(ωl)P (x,yj;ωl)Hij(ωl)Hin(ωl)P (yn,x;ωl)

with a weight function f of the frequency.
One of the central questions with imaging of cluttered targets is the statistical stability.

Namely, how to construct an imaging functional that is independent of a certain class of
unknown, random media? For any imaging function u a useful metric of stability is the
signal-to-interference ratio (SIR) of the imaging functional at the location x given by

R(x) ≡ |Eu(x)|2

E
(
|u|2(x)

)
− |E

(
u(x))|2

.

A statistically stable imaging function corresponds to R � 1 whenever Eu(x) 6= 0 and, in
particular, in the neighborhood of every target point. Under such condition, the peaks of
the amplitude |u(x)| correspond to the point targets.

Our aim is to achieve stable imaging with as little information on the full Green function
as possible. A natural choice for P is the phase factor of the mean Green function of the
clutter. Our main assumptions are that the antenna elements and the point targets are
sufficiently separated from one another, and that the multiple frequencies used are also
sufficiently separated (see [27]). Under these conditions, we show that a sufficient condition
for imaging stability is KBN �M where B is the number of frequencies, N the number of
antenna elements and M the number of point targets.
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FIG. 21: The difference between the phase of the mean Green function, calculated with 3000
particles, and that of the free-space Green function along the longitudinal at various frequencies.
The figure on the left shows linear growth of the phase difference with the propagation distance
in the clutter for longer wavelengths while the figure on the right displays large fluctuations of the
phase difference for wavelength 50.

3. Numerical simulation with a Rician medium

Consider a discrete medium consisting of many randomly distributed point scatterers.
Multiple scattering of waves in such a medium can be conveniently simulated by using the
Foldy-Lax formulation of the Lippmann-Schwinger equation [27].

In the simulations, either 1000 or 3000 point scatterers are uniformly randomly distributed
in the domain [2000, 4000]×[0, 5000], while the whole computation domain is [−5000, 5000]×
[0, 5000]. The transverse and longitudinal profiles of the Green function are shown in Fig.
20. With 1000 particles, the K-factor in the clutter is on the order of unity.

For uniformly distributed scatterers, with a constant number density ρ, the mean Green
function H̄ in the high-frequency, forward scattering approximation satisfies the effective
equation (

∇2 +K2
eff

)
Ḡ = 0

with the effective wavenumber

Keff = k + 2πf(ω)ρ/k (118)

where f(ω) is the forward scattering amplitude at frequency ω. By the forward scattering
theorem [37], the total extinction cross section σt is given by

σt =

{
4π
k
=[f(ω)], d = 3

4=[f(ω)], d = 2.
(119)
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FIG. 22: Active array imaging |u(x)| of 7 point targets located at [3100, 100], [2800, 1000],
[4000, 1600], [3300, 2100], [4500, 3000], [3000, 4000], and [3500, 4800]: the top and bottom plots
are simulated with 1000 and 3000 point scatterers, respectively, randomly distributed in x ∈
[2000, 4000]. The scattering strengths of an individual scatterer to a target are 70 : 1. The 6
equally spaced antenna elements are on y ∈ [1500, 3500], x = −5000. We use 20 equally spaced
wavelengths from 52 to 90 and the weight function f(ω) = 1.

Therefore the mean Green function in three dimensions has the form

Ḡ(x,y; k) = −e−ρσtr/2 e
i<[Keff ]r

4πr
, r = |x− y|. (120)

From Fig. 21 we see that <[Keff ] is linearly proportional to k with a constant only slightly
larger than one.

To demonstrate the robustness of our approach, we will just use the phase factor eikr of
the free-space Green function as the back-propagator P for imaging. Fig. 22 and 23 show
the results with 7 obscured point targets and f(ω) = 1 and f(ω) = ω−1, respectively.

This simple imaging method can be easily extended to the case of extended targets. Fig.
24 shows the result with 5 line segments in both the passive and active array cases.
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FIG. 23: The same setting as in Fig. 22 except with f(ω) = |ω|−1. Compared to Fig. 22, the
resolution worsens but the stability is improved.

E. Coherent imaging in a Rayleigh medium

A Rayleigh medium is characterized by a zero-mean (i.e. zero K-factor) Gaussian dis-
tributed Green function G. Physically speaking, this assumption can be expressed by g � 1,
where the dimensionless conductance g is the ensemble average of the transmittance [2], [47].

When g � 1, the transfer function G possesses a dominant short-range correlation on the
scale of the transport mean-free-path. If the field point separations are larger than `t we can
make the approximation

E [G(x,y)G∗(x′,y′)] ≈ E
∣∣G(x,y)

∣∣2δ(x− x′)δ(y − y′) (121)

where x,x′ are points on the front surface X of the wall while y,y′ are points on the back
surface Y .

By (121) and the rule of computing Gaussian moments we obtain the fourth-order coher-
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FIG. 24: Passive (left) and active (right) array imaging with 51 antennas of 5 line segments cluttered
in 3000 particles. The 51 equally spaced antennas are placed on the boundary x = −5000, y ∈
[0, 5000] (not shown). The other imaging parameters are the same as in Fig. 22.

ence function

E [G(x1,y1)G∗(x′1,y
′
1)G(x2,y2)G∗(x′2,y

′
2)] (122)

≈ E
[∣∣G(x1,y1)

∣∣2]E
[∣∣G(x2,y2)

∣∣2] [δ(x1 − x′1)δ(y1 − y′1)δ(x2 − x′2)δ(y2 − y′2)

+δ(x1 − x′2)δ(y1 − y′2)δ(x2 − x′1)δ(y2 − y′1)
]
.

For a statistically homogeneous medium the mean angular transmission coefficient

E
∣∣G(x,y)

∣∣2 is a function of |x− y| and may be expressed as

E
∣∣G(x,y)

∣∣2 = T̂ fT (|x− y|)

where the mean (total) transmission coefficient T̂ is proportional to `t/Lc and the angular
transmission density function fG is nonnegative and normalized∫

fT (r)dr =
1

2π
.

Now let us describe the imaging geometry. The array elements are assumed to have the
capability of making coherent measurement as well as transmitting coherent signals. Fur-
thermore, the array elements are assumed to be a point transmitter/receiver and separated
by more than one coherence length `c of the channel, which is typically comparable to the
wavelength λ, so as to form a non-redundant aperture.

The differential scattered field from the front of the target is given by

u(a; s) =

∫
dx′drdxG0(s,x)G(x, r)τ(r)G(x′, r)G0(a,x′).
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FIG. 25: Geometry for imaging the front of the cluttered target

With this we can compute the mutual coherence function of the differential scattered field

E [u(a1; s1)u∗(a2; s2)] = T̂ 2

∫
dr
∣∣τ(r)

∣∣2 ∫ dxfT (|x− r|)G0(s1,x)G∗0(s2,x) (123)

×
∫
dx′fT (|x′ − r|)G0(a1,x

′)G∗0(a2,x
′)

+ T̂ 2

∫
dy
∣∣τ(r)

∣∣2 ∫ dxG∗0(a2,x)fT (|x− r|)G0(s1,x)

×
∫
dx′G∗0(s2,x

′)fT (|x′ − r|)G0(a1,x
′).

The second term in (123) represents the interference effect missing in radiative transfer
theory.

We then have from (123) that

[u(a1 ; s1 )u∗(a2 ; s2 )]

=

∫
dr
∣∣τ(r)

∣∣2[FT (r; s1, s2)FT (r; a1, a2) + FT (r; s1, a2)FT (r; a1, s2)
]

(124)

where

FT (y; a, a′) =

∫
dxfT (|x− y|)G0(a,x)G∗0(a′,x).
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To bring (124) into more familiar form, let us assume that the clutter is in the far field
such that the incident field is nearly a plane wave. Under such condition the Fraunhoffer
diffraction is valid:

G0(a,x) ∼ e−ika·x/La

where La is the distance between the array and the wall. Unimportant constants have been
ignored. Then

FT (y; a, a′) ∼ F[fT ]
(a− a′

λLa

)
e−ik(a−a′)·y/La

where F stands for the Fourier transform. As a consequence we obtain

E [u(a1; s1)u∗(a2; s2)] ∼ T̂ 2F
[∣∣τ ∣∣2](s1 − s2 + a1 − a2

λLa

)[
F[fT ]

(s1 − s2

λLa

)
F[fT ]

(a1 − a2

λLa

)
+F[fT ]

(s1 − a2

λLa

)
F[fT ]

(a1 − s2

λLa

)]
. (125)

The function F[fT ] is typically exponentially decaying

F[fT ](p) ∼ Lc|p|
sinh

(
Lc|p|

)
and limits the number of accessible modes of F[|τ |2] to up to 1/Lc [47]. In other words, the

resolution of
∣∣τ ∣∣2 is ∼ Lc.
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