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AN INVARIANCE PRINCIPLE FOR
DIFFUSION IN TURBULENCE

BY ALBERT FANNJIANG! AND ToMASz KOMOROWSKI

University of California, Davis and ETH, Zentrum

We prove an almost sure invariance principle for diffusion driven by
velocities with unbounded stationary vector potentials. The result general-
izes to multiple particles motion, driven by a common velocity field and
independent molecular Brownian motions.
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1. Introduction. Turbulent dispersion is one of the fundamental prob-
lems in statistical fluid dynamics. Its simplest model takes the form of a
diffusive particle convected by a random velocity field with prescribed statis-
tics. The problem then is to determine the long-time behavior of the particle
motion from the statistics of velocity.

More specifically, let the sample path of the particle {x(¢)},. , be a solution
of the following It stochastic differential equation,

(1) dx(t) = b(t,x(t)) dt + V2 dw(t),

where {w(¢)},,, is the standard d-dimensional Brownian motion and the
vector field b(¢, x), (t, ) € R! X R? is space-homogeneous, time-stationary,
ergodic, incompressible and of zero mean. One would like to find sufficiently
general conditions on the velocity b under which the rescaled processes

(2) x,(t) = ex(t/e?)

converge to a Brownian motion. The scaling in (2) is known as diffusive
scaling. Sometimes a space-homogeneous, time-stationary function is simply
referred to as a stationary function.

Received February 1997; revised September 1998.

Supported in part by NSF Grant DMS-96-00119.

AMS 1991 subject classifications. Primary 60F17, 35B27; secondary 60G44.
Key words and phrases. Diffusion, turbulence, invariance principle.

751



752 C. A. FANNJIANG AND T. KOMOROWSKI

Long-time diffusive limit for steady (time-independent) flows have been
previously obtained [Papanicolaou and Varadhan (1982), Oelschlager (1988),
Osada (1982), Fannjiang and Komorowski (1996), Fannjiang and Papanico-
laou (1996) and the references therein]. The conditions on b are naturally
phrased in terms of a stream matrix H. A stream matrix H for the velocity b
is a skew-symmetric matrix and satisfies

V-H=b.

This determines H up to a Coulomb gauge. Without loss of generality, we
assume that H is expressed in terms of a solenoidal vector potential with zero
mean, so it is unique. The stream matrix is not homogeneous in space in
general even if b is homogeneous. However, in dimension three or higher, the
stream matrix is homogeneous and square integrable provided that the
velocity correlations decay faster than the power of two at large distance
[Fannjiang and Papanicolaou (1996)]. For nonhomogeneous stream matrices,
anomalous diffusions, rather than the normal diffusion, are expected
[Bouchaud and Georges (1990), Fannjiang (1998), Koch and Brady (1989)].

For steady flows, long-time behavior is diffusive in probability with re-
spect to the velocity ensemble if H(x) is square integrable [Fannjiang and
Papanicolaou (1996)]. For almost sure convergence, the best condition to date
is that H has finite pth-moment with p > d, the dimension [Fannjiang and
Komorowski (1996)].

The time dependence in velocity, hence in stream matrix, introduces
additional difficulties, which are not addressed by previous techniques. Re-
cently, Landim, Olla and Yau (1996) showed the convergence to Brownian
motion in the case of time-dependent, uniformly bounded fields with bounded
stream matrices.

In the present paper, we show the almost sure convergence to Brownian
motion (an invariance principle) for velocity fields with unbounded stream
matrices. The stream matrices are space homogeneous, time stationary and
ergodic and satisfy the integrability condition

®) i [ [ (/a0 i<,
with

d 2
(4) > + 7 <1

in addition to the standard regularity conditions on the velocity (Section 2).
From this it follows that the invariance principle holds for stream matrices
with finite pth-moment,

(5) EH|? < «, p=q>d+2.

When g = « in (3), then p > d and the condition for steady flows described in
Fannjiang and Komorowski (1996) is essentially recovered.
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Unbounded velocity fields such as Gaussian fields or those given by
Poisson point vortices are commonly used in turbulence modeling and compu-
tation [Chorin (1994), Frisch (1996), McComb (1990)]. The resulting stream
matrices are unbounded in far fields with probability 1. In this regard, it is
essential to deal with unbounded stream matrices. A stationary Gaussian
velocity field, with correlations decaying faster than the power of two in three
or higher dimensions, has a stationary Gaussian stream matrix satisfying (3)
and (4). Outside the realm of Gaussian fields, we show that, for dimension
d > 2, any stationary velocity field b, with finite pth moment, p > 2d + 4,
and with the spatial a-mixing coefficient decaying sufficiently fast gives rise
to a stationary stream matrix satisfying (5) [see the remark after condition
(H2)].

Condition (3)-(4) does not take into account temporal randomness, which
may compensate lack of space decorrelation in velocity and is probably far
from being optimal.

The invariance principle can be easily extended, in two directions:

1. The case with an unbounded symmetric part (Section 4). If the molecular
diffusivity is a positive-definite, square integrable (i.e., E[S|® < «) random
matrix S(¢, x) bounded away from zero such that

1 /2 q/p

dt(f 'S(t/sZ,x/a)' dx < o

lxl<1

(6) lim supf
el0 0

)

and, if the unbounded stream matrix H is square integrable (i.e., E|H|* <
©) and

/
(7 limsupfldt(f |VS_1H(t/€2,x/8)|p dx)q ’ < o,
0

el 0 lxl<1
with p, g as in (4) then the invariance principle holds (See Section 4).

2. Multiparticle motions in flows, driven by independent molecular Brownian
motions. Our estimates show that, in the diffusive limit (2), the joint
process of N particles essentially comprises N d-dimensional martingales
w.r.t. independent d-dimensional Brownian motions and, thus becomes N
independent diffusion processes in the limit. Thereby we obtain the invari-
ance principles for multiparticle motions in flows.

1.1. Outline of the method. The standard approach to diffusive limit
theorems consists of two parts: the weak compactness of the rescaled process
x,(t) and the identification of limit. For a flow with a uniformly bounded
stream matrix, be it steady or not, the compactness is readily available by
either the Aronson—Nash estimate for Green’s function [Aronson (1967)]
and/or other techniques for estimating the modulus of continuity [Olla
(1994)]. When it comes to identification of limit, time dependence introduces
additional difficulties and the previous techniques fall short of establishing
the so-called sublinear growth estimate for the difference between x,(¢) and
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a particular martingale, which is supposed to capture the long-time asymp-
totics of x,(¢).

When the stream matrix is time dependent and unbounded, both compact-
ness and identification of limit are in question. As in Osada (1982), Kozlov
and Molchanov (1984), Kozlov (1985), Fannjiang and Komorowski (1996) and
Landim, Olla and Yau (1996), we decompose the process x_(¢) into a martin-
gale part, called the harmonic coordinates, and a fluctuation, called the
correctors. This decomposition can be done if velocity is locally Lipschitz, and
the stream matrix is locally bounded. The hard part of the approach is to
obtain uniform estimates on the far field behaviors of correctors, which is the
difference between the harmonic coordinates and x [i.e., (Y3) of the Main
Lemma in Section 2]. Under the integrability condition (3)-(4), this can be
done by generalizing to the current setting the classical estimates for the
maximum and continuity moduli of Moser (1964) and Kruzkov (1963), respec-
tively. This enables us to show that the fluctuation is uniformly small with
probability 1 in the velocity ensemble. The standard martingale invariance
principle then gives the desired result.

Moser and Kruzkov proved maximum and uniform Hélder continuity
estimates, respectively, for positive subsolutions of parabolic, divergence form
equations with bounded coefficients. For the bounded stream matrix, their
estimates easily lead to the desired results. When Moser’s and Kruzkov’s
arguments are used in the context of unbounded coefficients with (6) and (7),
the estimate for maximum norm remains intact but the Hélderian estimate is
weakened to that for the continuity modulus (Lemmas 2 and 3 in Section 4).

The major difference in techniques between the present paper and Fann-
jiang and Komorowski (1996) lies in the asymptotic uniform linearity esti-
mate for the harmonic coordinates [(Y3) of the Main Lemma in Section 2]. In
the case of steady flows, by Sobolev’s theorem of compact embedding, the
estimate for the maximum modulus is sufficient to show that the correctors
die out uniformly on any compact sets. In the case of unsteady flows, due to
the lack of ellipticity in the time variable, the compact embedding fails in
space-time and the estimate for the maximum modulus (Lemma 2) gives
only a bound on the correctors. To resolve this problem we prove estimates for
the modulus of continuity (Lemma 3) which, together with the estimate for
the maximum modulus (Lemmas 1 and 2), yields the compactness in the
space of continuous functions. Then by a weak convergence result (Proposi-
tion 3), we show that, in the diffusive limit (2), the harmonic coordinates
become uniformly close to the original ones almost surely. Thus, in the limit,
the displacement is essentially a martingale. The desired invariance principle
for single-particle motion follows from the standard martingale invariance
principle.

The invariance principle for multiple particles, each driven by the common
velocity field and independent molecular Brownian motions, also follows
easily from our approach since, in the limit, the joint displacements become
independent martingales. In general, multiparticle motion in turbulence is
much more difficult to study, since the system of equations for the joint
displacements is not space homogeneous.
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2. Main results. Let the triplet (Q, 7", P) be a probability space and E
the associated expectation. Let (Q, 7", P) be endowed with a group of P-mea-
sure preserving transformations 7, , with parameters (¢, x) € R 1'% R? The
group 7, , is assumed to be ergodic, that is, if Plr, ,(A)a A] =0 (2 here
means the set operation of symmetric dlfference) for all (¢, x) € R! X RY,
then either P[ A] = 0 or P[A] = 1. Moreover, 7, , is assumed to be stochasti-
cally continuous. This implies that the group of isometries U, , on L*(Q)
space given by

U, f(0) =f(1, s(w)), (t,x) €R'XR?

is strongly continuous. We have the spectral resolution
U,’x=ffexp{i(t'r-f-x‘g’)}?/(dq-,dg), (t,x) € R* X R%,

where #(dr, d¢) is the spectral measure of U, ,.
For a fixed %k € {0, ..., d} we define the skew adjomt operator,

D, =if [&u(dr,dE),

with £, = 7. For k = 1,...,d, D, generates the subgroup {Us, ve,}xc r and D,
the subgroup {U] ¢}; c & Here e, =(1,0,...,0),. =(0,...,0,1) € R4,

Let L?(Q), p > 0, be the space of functions on (Q, 7, P) w1th finite pth
moment. Let H(Q) be the space of square integrable functions with square
integrable spatial gradient

HY(Q) = {g e L*(Q) ‘fIDkglz(w) dP(w) < o,k = 1,...,d.}.

A function g(¢, x; o) is space homogeneous and time stationary if it is the
translate of a function g € L?(Q),

g(t,x;0) =g(1,(0)), (¢,%) €R XR

Such functions are also referred to as stationary functions. With a slight
abuse of notation we denote the function and its translate by the same
notation, distinguished only by the display of independent variables.

Let H(w) = [H, ()] € (L*(2)**? be a d X d antisymmetric matrix sat-
isfying the following two conditions almost surely w.r.t. P.

(H1) EH = 0 and

1 » q/p
(8) 1imsupf (f |H(t/e%, x/e)| dx| dt <o
el0 0 \Jlxl<1

for

d 2
— + — <1, p,q > 0.
p q

(H2) The matrix H(¢, x; ) is continuous in ¢ and x. Its realizations are
continuously differentiable in x.



756 C. A. FANNJIANG AND T. KOMOROWSKI

In the sequel d,,, m = 1,..., d, denote the partial derivatives in space and
d, the time derivative. As usual, V = (d;,...,d,) and A=V -V =¥ _, 92

Thanks to (H1) and (H2), the velocity field b = V - H is well defined and is
divergence free.

REMARK. Let us give a condition on the velocity field & which guarantees
(H1). For arbitrary x € R? and A > 0 we denote by B (x) ={y =
(Yiseees Y)Y <Xq,...,5, <x4} and B, (x,h) = {y: dist(y, B_(x)) > h}.
The spatial a-mixing coefficient of the field is defined as a(h) := inf, a(h, x),
where a(h, x) = inf |P(A N B) — P(A)P(B)|. Here the infimum is taken
over all events A and B in the o-algebras generated by the field restricted to
B_(x) and B (x, h), respectively.

Let 2 be the LP-generator of the Markov process 7(t) = 7 ,;,(w) where
w(t), t > 0 is a standard Brownian motion independent of w. It is easy to see
that b gives rise to a stream matrix satisfying (H1) if b = (—%)"/%g for some
g € (LP(Q))?. This condition in turn is implied by

= E{|P'b|"}"?
(9) /OLT}__OZ

Here P! is the semigroup of transition probability associated with 7. One can
show that E{/P'b|"}/? ~ ¢t~ ¢/* for large t if b € L9, for any q > 2p, and
sup . o h"a(h) < « for n sufficiently large [see Ibragimov and Linnik (1971),
Theorem 17.2.2]. For such b and d > 2, (9) holds. O

t < o,

The velocity field b is assumed to satisfy the following condition.

(B) The field b(¢, x; w) is P a.s. Holder continuous in ¢ and Lipschitz
continuous in x on any compact subset of R' x R%.

REMARK. One can show by using a truncation argument and a result of
Port and Stone (1976) that the solutions x(¢) of (1) do not explode with
probability 1 under stationarity and (B) without the usual linear growth
condition.

Let the triplet (W, .#Z, @) be the underlying probability space of a standard
Brownian motion w(t¢), ¢t > 0 and let M denote the expectation w.r.t. the
measure . We assume that the measure @ is independent of the measure P.

Let x9(¢; w,w?), w? € WY, j=1,..., N be the solutions of (1) with the
Brownian motion w(t) replaced by N independent Brownian motions w(¢)
with their corresponding probability space denoted by (W, .7’ QW) j =
1,..., N. The equation of motion for the joint displacement of N particles,

X(t;0,0) = (xV(t; 0, wD), ..., M(t; 0, w™N)),
takes the form

(10) dX(t; w, ) = B(t, X(t); 0, ) dt + V2dW(¢; ),
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where B(t, X; o, w) = (b(t, xV;0, w®), b(t, x?; 0, w®),
oob N o, w®™) and Wt @) = (w®P(t; w®), ..., w®™(E; w). As
usual, we drop w,w"” from the notations where there is no risk of confusion.
Let x(¢) = exY¢/e?), j=1,..., N, be the rescaled displacement and let
X2(t) = (xP(t), ..., xN)(¢)) be the rescaled, joint displacement.

It appears that (10) is of the form similar to that of the single-particle
motion (1), except that the joint velocity field B(¢, X) is no longer homoge-
neous in X. This is one of the difficulties in studying multiparticle motions.
However, this difficulty makes no difference in our approach because of the
sample-wise nature of the results in the Main Lemma.

MAIN THEOREM. Under conditions (H1), (H2) and (B), the following state-
ments hold almost surely w.r.t. the measure P:

(1) The limit

(11) timy 50

t 1o

i i,j=1,...,d
exists and is deterministic.

(i1) The family of processes {x (t)},. o, given by (10), satisfies the invari-
ance principle, as ¢ — 0, with the limiting Wiener process having the covari-
ance matrix D = [d;].

(iii) The family of processes {X_(t)},. o satisfies the invariance principle, as
g = 0, with the limiting Wiener process whose covariance matrix is block
diagonal with each block given by D = [d;;].

The key ingredient of the proof is the Main Lemma about the existence of a
special random coordinate system (¢, x), known as harmonic coordinates
[Kozlov and Molchanov (1984)].

MAIN LEMMA. Under conditions (H1), (H2) and (B), the harmonic coordi-
nates y(t, x, w) = (y,(t, x, 0),..., y,(t, x, w)) exist, almost surely w.r.t. P,
with the properties (Y1), (Y2) and (Y3).

(Y1) The harmonic coordinates y are continuously differentiable in t and twice
continuously differentiable in x, and they solve the equation

(12) o,y(t,x) + Ay(t,x) + (b(¢t,x),V)y(t,x) =0, ¥(0,0) = 0.

(Y2) The Jacobian matrix Vy(t, x) is stationary, square integrable and has
the mean E(Vy) = L
(Y3) The rescaled harmonic coordinates y/(t,x) = ey(t/e?, x/e) have the
asymptotics
lim suply,(t,x) — x| =0,
el 0

‘Q'T,R

where Qp p(t, x) is the cylinder [t,T + t] X {y € R | |y — x| < R}.
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By (B), the harmonic coordinates y(¢, x) are essentially the same as the
Euclidean ones in the limit. Now the sample path in the harmonic coordinate
system is a martingale almost surely and the desired invariance principle
follows from the standard martingale invariance principle. The rest of the
proof goes as follows.

2.1. Proof of the main theorem. In this section, we make w-dependence
explicit in the notation and write, for example, x“(¢), y “(¢), instead of x(#),
y(?).

PROOF OF PART (i).
Using Ito’s formula and (Y1), we get that
Myk(t,x“’(t))yl(t,x“’(t))
t

2
= MV, (5), (s, x°(5))) ds.

Let us denote by .Z,, s > 0, the filtration of o-subalgebras of .# generated
by w(t), t < s. Note that

nw(t;a-) = Tt,x‘“(t;o-)(w)’ t>0
is an -valued, stationary Markov process with respect to the filtration .Z,,
s> 0.
Since the group 7, , is stochastically continuous,
P'f(0) = Mf(n°(t)), =0
is a strongly continuous semigroup of Markov operators in L?({2).

Proposition 1 is well known in the time-independent case [Osada (1982)]
and the proof can be easily adapted to our setting.

(13)

PROPOSITION 1. Measure P is invariant and ergodic for the family
M@}, 5 0, © € Q, that is,

EP!f=Ef forfe L*(Q)andt >0
and if for some A € 7,
E|P%, —xa|=0 fort=0,
then P(A) = 0 or P(A) = 1.

By (Y2) the right side of (13) equals

2 .
7/0P5fkl(w) ds

for any ¢ > 0 where
d
fkl(w) = Z amyk(()’o’ w)&myl(()’o’ (l))

m=1
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From Proposition 1 and the individual ergodic theorem [see, e.g., Krengel
(1985), Corollary 3.8] we have that for P-a.s. w,

(14) lim Myk(t,x“’(t))yl(t,x“’(t)) _ 9y,

i1+ t

Define y “(¢) = y(¢, x“(¢)). Then y “(¢) is a continuous local martingale for
almost all w. Moreover, since

M[fOT|Vy(t,x“’(t))|2 dt| <o

for any T > 0, y,“(¢) is a continuous martingale.
Next, we show

| xo(4)P
(15) limsup M——— <
(1 4o ¢

almost surely in P.
Indeed, we have

Ix“(¢)? 1x“(t)|? lx ()
M : =M L Xuxews | T M| — PR (FEOIENG
Ix(t)*
<Ml —Xuxwwi>yn| + 1
Notice that
Ixe(t)|
P X{1x ) > VE]
16
(16) % (1) — y (1) v (o)
<2 ; Xuxewn>y0) + T Xxewi> i |-

As remarked before, the sample path x “(¢) does not explode for almost all
. Thus x“(¢) is finite with probability 1 and we set 1/|x“(¢)| = e(w, o).
With this the first term on the right side of (16) can be written as

Ixe(t) —yo(t)
; X[|x ) > vt

( t x“(t) )
“\xe (o) 1x(0))l

(17)

2
Ix(t)
; Xllxe)> 1o

where

z (t,x) =y, (¢, x) —x.
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Since |x“(¢)| > V¢, we get from (17) that

Ix(t) -y (t)
; X[1x“(t)|> Ve ]

(18) xe(2)?

2
< sup suplz.(s,x)l " Xiixe(0))> e

0<s<1/1/t_ Q44

By (Y3) there exists ¢,(w) such that for ¢ > ¢,(w) the right side of (18) is
less than or equal to

1|xe(¢)
4 ; Xuxen> i

Then (16) implies that

lim sup M[IX(D#I—X“X@(”D‘/;]] <4 lim Mm,
PRy t1 4 t
and, hence (15).
To end the proof, we note that
M[xé”(t)xz‘”(t)]
t
_ M{ [x2(2) - y;é"(t)]t[xz‘"(t) — ()] }
19
o MECICORO T WECTE O REL L]
M yzé"(t):'z‘"(t) ]

The first term on the right side of (19) can be estimated as above by
Ix(t) — ye(t)I
M[ () —y°(t)

t

x“(¢) - y*(¢)I” x“(2) -y ()"
=M ; Xixewy> | ¥ M ; Xiix o) <yt]
2 |Xw(t)|2
< sup sup|z.(s,x)|'M — | tsup |z,,5(1, )],
0<e<1/yt Q11 B,

which vanishes as ¢1 + . The same conclusion can be reached for the
second and third terms. By (14) we have the proof of part (i).
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PROOF OF PARTS (ii) AND (iii).
The preceding analysis shows that

D = E[Vy(0,0)(Vy(0,0))"] > L,

where D = [d,;];, ;-1 4, with d,; given by (11). Thus D is invertible.
Denote y“(¢) = ey “(¢t/&?), € > 0. By It&’s formula and (Y1),

y(6) = V2 e[ (Vy(s,x4(5)), /2 dw(s)).

Set yV(t) = (D~ Y2y“(¢),v), t > 0. The processes y,* V'(¢), y. > v2(¢) are sta-
tionary, mean-zero, square integrable and continuous martingales with joint
quadratic variation

32 —
(g, yovey, = 32/:/ (D Wy(s,x°(s))[Vy(s,x°(s))]", v, ® V2) ds.

By Proposition 1 and the individual ergodic theorem again,

ii?g (¥, 27,5, = t(vy, Vy).

By a modification of Theorem 5.4 of Helland (1982) [Fannjiang and Ko-
morowski (1996)] the family (D~ '/2y“(¢)},.,, & > 0 converges to the stan-
dard Brownian motion and the invariance principle holds.

Fix T, N > 0 and denote by 75 , the exit time of x?(¢), ¢ > 0 from the ball
By. By (Y3), lim, , SUPg <<y, a7 |2 (0 = 0, where z7(¢) = z,(¢,x7(2)).
Suppose that sup, ., ¢ A7 |22(¢)] <1 for 0 < & < gy(w). Then, for 0 < & <
golw), we have '

Q| sup [x2(t)l > N] =Q[ry ,<T]
0<t<T

-Q

¢ ,.<T, sup ly2(t) >N - 1]
0<t<T

<Q

swlﬁﬁﬂzN—q.
0<t<T

Since {y,°(#)},., converges to a nondegenerate d-dimensional Brownian
motion, there exist constants y, C > 0 independent of &, w such that
limsup Q| sup [x2(¢)> N] < Ce N
el0 0<t<T
[Chung and Zhao (1995), Proposition 1.16, page 20]. Thus, for any p > 0,

limsup@| sup |z2(¢)l > Q]
el0 0<t<T

< limsup @ sup |z2(¢)l > o] + limsup@Q| sup [x2(¢)I>N
el0 O<t<ty AT el0 0<t<T

< Ce 7N,
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Since N > 0 can be chosen arbitrarily, we conclude that
lim@| sup |z2(¢)|= 0| =0
el0 Jo<t<T
for any p > 0.
Thus {x2(¢)},. , satisfies the invariance principle as & | 0 for almost all .
The covariance matrix of the limiting Wiener measure is D.

3. Proof of the main lemma. Let By(x)be theball{y € R?| |y — x| <
R} and Q; g(t, x) the cylinder [£,T + t] X Bp(x). We write By and Q;  in
case x =0,¢=0.

We denote the L? 9(Qy (¢, x)) norm by

1 T 1 q/p\ /4
t+
leaitnsten = {?ft ds[lBﬂfB oI dy] }

R

and just write ”f”p’QTYR(th), if p = q. Likewise ||fll,, pyx) has an analogous
meaning. For p and/or ¢ = «, we mean the essential supremum.
A weak solution (subsolution) of the equation
d
(20) su(t, )+ Y dlan(t, ®)au(t, ®)] = 0
El=1
with a =[a;;] =1+ H is a measurable function u having locally square
integrable space-gradient,

(21) lullg, o, 0, , + IVUllg 2,0, , <
and satisfies

ffnTJ”‘;‘”“”‘)”“”‘)

d
+ Y ay(t, x)du(t, x)d,n(t, x)|dtdx = 0(< 0)
B l=1

for all 7', R > 0 and nonnegative smooth functions n with compact supports
in x for each ¢. Any (weak) solution u can be written as u = v — w where
both v = Vu? + 8, w = Vu? + 8 — u are (weak) positive subsolutions and &
is any positive number. This decomposition is used several times in the
sequel.

(22)

3.1. Existence of the classical solution: Proof of (Y1) and (Y2). We first
use a cut-off argument to construct solutions to (12). We need to show that
the limit solution, as the cut-off is removed, is a weak solution. Then by a
classical theorem a weak solution is a classical solution also (Proposition 2).

Let ¢,: R — R be a smooth, odd function such that ¢,(x) = x, for |x| < n,
o x)=n+1, for x>n+1 and ¢ (x)=—-n—-1, for x< —n—1 and
lg(x)] < 2, x € R. We define the cut-off matrix H™ = [H{P], ,_, =, with
H{pP = ¢,(Hy).

.....



DIFFUSION IN TURBULENCE 763

Let &, , 5(f,8), 0> 0, B> 0 be the closed bilinear form given
ga—, n, B( f’ g)

d
(23) =cE(D,fD,g) + Z E[(‘Skl +H}§7))Dzﬂ)kg]
k=1
—E(D,fg) + BE(f2),
for f, g € HY(Q). The first term on the right side of (23) regularizes the time
variable. Now that the coefficients are bounded, by one Lax—Millgram lemma,
a unique f}, , , 5 € H'(Q) exists with

d
(24) gcr,n,ﬁ(fk,o-,n,ﬁ’g) = = ZE(ng’ll)Dlg)’
=1

for all g € H'(Q). Thus the equation is satisfied in the sense of distribution,

d
U&tsz,ﬁ,o-,n(t’ x; w) + Z dl[(alm + Hl(lz)(t’ x5 w))&mfk,ﬁ’,a,n(t’ x; w)]
l

,m=1

+ atfk,B,o-,n(t’x; w) - Bfk,ﬁ,o,n(t’x; (1)) = bgan)(t’x; w)

almost surely.

By the classical regularity theory for divergence form equations with
bounded and measurable coefficients [Ladyzhenskaya, Solonnikov and
Uraléeva (1968)], we may assume that f, , , ;(¢, x; w), k = 1,-,d are locally
Holder continuous and its first derivatives are locally square integrable.

Substituting g = f;, ,, , 5 into (24) we have that

UE{(DOfk,a,n,ﬁ)z} + lg:lE{(lek,a,n,ﬁ)z} + BE{(fk,o-,n,B)z} <C

uniformly in all parameters. Extract an L?-weakly convergent subsequence
(Difion gDl o n, g) with limit F, =(F, ,,..., F, ;) € (L2 Q)
and set

d e 1
(25) fu(t,x) = Lif [ e §#(drdg)F, ;.

1=1 'R’R? s
Here f,(¢, x; ) is not stationary in general [note f,(0,0) = 0]. For a fixed
(¢, x), integral (25) defines an elements of L%(Q)). Clearly, we have that
£(¢,0) = 0 and Vf,(¢, x; w) = F,(¢, x; w). Thus, the function
(26) yi?(t’x)=xk+fk(t7x)
and its spatial gradient are locally square integrable and y(¢,0) = 0.
Let y,(¢,-), k =1,...,d, be the distribution given by

it m) = fRdyz?(O,x)n(x)dx

ixg _

(27) .
* Z /().[Rd[alm+Hlm(s’x)]&my}?(t’x)é'ln(x)dsdx,

l,m=1
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for any n € Cj(R?). Since y) are distributional solutions, we have

—wi(t,om) = [ oyt ®)n(x)dw, 1=1,..,d.
R
Thus y,(t, n) can be written as [y,(x)n(x) dx with a measurable function

(28) yi(t, x) = 3,(¢,0) + yi(t, x).
Note that y,(0,0) = 0. Equation (27) now becomes

[ et ®)n(x) d
(29) = [ 240, ®)n(%) dx

d

+ Z ftf d[alm +Hlm(s’x)]dmyk(t’x)dln(x) dex’
I,m=1"0"R

for all n € C5(R?). Because H(¢, x) is locally bounded almost surely we have

from classical regularity theory that y(¢, x) = (y,(¢, x)) is twice Holder

continuously differentiable in space and once in time locally provided that y,

are weak solutions.

PROPOSITION 2. The harmonic coordinates y,(t, x), k = 1,...,d, given by
(28), are local, classical solutions of (12) almost surely.

Proor. It suffices to show (21). It is easy to see from (29) that y,(¢, x) is
locally integrable almost surely. Let x(¢, x) be a nonnegative, smooth, com-
pactly supported function satisfying x(—¢, —x) = x(¢, x) and [/ x(¢, x) dtdx
= 1. We set x,(¢,x) = (1/8°" ) x(t/8,x/8) and y, 5 = x; * y). Here * de-
notes the convolution. We have the equation for y, ;.

O ¥p s+ Ay, 6 =15
with f; = X 1[(b,d,5,)* xs], in the classical sense.

Because sup;. || f5ll2, 2, o, <%, we have, by standard estimates for the
heat equation, that

supl|Vy, sllz,2,0, , <,
6>0
sup sup |y, 5(s,)ll2,5,(2p) <
8>0 se[0,7T]
almost surely. Thus the limit y, = lim; _,, y, ; must satisfy the same esti-
mates, namely, (21). O

To see that (Y2) is satisfied: Vy,(¢, x, 0) = Vy (¢, x, 0) = F,(¢, x, 0) =
F, (1, x°) € LX(Q).

3.2. Asymptotic behavior: Proof of (Y3). In the sequel we write a = [a,,,],
with
alm(t’ x) = 81m + Hlm(t’ x)’
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and a, = [a;, ], with

A, (E, %) =8, + Hy,(t/e%, x/¢).
The rescaled harmonic coordinates then satisfy the equation
d

(30) C?tyk,s(t’x) + Z al[alm,e(t’x)amyk,e(t’ x)] = 0.
I,m=1

We first prove a weaker version of (Y3), by showing weak convergence of
the rescaled coordinates. Then, in the next step, we strengthen the sense of
convergence.

PROPOSITION 3. For any n € C(Bg) and ¢ € C(Qy p),

li 0, dx = x) dx
lim | ECROLIC) /, (%)

and

T T
li = dx.
(31) 81{13[_TfBRyk,a(t,x)d>(t,x) dtdx f_TfBka(b(t,x) dtdx

To show Proposition 3 we need a standard averaging lemma which is
closely related to the individual ergodic theorem.

PROPOSITION 4. Suppose f(w) € LX(Q) and ¢(t, x) € L*(Qy ). Then

(32) iifl(l)foT’RUt/az’x/g};(w)d)(t,x) dtdx = E{f}//QTYRd)(t,x) dt dx and

(33)  lim [ Us,s/of(0)$(0, ) dx = E{7 |7} [ (0, %) de,

for almost all w. Here 7, is the sub-o-algebra of sets invariant under space
translations.

PROOF OF PROPOSITION 3. Set y; (¢, x) = eyf(t/e”, x/¢). It is useful to
write

d
(34) [ y.(0,x)n(x)dx = X [Tds[ 4,30 (0, 55)x,m(x) dw.
Bp =170 Bp

Using Vy, (¢, x) = e, + F,(¢/£% x/¢) and passing the limit by (33) we
have that
lim 9 (0, x)n(x) dx
i [ 32,0, )7(x)
(35) d
= f xpn(x) do + 3 E[Flk | 73][ xm(x) dx
Bp =1 Bp

for any n € C(Bg). The remainder of the proof is to show that the second
term on the right side of (35) vanishes.
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By (26) and (32) we have, after a standard computation [cf. Fannjiang and
Komorowski (1996)], that

(36) tim [* [ Rt X)) o(0) ded = [ et () d,

for any n € C(ER) and ¢ € C[-T,T].
From (30) it follows that

f_TTfB Vi, o (2, X)n(x) o(t) dt dx
= [ 780 () ax [ o)

d t
+ X [TTso(t)dt{/O/Balm,g<s,x)amyk,xs,x)am(x)dsdx}

I,m=1 —

for any n(x) € Cj(Bg), ¢ € C[-T,T]. By (32) the second term on the right
side tends to

d
kgl /OthRE[aFk]Vn(x) dsdx = 0

by integrating by parts.
Thus (35) implies

T
li t, t) dtdx
tim [ f, 3no(8 £)m(x) o(8)

(37) 4
= fBkan(x) dx + l§1E[FZk | 73] fBRxm(x) dx f_Tqu(t) dt,

for all T > 0.
From (28) we have

T T
li ¢, t) dtdx = li v (t, t) dtd
tim [ [ no(t @)n(x)0(t) lim [ [ 98.0(t ®)n(x) o(2) dt

for any n € Cy(Bg), [z n(x)dx = 0,and ¢ € C[-T,T].
Equations (36) and (37) then imply

d
(38) ElE[Flk | 7] @m(x) dw =0

for all n € L*(By) with [, n(x) dx = 0. Thus E[FF| 7] =0, for all
k,1,...,d. We have (31) by (37) and (38). O

We shall show that the weak convergence of the rescaled harmonic coordi-
nates can be strengthened to the convergence in L” norm. We first prove an
estimate needed for compactness in L” norm of the harmonic coordinates.
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LEMMA 1. Under conditions (H1), (H2) and (B), we have

limsup || y;, Mo, =, 0, 5 < %
el0

for any T, R > 0, almost surely.
PrOOF. By the Gagliardo—Nirenberg inequality [Ladyzhenskaya, Solon-

nikov and Ural’ceva (1968), Theorem 2.2, page 62 and Remark 2.11], we have
that

(39) 154, .(8 ) e 5o < ell V9, (8 ) 2, 5l 3o (25 ) 1 5
with
1\ 2d
“T (1 - Q) d+2
for

T ot®) =yt 2) = [ 2 (8, %) da
R

and
2d
1<s< 1-2

Estimating L*"(Q; p)-norm by using (39) and the Hélder inequality, we get
(40) 5%, s, . Qp p = C SUp ”yk (2, )”1 BR|Vyk o2, Qp e

0<t<T
We take

s =2p*, r=2q*
with

b q
ey T 2

in (40). For p > d, 1 <s <2d/(d — 2).

Note that Vy, (¢, x) = e, + (Vy,X¢/&?, x /&) so the term [|[Vy, ,ll2 2 0, ,
is uniformly bounded by Proposition 1 and Proposition 3.

We claim that

(41) limsup sup lly, (¢,)l1, 8, <>,
el0 0<t<T

for any T, R > 0.
From (40) and (41) it follows that

lim sup " &k,g|l2p*,2q*,ﬂr,k < .
el 0

The proof of Lemma 1 will be complete once (41) and Lemma 2 (and the
Remark) in Section 4 are proved.



768 C. A. FANNJIANG AND T. KOMOROWSKI

Proor oF (41). We write the solution y, , as y, ,=u, , — v, ,, where
u,,=Vyi,+1andv, , =4y, +1 —y,, are positive subsolutions.

Let us consider in (22) for u ©, . the test function ¢ = d(t)py(x) where ¢,
is one for ¢ < T, zero for ¢ > 2T and linearly interpolated in between, and ¢,
is one in By, zero outside B, and linearly interpolated in between. We get

:)u})]f Uy, adx<f fluk 8¢t|dxdt+/ /|a (¢, x)Vu, Vé|dxdt

1/2
2T 2 ( ror
42 < lu, , |dxdt+—( |a£2dxdt)
(42) fO/k,dn Rfowal

I,

1/2
X IVy, I dxdt) .

2R

Here the identity

is used.
The individual ergodic theorem (Proposition 4), applied to |Vy, , > and
la,|?, gives the supremum limit of the second term of the right side of (42),

—-IBglllalla,2, 0., VYell2,2, 057 5r

R

as ¢ tends to zero.
To bound the first integral on the right side of (42), we apply the
Cauchy—Schwartz inequality

(43) ([[Q

and then bound the right side of (43) by the Poincaré inequality,

ffﬂ uf  dedt=[[  (y},+1)dxdt

2T,2R ‘QZT,ZR

Iuk,8¢t|dxdt)2 < ffg up dxdt| [ ¢fdxdt

2T,2R 2T,2R QZT,ZR

2
i gdxdt)

(44) < [ /]

QZT,ZR
+ff |(V3’k)(t/82,x/e)|2 dxdt + 1
QZT,ZR

where c¢ is independent of &. By Propositions 3 and 4 the integral
[ oy on Uk, - dxdt is bounded uniformly as & — 0.
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The proof of (41) is complete in view of the pointwise estimate |y, .| < lu, |
a

PRrROPOSITION 5. Under conditions (H1), (H2) and (B) the family of func-
tions y (-, ; w), £ > 0 is equicontinuous on Qp p, for any T, R > 0.

PROOF. In this proof the notations are the same as in Lemma 3.
Without loss of generality, assume T' = R2. Let us define, following (67),

K(a) = limsup{K(%,,a,)}
10

with &, given by Lemma 3 for a,. By (H1) and (H2), K(a) < % almost surely.
Let o > 0 be arbitrary. Let n be so large that

C(1 - C; exp[ —CK*(a)]}""* limsuplly, oo 005 0p < O
10
where C;,C, k are as in Lemma 3.

Choose 0 and a finite covering ¢ according to Lemma 3 (with A = 1). For
some sufficiently small ¢ < g,(w), K(%,a,) < 2K(%#,a). By Lemma 3,
wykmﬂkz)}e((?“Rz, 6"R) < o, for all & < g,(w) [see (68) for a definition].

For ¢ > ¢y(w), since the matrix H_ is locally bounded for & away from zero,
by the classical Holder continuity estimate [Kruzkov (1963), Moser (1964)],
the modulus of continuity satisfies Wy, 0 R(T, 0) < o, for sufficiently small
7,0 > 0. As a result, the family y, (-, ; ) is equicontinuous for almost
all w. O

Lemma 1 and Proposition 5 yield the compactness of the sequence y, , in
the space C(Q; ) by the Ascoli-Arzela lemma. The limit points of the
sequence are identified as x, by Proposition 3 which then implies (Y3).

4. Estimates for maximum and continuity moduli. In this section
we state and prove the main estimates for a general d X d matrix a(¢, x) =
[a,,(t, x)]. Let S and H be the symmetric and antisymmetric parts of a,
respectively, with the following properties.

(A1) Uniform ellipticity:
(a(t, ®)&, €) = Mg,

for some constant A > 0 independent of & € R? and (¢, x).
(A2) Integrability:

VSt H“P;quT,R <®

lalle,2, 05 o> IS5 /2,4,/2, 04 4>
for

d 2
—+=-<1
p q

forall T, R > 0.
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LEMMA 2. Let u be a nonnegative subsolution of (20) under (Al) and (A2).
Then

1/2(1+d/2v)
(45) “u”oo,oo,QRz/z,R/z(t,x) <C(A,d) / /2y Kllullzpx,2¢%, 02 pit, x)

for all (¢, x) where

2
v=1-——-=>0
p q

and the constant K, given by (66), depends only on d,y =1+ 2v/d and

2
S(p, q, Q) = ”S”p/Z,q/Z,Q +||VS_1H”p,q,Q, QRZ/Q,R/z cQc QRZ,R,
and the constant C(A, d) only on A, d.

REMARK. The same estimate applies to solutions such as the harmonic
coordinates y,. To see this we write, as before, y, = u, — v, where u,
=Vyi+8,8>0,and v, = u;, — y, are positive subsolutions. Clearly, 0 <
v, < 8. Thus (45) holds for y, up to an error 3. Since § is arbitrary, (45) holds
for y, exactly.

ProoF. In the proof, ¢, c¢’, ¢, ¢y, C5, ... stand for constants depending only
on the dimension unless otherwise specified in their arguments, such as in
C(A, d).

Without loss of generality we set (¢, x) = (0,0) and R = 1. The result for
the general case can be obtained by translation and rescaling.

Let

1 1 1

1
Rn=§+2n+1’ Tn=§+W’n:O’1’2’3”'

and B, = By, =Qp g
Smce uisa subsolutlon ‘of (20), the following inequality holds:

(46) [ (=edu + (Vo,aVu)) dtdx < 0
‘Qn

for any nonnegative, differentiable function ¢(#, x) vanishing on the bound-
ary of (), ; except possibly at ¢ = 0. Consider ¢(¢, x) = u(¢, x)n*(¢, x) with
piecewise differentiable function 7(¢, x) vanishing on the boundary of Q, ,,
except at ¢ = 0.

From (46) we get

- %Uﬂ n%,u? dt da + f[ﬂ (nVu,SnVu) dt dx
(47) " ’
< —foﬂn(an, anVu) dtdx.
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By the Holder inequality we have

‘ffﬂ (uVn,anVu) dtdx

(48) < [/fﬂ (nVu, SnVu) dtdx]1/2[ff0 (uVn, SuVn) dtdx]l/z

1/2
_I_

1/2 .
ffﬂn(nVu, SnVu) dtdx] {ffﬂnluvmzl\/FHl dtdx]

By the inequality AB < +A? + 2B?, the right side of (48) is less than or equal
to

1 Vu,SnVu) dtdx + 2 Vn, SuVn) dtd
of], (nVu. Sn¥u) dtds + 2f[ (u¥n,Sun) dtds
2
+2ff luVn2VS TH| dt de.
QH,
The last two integrals can be bounded as
1 2 2

(49) m[[vamzlx/s-lﬁl dtdx <|[VSTH . 0,0, 1uVn02,0 24 0,
and

1
(50) TN /Q (wVn,SuVn) < ISl /2,4/2,0,1u9nl13,: 20+ 0,

by the Hoélder inequality.
Integrating by parts in the first integral on the left side of (47) and
estimating the right side by (49), (50) we get that

! 20 200, x) dx + !
2|Q /B"u ( ’x)n ( ’x) X 2|Q

[[Q (nVu, SnVu) dt dx

al al

51 1 on? 2
(51) < - mffnluz% dtdx + 4||VS_1H||p,q,Q,l”an“%p*,2q*,Q”

2
+ 4“S||p/2,q/2,Q"“anHZp*,Zq*,Qn'

Inequality (51) can be easily generalized to any cylinder [s,T,] X B,
s < T, The first integral on the left side of (51) is then replaced by
[5, W?(s, x)n*(s, x) dx and all other terms by corresponding intervals over
[s,T,] X B,.

Define the function n(¢, x) = () ,(|x)) with ¢,(¢) = 1in [0,T,, 1), ¥,(¢)
= 0 for ¢ > T, linearly interpolated in [T}, , ;, 7,1, and the function ,(r) = 1
for r <R, , y(r) = 0 for r > R, linearly interpolated in [R,, , R, ].
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From (Al) and (51) we have
(52)  AIVull3 20,,, < 4" [S(p, @, Q) Iul3 e 2400, + Iullb 2,0,],

where

2
S(p.q,2,) =18y 2.0/2.0, + VS TH,,0.0,.
Applying the remark after (51) we obtain

sup u?(t, x) dx

(53) tE[O,TnH]l—Q—rJ B, i1
< ¢,4"[S(p, 4, Q) ul3pr, 2q0, 0, + lullf 20, ]

Since u®, a > 1 are still positive subsolutions, it follows from (52) that
(54) AIVusll3 2, n,,, < 4" [S(p,q, Q) ull3epr 20ge, 0, + el 20,0, ]
and from (53),

sup u?*(t,x) dx
(55) t€[0,T, 1] "Bt
= 024”[S(p, q, Qn)”u“%gp*,Zaq*,Q” + ||u||§g,2a,n,l].

Now we combine (54) and (55) into one inequality to be iterated indefi-
nitely to yield the result. To this end we choose the numbers a, b, m > 0 such
that

56 a p* bd* 1 1 1 1
= — — + — =1,
(56) b q*’ am’ ’ am b
with m'=m/(m — 1), p*=p/(p —2), q* = q/(q — 2). Equation (56)
uniquely determines a, b, m. For d > 2,

1 1
- e N (2L D,

d* 1 am’

e T
with d* = d/(d — 2). For d = 2, set
(58) m=1, a=1+p*/q*, b=1+q*/p*.
Since d/p + 2/q < 1,
1 d 2
m &€ 1+d*(p/d—1)’1+d*(q*—1) and ;+Z=d'

Consequently, a/p* = b/q* > 1.



DIFFUSION IN TURBULENCE 773

First, consider the case d > 2. By the Hélder inequality and (57),

eI
T, , b/am
<))

b/am
(59) < (te[sup f w?(t, x) dx) fOT"”(fB

0,7, 1] " Bns1

b/a
w?e dx) dt

b/am’
(wZ(a—l/m))m'dx) dt

n+1

1/d*
w2 clx) dit

n+1

b/am
sup f w?(t, x) dx)
tE[O,Tn+1] Bn+1

<cg

bd*/am’
|

Xf(f"“(fB w? dx + / Vw|* dx

n+1l Bn+1

b/am
(60) 303( sup f w?(t, x) dx)
t€[0,T,,,1 " Bn+1

« /( [, whas | vl dx) ar.

n+1

Here we use the classical Sobolev inequality

1 17d c
_ 2d* 3 2 2 2
(&1) (RZ fBuw dx) = R (wa o +R”anlvw| dx)’

for n =0,1,2,... and any square-integrable functions w with square-inte-
grable gradient Vw. Note that R2 < 1 since 1/2 < R, < 1.
Thus for w = u*®,

2 2 2 2
(62) ||u”23a,26a,0n+1 < 03||ua||2,/o?,"(12,,+1(||vua||2,2,Q,l+1 + ||u°‘||2,2,9,,+1

Using (54), (55) and the inequality llwlls 2,q,,, < c4llwllzp+ 24+,0,,, We have
from (62) that

2 1/am 2
“uHZga,Zba,Q,Hl < 05[4n(s(p, q;Qn) + 04)] “u”Zg}é’g,nZlaq*,Q”
1/b

)l/b.

n

X T(S(p, q’Qn) + 04) + Cy ||u||§g1é*l7,2aq*,a,,

(63)

n

4 A
e LU R (e | [
In a more concise form,
lullzaa,26a,0,,, < C(A,d) 2 2"/«

(64) 1/2a
X S(p’ q"Q’n) + 04(1 + F):I ”u“2ap*,2aq*,.(),"-
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For d = 2, (64) remains true after a minor change in the use of the Sobolev
inequality. Since a > p* and b > ¢*, (64) bounds higher norms in smaller
domains by lower ones in bigger domains so it can be iterated indefinitely to
bound L™>” norm.

Set y=a/p* =b/q*. We write it as y=1+2v/d > 1 with v=1—
d/p—2/q>0.Let o, =y", n=0,1,2,3....

Inequality (64) now takes the form

||u||2p*an+1’2q*an+1’0n+1
A 1/2a,
(65) < C(/\’d)l/zanzn/an S(p,q,Q,) + 04(1 + :17)]

X ”u“2p*an,2q*an,ﬂn~
Iterating (65) we have

. p
||u||‘7’y°°,01/2,1/2 = 111130||u||2p*an’2q,,.am0n = C(/\’ d) 12p2K“u”2P*»2Q*,91,1’
n—

where
59 A 1/2y"
(66) k- [stra0)sefie ]| <
n=0
and
1> 1 y ( cl) * I
= — — = = — —, — <
P 2%’7‘ 20y-1) 2 2v Pz %w

The proof is now complete. O

Let AT, R) be the family of all finite coverings of the cylinder Q; . by
closed cylinders. For any covering & € AT, R) define

(67) K(@”’a) = }ln:‘é(K(Q),“a“z,z,n},

where the constant K({2) is given by (66) with 5> » replaced by (.
We denote the modulus of continuity of a function f in a domain D c R4*!
by

wy, p(7,0) = sup{lf(¢, x) = f(s, ¥)|: (t,%),(s,y) €D,

(68)
It —sl<7,lx—yl <o}

LEMMA 3. Let u be a weak solution of (20) with (A1) and (A2). Then there
exists a covering € € #(R?, R) such that

2np2 n
Wy 0, oo 02"R2, 0"R)

< {1 - Cyexp{~CK“(%Z,a) )"l 00 s

for some k>0, all R >0 and all positive integers n, where constants
6,C, € (0,1) and C > 0 depend only on A, d, v.

(69)
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Proor. We adopt the approach of Kruzkov (1963).
Let a, B be numbers such that

(70) 0<a<i, 0<B<1, 2 (1-a)'pi<i
Set 6 = min(ya/2, B/2).

Let @ be a covering whose members are the cylinders
‘Qi,k,n = QOZn—ZkRZYen—hR(ti, xi), i=1,...,N,k=0,...,n

for some positive integers n and N.
Set

M&) = sup u(t,x), m"), = inf u(t,x).
(t,x)€Q; 4, @&, x)€Q,; 1, p

Let o) = M) — m{}. Without any loss of generality, we can assume that
M) = zw(”) = —m(") Then

1,

u
M7}

u
(71) U =14+ —, v =1-
i Mi(’nk) 1

are two nonnegative solutions of (20) such that 0 < ("), v{*) < 2 and u{"*) +
v =2in Q; , ,. At least one of them, say u{"), is greater than or equal to 1
onaset N Q, , , suchthat uy, (N) > Su,,(Q; , ). Both here and in the
sequel u,, stands for the Lebesgue measure on R m

We want to show that the function u{") is bounded away from zero in the
cylinder (; ,_, ,; that is, there exists constants C >0, x>0, 1> C; >0
depending only on v, d, A such that

(72) u"(t, x) = Ciexp{ —CK*(%,a)} inQ,, ,,,

for 1 <i <N, 2 <k < n. This in turn implies that

’

C
(73) offh < offtf1 = 5 exp(~CR (%) .

foralli=1,...,N, 2 < k < n. Clearly (73) implies (69) with C,; = C} /2.
Define
fs(wih),

where

o
fs(x) = max[ln Py ,0]

and & is a small number to be determined. Note that w; is a subsolution of
(20) since f; is convex. Clearly,

1
(74) wy < lng inQ;, ..



776 C. A. FANNJIANG AND T. KOMOROWSKI

We will show a stronger upper bound for w; in a smaller region,
1
(75) wSSLK(Qi,k,n)lnr(E) inQ;, 5.,

for 0 < y < 1 and § sufficiently small, where constants L, r depend only on
A, p, q, d. This would eventually lead to the desired lower bound (72) for u{").
Without loss of generality we consider ¢, = 0, x;, = 0 only.

Define a test function for (22), with u replaced by u{"),

(76) o(t, x) = f3(u})n*(%)¢(),

where ((t) =1, for 0 <t < af#?" " 2*R? and 0 otherwise, and n(x) = 0, for

lx| > 0" *R, n(x) = 1 for |x| < B6" *R and linearly interpolated in between.
Substituting (76) into (22) and using that £y > (f})?, we have that

0 ff  (ava}, vul[ i (uh)]'n* deds
™ e2ff (aVu) Vo) fy(uh)nded

—// 3,u$m) f3(wr))m? dt d,
Qa, 1) ’ ’
where
Q('T, CI') = QTOZn—ZkRZ’U_On—kR,
for any 7, o > 0. Since |Vn| < 1/((1 — B)0" *R) we then have

[[ (anVw,, qVw,) dtda + [ w,(0, x)n*(x) da
Qa, 1) Bgn-tp

2

(78) = (1-B)6" *R '[‘[.()(a,l)

lanVws| dt dx

+/ ws(ab?" 2k R2 x)n%(x) dx.

Bgn-kp

By (A1) and the Cauchy—Schwartz inequality we get

/\ffma?l)anwalz dtdx

2‘/; 1/2 2 Ve
(79) < g8l 000,/ Byl (UMQ,DW""S' dt dx
+[ wy(ab? R, x)n?(x) dx.

Byn-tp

By the inequality AB < (8A/4)A? + (1/3)\)B? and (74), the right side of
(79) is less than or equal to

i Vuw,|? dtd e 12 B I~ |Byi
T«/fg(a,l)ln w5| tdx + g)‘(—z'”ab’g,g(a,lﬂ gn—kR| + ng| gn-tpl.

1-B)
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Finally,

(80) f/ma, /3)|Vw8|2 dhd < /fma, 1)|nvw$|2 dt

LN L n LByl
< a + = < n-
3)\2(1—3)2 all2,2,0(a,1) X n 5 |/ Bortr

or, equivalently,
1

Vw B T T

IVwsll2,2, ¢, 8y 3972 [a 6" 'R

(81)

16 ) 112
X [W”anz,z,n(a,n + X In E] .
Since w; is a nonnegative subsolution. Lemma 2 implies that
sl oo, 10 s2, 872y < CK(Q(a, B wsllzpe 2q° aca, 5

(82)
< CK(Q(a, B))llwsllz5+,24%, aca, )
with
d 2 d d 2 2
- +t=-=1 T T T ==z,
p q p p q q
with p* =p/(p — 2), ¢* = G/(§ — 2). In fact, p* = a, §* = b as given by

(57) or (58), hence p* > p*, §* > q*. The constants C,C’ depend only on d, A
and v.

We state now an inequality applicable to w; which is closely related to the
Sobolev inequality [Moser (1960), Lemma 2, page 461],

(83) ( /,

o kR

1/d*
w2 (¢, x) dx) < cde [V, (¢, x)I° dx,

Bo" kR
or
(84) “wa(t, ')||2d*,Bﬁgn-kR < VCd BG"_kRHVwa(t, ')”2,3,30”—-1:1;’

for 0 <t < af%""®R? where the constant c, depends only on the dimen-
sion.
Inequality (84) holds because of the following property of ws.

CLAIM.
(85) pa(Np(t)) = 5| Bgyr-ip]
for the set
Ny(t) = [% € Bgpuosp | ul}(2, x) = 9]
and for all 0 < ¢ < af2" 2*R2,
0<8<E= exp{—lz[lnz + 4lallz,2, 0, ./ (3A(1 — 3)23d)]}.
Note that w; vanishes on Nj(#).
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The proof of the claim is postponed until the end of the section. Let us
continue with the proof of the bound (75).
The argument used to obtain (59) can be repeated here to yield

1-1/g* 1/G*
(86) ||w||2,3*,zq*,n(a,/3) < ||w||2,oo,/nq(a,/3)||w||2{iz,2,0(a,/3)~

From (82), (86), (74) and (84) it follows that

lws lle, , 2(a /2, 8/2)

v
(87) <CK(Q(e, ﬁ))(ln E) “wa”z{ig,Z,Q(a,B)

1-1/4* . .
< CK(U(a, B))(ln 3) (86" *R)" T 1uyl1¥ S e -

By (81),

1-1/4* 1 1/q*
s lle, 0, a2, /2) < C3K(Q(a,ﬁ))(ln g) (W)

16« 4 1]ve

2

X|———— e+ —In—
[3/\2(1 _ B)2||a||2,2,n( ) I\ n 6]

8 \1/24¢" 1\1-1/2¢*
J {m3)

1 1/q*
SC3K(Q(C¥,B))(W) (X 3
provided that

88) o in{ K __—401 llall3
< min{ F, ex allz 20, .,/
( P 3/\(1—,8)2 e

Therefore, (75) holds with r = 1 — 1/24*, L = C4(8/8% %aA)'/27" for § satis-
fying (88).
The rest of the argument is split into two cases.

Case 1. When u{")(t, x) + 8% < §, that is, w; > 0, then by (75) we have

é 1\"
< LK(Q, In —
ug',l;e(t7 x) + 82 = exp{ ( l,k,n)( n 6) }

SO

1 r
u™(t, x) > BeXp{—LK(Qiykyn)(ln 3) } — 52

provided that
§< 6, = min{E,exp{—Lz‘f*Kl/l_"(Qi’kyn)},

exp(—4a||a||§,2,n,,k,,,/3)‘(1 - B)z)}'
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Case 2. When u{*)(¢, x) + 8% > 5, we have that u{")(¢, x) > 36 provided
that § < 1/2.

Therefore, for § = min{§,, 1/2}, we have that

u{"(t, x) > Cj exp{ —CK*(%,a)},

where C}, C, k depend only on A, v, d.

PROOF OF CLAIM (85). For any 0 < ¢ < 02" 2*R? let us denote

Ny(t) =[x € Byu-sg: ul)(¢, %) = 1].

Let u,(N,(t,)) be the maximum of u,(Ny(¢)) in af?""2*R? <t < 92"~ 2¢R2,
We show now that

(89) ma(Ni(80)) = (3 — @)(1 - @) " |Byu-igl:
Indeed,
Md(Nl(to))Ozn_ZkRz(l - a)
92n~2kR2
> Ni(t))dt
</;92n~2hR2Md( 1( ))

> /"Ld‘l—l(N) - aazn_2kR2|Bon—kR| > (% - a)lBgn—kR|R2.

Here the set N is defined in the remark on the selection of u{*) or v{"}} in
(71). Consider

Us = ga(ugl/)a),

where

1
= 1 0f.
gs(x) max[nx+6, ]

Let us set o(¢, x) = g5(u{")(¢, x)n*(2){(t), where {(¢) = 1, for s < ¢ < ¢,
0 otherwise and n is the same as in (76). A computation similar to the one
leading to (77) yields
¢ 2
['[ (anVo,,mVu,) dtdx + [ vy(s, x)n*(x) dw
s B Byn-ip

<2— M—s”a” | By |1/2 f%f
= Gn_kR(l—ﬁ) 2,2,Q; 21 P07 *R i

Bgn-kp

0" kR

1/2
|7)V03|2)

+f vs(te, x)n?(x) dx.
Bgn-tp
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Using again Young’s inequality and (A1), we obtain

/ va(s,x)nz(x)dx-l—%ftf Vo, |? dt dx

Bggn-tg s “Bggn-kp

4(ty —s)
<
3A(1 — B)*6%"~MR?Bd

+f vs(ty, x) dx.

Bgn-ip

(90)

||a||2,2,n%,k,”| B,;gn—kR |

For x & Ny(s) we have uvs(s,x) > In(1/28), for x & N,(¢,) we have
vs(2y, ®) < In(1/8) and for x € N,(¢,), vs(¢y, ) = 0. Using this and (90) we
get

1
:u'd(Bﬁo"'kR \N;(s))ln 28

4(t0 - S) 9 B B N 1 ].
< 3A(1— B)ZBdR292<n—k>”3”2’2’““""| ,39n—k3| +Md( gn-tp \ 1(t0)) n g
4(ty — s) 2 1 “geap L
) [3)\(1 — B)%g2n-PR2d lallz 2.0, * 5(1 “a) pfn 5 | Bor-ire -
The last inequality follows from (89). Finally, we obtain
:U«d(Bﬁe"-kR \Na(s))
< 1 4(t0 - s)”a”%’z)ni,k,n + 1n2
~ | In(1/8) | 3A0(1 — B)*0%»~MR?B?
1 1o
+'§(1—C\() B lBBOn—le

+ an |BB971AI¢R!.

2,1 4lall3 2,q,,
3  In(1/8) | 301 - B)*B?

The last inequality follows from (70) and ((¢, — s)/0%""®R?%) < 1.
For 0 < § < E,

ra(N5 () = 5| Bggr-s |,
forall 0 <s <t¢,. O
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