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Abstract

A reconstruction scheme based on one-bit intensity-only measurement with a coded aperture is
shown to possess remarkable noise robustness in 3D diffraction tomography.

1 Introduction

Diffraction tomography is a distinct variant of tomographic imaging techniques that predominantly
employs wave diffraction, as opposed to absorption, as the fundamental mode of object-wave interaction.
At the heart of diffraction tomography is the goal to uncover the object’s interior structure by acquiring
scattered wavefield data from various orientations around the object. Unlike absorption-based methods,
in this technique, both the phase and amplitude of the diffracted waves provide vital information about
the object’s internal structure. This technique is particularly useful in areas such as non-destructive
testing, biomedical imaging, geophysics, and more, where the wavelength of the probing wave is on par
with the dimensions of the object or inhomogeneity in the medium, resulting in diffraction phenomena.

In a traditional diffraction tomography setup, the complex-valued scattered wavefield, containing
both amplitude and phase information, would be measured. However, in the case of intensity-only
measurement, only the magnitude of the scattered wavefield is measured. This approach simplifies the
detection process as it circumvents the challenge of phase measurement, which often requires complex
and precise instruments like interferometers.

In the context of diffraction tomography with threshold-crossing intensity-only measurements, we
are dealing with a binary representation of the diffracted wave’s intensity, which inherently simplifies
the data acquisition and processing stages. The twist in this technique is that instead of recording the
precise intensity of the scattered waves, the measurements are further simplified to a binary or 1-bit
representation through threshold crossing. A certain threshold intensity level is predefined, and the
sensor only records whether the intensity of the scattered wave is above or below this threshold. In other
words, we record a ”1” when the intensity is above the threshold and a ”0” when it’s below.

This binary data is simpler to collect and process, and it’s less sensitive to noise compared to full-
waveform data. However, such thresholding inevitably leads to a loss of information about the object,
making the subsequent image reconstruction process more challenging. Consequently, the choice to use
1-bit intensity-only measurements must carefully balance the benefits of reduced data requirements and
increased simplicity against the loss of potentially valuable phase information.

The image reconstruction process typically involves solving an inverse problem to recover the object’s
properties from the binary data. Given the nature of the data, this is usually a non-linear and ill-
posed problem. Reconstruction methods might involve iterative techniques or machine learning-based
approaches trained specifically for this kind of data.

The design of the threshold for 1-bit measurement is a vital consideration in diffraction tomography
with 1-bit intensity data. This threshold is instrumental in differentiating the measured intensities into
categories: either above or below the threshold. Identifying the optimal threshold is a non-trivial task
that involves thorough consideration of the specific application, noise levels, and object characteristics.
The selected threshold directly influences the quality of the final image reconstruction, underscoring the
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Figure 1: Diffraction patterns in various orientations measured with a random mask

importance of careful threshold design. Traditional reconstruction techniques, like filtered backprojection
or Radon inversion methods, which are suitable for high-precision measurements, may not work effectively
for 1-bit intensity-only measurements due to their binary nature and the absence of phase information.

Before ending our introduction, let us briefly recall some key advances and insights in the related
area of signal reconstruction of two-dimensional complex band-limited signals from threshold crossings
in the real and imaginary parts.

On one hand, at the Nyquist rate, a band-limited signals can be reconstructed from samples of
infinite precision. On the other hand, a band-limited signal whose entire extension is irreducible is
uniquely determined, up to some constant factor, by the sign information (real zero-crossings) of its real
and imaginary parts, requiring essentially 2-bit information of the samples. While the former case has a
robust performance with respect to sample imprecision, the latter case requires, in theory and practice,
extreme accuracy in identifying zero crossings [4, 8, 10]. Furthermore, the choice of the threshold level
can significantly impact the quality of the reconstruction, making it a crucial factor to consider in the
design of such systems.

In closing this section, our tentative goal in this paper is to explore the extreme case of reconstructing
3D objects by tomographic phase retrieval from 1-bit threshold crossings in projected diffraction patterns
sampled at the Nyquist rate. In particular, we want to demonstrate the noise reduction effect with 1-bit
intensity-only measurement with a coded aperture.

As such, the task is, however, essentially untenable in view of the aforementioned instability in
reconstruction from approximate information of zero-crossings. One promising approach is to use a
randomly coded aperture in the measurement of diffraction patterns [5], resulting in coded diffraction
patterns whose thresholding crossings (with a properly chosen threshold) contain substantial amount
of information about the underlying object. The idea is motived by a theorem about random matrices
proved in [3], which is stated below after setting up some notation.

2 Random-matrix-theoretical basis

Consider the nonlinear signal model: b = |Af∗|, where A ∈ CM×N is the measurement matrix and | · |
denotes entrywise modulus. We select a threshold to separate the “weak” signals, due to destructive
interference, from the “strong” signals, due to constructive interference, as follows. Let I ⊂ {1, · · · , N}
be the support set of the weak signals (to be determined) and Ic its complement such that b[i] ≤ b[j] for
all i ∈ I, j ∈ Ic. Denote the sub-row matrices with row indices in I and Ic by AI and AIc , respectively.

The significance of the weak signal support I lies in the fact that I constains the best loci to “linearize”
the problem since bI is “small”. This motivates the least squares problem:

min
{
‖AIf‖2 : f ∈ CN , ‖f‖ = ‖f∗‖

}
. (1)

A slightly simplified version of the theorem in [3] is the following.
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Theorem 1. [3] Let A be a M × N i.i.d. complex Gaussian matrix and fmin a minimizer of (1).
Suppose

N < |I| �M � |I|2. (2)

Then with an overwhelming probability, the relative error bound

‖f∗f∗∗ − fminf
∗
min‖F/‖f∗‖2 ≤ c0

√
|I|/M � 1 (3)

holds for some constant c0, where ‖ · ‖F denotes the Frobenius norm.

In practice, it is convenient to consider the following surrogate:

fmax ∈ arg max
{
‖AIcf‖2 : f ∈ X , ‖f‖ = ‖f∗‖

}
(4)

which approximates fmin as M →∞. This can be seen as follows.
As M →∞, the column vectors of A = [aij ] have nearly the same norm M1/2 (assume unit variance

for each entry aij) and are nearly mutually orthogonal in the sense that

M−1
M∑
i=1

āijaik ∼M−1/2 → 0, j 6= k.

In other words, we can think of M−1/2A as an isometry when M is much larger than N . By the isometry
property

‖f‖2 = M−1‖AIf‖2 +M−1‖AIcf‖2, (5)

minimizing ‖AIf‖2 is equivalent to maximizing ‖AIcf‖2 over {f : ‖f‖ = ‖f∗‖}.
Problem (4) can be solved conveniently by the projected power method as in Algorithm 1.

Algorithm 1: The Projected Power Method

1 Input: The indicator vector ω for Ic;

2 Random initialization: f (1) = frand
3 Loop:
4 for k = 1 : kmax − 1 do
5 g(k) ← A∗(ω �Af (k));
6 f (k+1) ← PX g(k)/‖PX g(k)‖ where PX is the the object domain projection.

7 end

8 Output: fkmax .

The presence of PX in Algorithm 1 is due to anticipation of object prior information such as support
constraint resulting from zero-padding in tomography (see Section 3).

Given the randomness assumption and the asymptotic nature of the reconstruction accuracy guaran-
teed by of Theorem 1, it is expected that 1-bit phase retrieval with coded diffraction patterns is similarly
asymptotic in the sense that the quality gradually increases as the numbers of diffraction patterns and
random masks increase.

A slight drawback with the approach (4) is that ‖f∗‖ is not known a priori. An alternative formulation
can be developed for the transform domain as follows. The projected power iteration can be expressed
as

z(k+1) = ω � P(ω � z(k)) (6)

where P = AA† is the orthogonal projection on the space AX .
A limit point z∗ of {z(k)}k solves the following optimization problem

z∗ ∈ arg max
‖z‖=‖b‖

‖P(ω � z)‖2 = arg max
‖z‖=‖b‖

〈z, Pωz〉, Pω = diag(ω)Pdiag(ω). (7)

and the object can be estimated by A†z∗.
In the appendices we describe an efficient algorithm for computing the pseudo-inverse A† in the

context of diffraction tomography.
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2.1 Noise robustness

Let us consider some heuristic for de-noising effect of the 1-bit intensity-only scheme.
Conceptually the noise level is measured by the noise-to-signal ratio (NSR)

NSR :=
Total # average noise photons

Total # signal photons
, (8)

the reciprocal of the signal-to-noise ratio (SNR). At any given noise level, the I/Ic-membership of the
indices near the threshold are least robust to noise while the membership of the extreme (very strong or
very weak) indices are most robust to noise.

We want to show that these robust indices and the corresponding row vectors also play the strongest
role in the synthesis of fmax and f∗.

Let aTj denote the j-th row vector of A. We can write

A∗(ω �A) =
∑
j∈Ic

aja
T
j , (9)

the sum of rank-one projections restricted to Ic. Here and below, the over-line notation denotes the
complex conjugation.

By Theorem 1, the leading eigenvector fmax of the Gram matrix (9) approximates the true object
f∗, so we have

f∗ ∼
∑
j∈Ic

aj(a
T
j f∗) (10)

which can be interpreted as a linear decomposition of f∗ into its features {aj : j ∈ Ic} with coefficients
aTj f∗. As expected, the larger the noiseless data |aTj f∗|, the more significant the corresponding feature
aj in the synthesis of f∗.

Thereby lies the de-noising mechanism of the one-bit scheme. Our numerical simulations below
provide ample evidence for the plausibility of this idea.

3 Discrete tomography

In a diffraction-limited imaging system such as X-ray crystallography the resolution length is roughly
λ/2. The grid system with spacing λ/2 gives a reasonable representation of the object continuum without
resulting in unnecessary complexity.

Let Jk, lK denote the integers between and including the integers k and l. Let On denote the class of
discrete complex-valued objects

On := {f : f(i, j, k) ∈ C, (i, j, k) ∈ Z3
n; f(i, j, k) = 0, (i, j, k) 6∈ Z3

n} (11)

where

Zn =

{
J−n/2, n/2− 1K if n is an even integer;
J−(n− 1)/2, (n− 1)/2K if n is an odd integer.

(12)

To fix the idea, we consider the case of odd n in the paper.
Following the framework in [1] we discretize the projection geometry as follows.
We define three families of line segments, the x-lines, y-lines, and z-lines. The x-lines, denoted by

`(1,α,β)(c1, c2) with |α|, |β| < 1, are defined by

`(1,α,β)(c1, c2) :

[
y
z

]
=

[
αx+ c1
βx+ c2

]
c1, c2 ∈ Z2n−1, x ∈ Zn (13)

To avoid wraparound of x-lines with , we can zero-pad f in a larger lattice Z3
p with p ≥ 2n − 1. This

is particularly important when it comes to define the ray transform by a line sum (cf. (19)-(21)) since
wrap-around is unphysical. To fixed the idea, we define the object space that we shall work with:

X := {f ∈ On with the domain restricted to Z3
2n−1}. (14)
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Similarly, a y-line and a z-line are defined as

`(α,1,β)(c1, c2) :

[
x
z

]
=

[
αy + c1
βy + c2

]
c1, c2 ∈ Z2n−1, y ∈ Zn, (15)

`(α,β,1)(c1, c2) :

[
x
y

]
=

[
αz + c1
βz + c2

]
c1, c2 ∈ Z2n−1, z ∈ Zn, (16)

with |α|, |β| < 1.

Let f̃ be the continuous interpolation of f given by

f̃(x, y, z) =
∑
i∈Zn

∑
j∈Zn

∑
k∈Zn

f(i, j, k)Dp(x− i)Dp(y − j)Dp(z − k), x, y, z,∈ R, (17)

where Dp is the p-periodic Dirichlet kernel given by

Dp(t) =
1

p

∑
l∈Zp

ei2πlt/p =

{
1, t = mp, m ∈ Z

sin (πt)
p sin (πt/p) , else.

(18)

In particular, [Dp(i−j)]i,j∈Zp is the p×p identity matrix. Because Dp is a continuous p-periodic function,

so is f̃ . However, we will only use the restriction of f̃ to one period cell [−(p− 1)/2, (p− 1)/2]3 to define
the discrete projections and avoid the wraparound effect.

We define the discrete projections as the following line sums

f(1,α,β)(c1, c2) =
∑
i∈Zn

f̃(i, αi+ c1, βi+ c2), (19)

f(α,1,β)(c1, c2) =
∑
j∈Zn

f̃(αj + c1, j, βj + c2) (20)

f(α,β,1)(c1, c2) =
∑
k∈Zn

f̃(αk + c1, βk + c2, k) (21)

with c1, c2 ∈ Z2n−1.
The 3D discrete Fourier transform Ff of the object f ∈ X , is given by

Ff(ξ, η, ζ) = p−3/2
∑
i,j,k

f(i, j, k)e−i2π(ξi+ηj+ζk)/p (22)

where the range of the Fourier variables ξ, η, ζ can be extended from the discrete interval Zp to the

continuum [−(p − 1)/2, (p − 1)/2]. Note that by definition, f̂ is a p-periodic band-limited function.
When there is no risk of confusion, we shall denote the full DFT for 1D and 2D functions g by Fg and
use the shorthand notation ĝ = Fg.

For z-lines, let t = (t′, 1) with t′ = (α, β) denote the direction vectors. Let ft denote the discrete ray
transform

ft(c) :=
∑
j∈Zn

f (t′j + c, j3) , c = (c1, c2) ∈ Z2
p. (23)

Let T denote the set of directions t employed in the 3D diffraction measurement with a coded aperture
(Figure 1). To fix the idea, let p = 2n− 1 in (18).

Let µ be the mask function and ft the object projection in the direction t. The Fourier transform of
the masked exit wave in Figure 1 is given by

F(ft � µ) = p−1f̂t∗ µ̂(n) := p−1
∑

n′∈Z2
p

f̂t(n
′)µ̂(n− n′). (24)

We decompose the measurement process into two steps:

X R−→ XT := {(ft)t∈T : f ∈ X} Q−→ {(f̂t∗ µ̂)t∈T : f ∈ X} (25)
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(a) 2D image (b) 3D representation

Figure 2: 216× 216 image =⇒ 36× 36× 36 object.

with the “collective” ray-transform R and the masked Fourier transform Q. Now we can write the
noiseless signal model as b = |Af |, with the measurement matrix A := QR. The object domain projection
PX in Algorithm 1 is now represented in the transform domain as

P = QR(QR)† = QR(R∗R)−1R∗Q∗. (26)

For simplicity, let us assume that µ is a phase mask, i.e. µ = exp[iφ], φ ∈ R. Then for each t
the mapping (24) defined for ft is an isometry, modulo a scale factor, while the tomographic mapping
A defined for the 3D object f is not. Therefore, the threshold for one-bit measurement is to be set
separately for each coded diffraction pattern (see below). Surprisingly, such a procedure possesses the
noise robustness discussed in Section 2.1.

4 Numerical simulations

In our simulations, we take the mask phase φ to be an independent uniform random variable over
[0, 2π) for each pixel.

We construct the real-valued 3D object from the 216 × 216 phantom (Fig. 2 (a)) by partitioning
the phantom into 36 pieces, each of which is 36 × 36 and stacking them into a 36 × 36 × 36 cube (Fig.
2(b)). This is partly motivated by the observation that in highly noisy reconstruction the traditional
error metric (such as relative error) is not as meaningful as the “eye-ball” metric, which can be readily
facilitated by using a 3D object constructed from a 2D image.

We also consider the complex-valued version of the 3D phantom by randomly modulated the phase
of each voxel and call it 3D randomly phased phantom (RPP). The number of unknowns in RPP is twice
of that in phantom.

In addition to the “eye-ball” metric, we also show the absolute correlation between f∗ and recon-
struction f given by

R(f, f∗) :=
|f∗f∗|
‖f‖‖f∗‖

.

In our numerical results below, the absolute correlation largely corroborates with the visual quality of
the reconstruction.

We use the reconstruction scheme (6) with the threshold for each coded diffraction pattern given by
the median value (the median rule), i.e. |Ij | = p2/2, j = 1, · · · ,m where Ij is the index set of weak
signals in the j-th coded diffraction pattern. We set the threshold for each coded diffraction pattern
because the nature of diffraction pattern may be highly sensitive to the direction of illumination. Our
choice of threshold (the median rule) is consistent with the condition (2). For other convenient rules for
the threshold see [3].
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(a) NSR=0.2, R=0.8632 (b) NSR=0.4, R=0.8423 (c) NSR=0.8, R=0.7848

(d) NSR=1.25, R=0.7587 (e) NSR=2.5, R=0.4989 (f) NSR=5.0, R=0.3419

Figure 3: 3D phantom reconstruction with Poisson noises.

To avoid the missing cone problem in tomography, we consider m = 3ρn evenly distributed random
directions

T = {ti = (1, αi, βi)}ρni=1 ∪ {ti = (αi, 1, βi)}2ρni=1+ρn ∪ {ti = (αi, βi, 1)}3ρni=2ρn+1

with αi, βi, i = 1, · · · , 3n, randomly chosen from (−1, 1) (27)

with the parameter ρ ∈ N. According to [6, 7], a non-degenerate set of n + 1 directions suffice for
uniqueness, modulo phase factor, for diffraction tomography with noiseless data. For 1-bit diffraction
tomography with highly noisy data, however, one should deploy a far larger set of directions to obtain
any reasonable results.

4.1 Noise-to-signal ratio (NSR)

Photon noise, also called shot noise, is due to the statistical nature of photon emission and detection.
When light passes through a phase mask and creates a diffraction pattern, the photon noise in that
pattern is fundamentally dictated by the number of photons detected at each point in the pattern.

Photon noise is commonly described by the Poisson distribution such that the noisy intensity data
vector b̃2 has as the noise components the independent Poisson random variables with the means equal to
the noiseless components. To introduce the Poisson noise into our mathematical set-up, let b2 = |Af∗|2
as before but consider sb2 to be the noiseless intensity data with an adjustable scale factor s > 0
representing the overall strength of object-radiation interaction.

Denote the intensity fluctuation by z = (zj). The (deterministic) noise photon count is
∑
j |zj | and
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(a) NSR=0.23, R=0.8637 (b) NSR=0.50, R=0.8422 (c) NSR=0.82, R=0.8069

(d) NSR=1.21, R=0.7622 (e) NSR=3.56, R=0.5745 (f) NSR=12.54, R=0.3815

Figure 4: 3D phantom reconstruction with Gaussian noises with σ = 0.4, 0.8, 1.2 (top) and σ = 1.6, 3.2,
6.4 (bottom).
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the total average noise photon count is given by∑
j

E|zj | or more conveniently
∑
j

√
E|zj |2 =

∥∥∥√E|zj |2
∥∥∥
1

(28)

where ‖ · ‖1 denotes the L1-norm of the vector. In the case of Poisson noise, z = b̃2 − sb2 and hence the

total number of average noise photons is given by
∥∥√E(̃b2 − sb2)2

∥∥
1
. In other words, NSR as given in

(8) can be precisely defined as

NSR :=

∥∥∥√E(̃b2 − sb2)2
∥∥∥
1

s‖b2‖1
. (29)

By a straightforward calculation with the Poisson distribution, we have

NSR =
‖b‖1√
s‖b2‖1

. (30)

In the case of the Gaussian additive noise, the noisy data is defined as

b̃ := |Af∗ + ν|

where ν are the i.i.d. circularly symmetric complex Gaussian random variables with a given variance σ2.
The NSR is given by

NSR :=

∥∥∥√E(̃b2 − b2)2
∥∥∥
1

‖b2‖1
. (31)

By a straightforward calculation with independent circularly symmetric Gaussian random variables,
we have

E(̃b2 − b2)2 = E|ν|4 + E(Af∗ � ν +Af∗ � ν)2

= E|ν|4 + 2b2 � E|ν|2. (32)

By definition, E<(ν)2 = E=(ν)2 = σ2/2 and

E|ν|4 = E(<(ν)2 + =(ν)2)2

= E<(ν)4 + E=(ν)4 + 2E(<(ν)2 �=(ν)2)

= 3(σ2/2)2 + 3(σ2/2)2 + 2(σ2/2)2

= 2σ4. (33)

Hence

NSR =
√

2σ
‖
√
σ2 + b2‖1
‖b2‖1

(34)

4.2 Numerical results

Reconstruction of 3D phantom with ρ = 2 in (27) are carried out by the projected power method (6)
and shown, respectively, in Fig. 3 and 4 for the Poisson and Gaussian noise, respectively, at various
noise levels. In both cases, the quality of reconstruction is reasonably good up to NSR ≈ 1.2 in terms
of the visual quality of flattened reconstruction. Beyond this noise level, the quality of reconstruction
deteriorates differently for the two noise models, with the Poisson noise model less gracefully.

For 3D RPP, however, T with ρ = 2 results in poor reconstruction regardless of the noise level. With
the number of directions increasing to ρ = 4 in (27), the performance (Figure 5) is much improved and
even superior to those for 3D phantom with ρ = 2. The high level of correlation (> 0.96) for NSR up to
0.6 is quite remarkable.
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(a) NSR=0, R=0.9789 (b) NSR=0.6, R=0.9632 (c) NSR=1.25, R=0.8331

Figure 5: The magnitude of 3D RPP reconstruction with the Poisson noise.

5 Conclusion

In the present note, we demonstrate the de-noising effect of the 1-bit scheme with coded aperture for
diffraction tomography. The same approach can be applied to ptychography when the adjacent coded
apertures have sufficient overlaps.

Redundancy in measurement is the key for overcoming noise effects and can be gauged by the over-
sampling ratio generally defined as

Total # measurement data

# (real) unknown variables
.

In the simulations for 3D phantom, there are 6n diffraction patterns each of which is a p× p array with
p = 2n− 1. Since the number of unknown variables is n3, the overall oversampling ratio is

6n(2n− 1)2

n3
≈ 24.

In the simulations for 3D RPP, both the number of unknowns and the number of directions double,
resulting in the same overall oversampling ratio.

Part of the redundancy is due to the cubic nature of the object support Z3
n. On the other hand, the

same measurement scheme should suffice for 3D objects supported within the sphere of radius
√

3n/2
which circumscribes Z3

n and contains roughly
√

3πn3/2 ≈ 2.7n3 lattice points, resulting in a lower
oversampling ratio 24/2.7 ≈ 8.8.

A Pseudo-inverse of A
We adopt the following notation: Fi, i = 1, 2, 3, denotes the 1D DFT in the ith variable over Zp;
Fij , i, j = 1, 2, 3, denotes the 2D DFT in the i- and j-th variables over Z2

p; F denotes the 3D DFT over
Z3
p.

Note that A† = R†Q† = p−1R†Q∗ which numerically hinges on efficient implementation of R†.
First consider the case of projections along z-lines only. We have

ft(c) =
∑
j∈Zn

f (t′j + c, j)

= p−2
∑
k

∑
j

∑
j

f(j, j)ei2π(t
′j+c−j)·k/p

= p−2
∑
k

ei2πk·c/p
∑
j

ei2πjt
′·k/p

∑
j

f(j, j)e−2πk·j/p

= p−1
∑
k

ei2πk·c/p
∑
j

ei2πjt
′·k/pF12f(k, j). (35)
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For each g = (gj) ∈ Cp, let Φg be the quasi-periodic function given by

Φg(ζ) =
∑
j∈Zp

ei2πjζ/pgj , g = (gj) ∈ Cp. (36)

For given k and T = {tl = (t′l, 1) : l = 1, ...,m} define the matrix Ψ by

Ψg =
(

Φg(t′l · k)
)m
l=1

, g = (gj) ∈ Cp (37)

whose adjoint is then given by

Ψ∗h =

(
m∑
l=1

e−i2πjt
′
l·k/phl

)
j∈Zp

, h := (hl) ∈ Cm. (38)

By (35) R acting on X can be decomposed as we have

R = F∗12ΨF12. (39)

Since
R† = F∗12Ψ†F12 = F∗12(Ψ∗Ψ)−1Ψ∗F12

the key to computing R† is the inversion of Ψ∗Ψ. Indeed, any

v := R†h, h ∈ XT := {(ft)t∈T : f ∈ X} (40)

satisfy the normal equation

Ψ∗ΨF12v = Ψ∗F12h (41)

which is a Toeplitz system in view of the identity

Ψ∗ΨF12v(k, j) =
∑
i∈Zp

m∑
l=1

e−i2π(j−i)t
′
l·k/pF12v(k, i). (42)

Observe that F12v(·, i) = 0 for all i 6∈ Zn and i− j ∈ Zp for i, j ∈ Zn (with p = 2n− 1). Hence Ψ∗Ψ
can be implemented as a p× p circulant matrix when acting on vectors supported on Zn:

Ψ∗Ψ =

(
m∑
l=1

e−i2π(j−i)t
′
l·k/p

)
i,j∈Zp

. (43)

Consequently, Ψ∗Ψ can be efficiently inverted by diagonalizing with FFT. This fast matrix-vector product
motivates the adoption of conjugate gradient (CG) methods for computing R†.

Let

w(k, k) :=

m∑
l=1

e−i2πkt
′
l·k/p, (k, k) ∈ Z3

p. (44)

By (42) and the discrete convolution theorem

Ψ∗ΨF12v = w ∗3 F12v =
√
pF∗3 (F3w �F3F12v) (45)

where ∗3 denotes the discrete convolution over the third variable. Hence

F∗12Ψ∗ΨF12v =
√
pF∗(F3w �Fv). (46)

By (41), any v = R†h, h ∈ XT satisfy

√
pF∗(F3w �Fv) = F∗12Ψ∗F12h, v ∈ X , (47)

which is then solved by CG in the space X .
In summary, we have A† = R†Q† where R† is obtained by solving eq. (47) with w given by (44).
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B A† with x−, y− and z−lines
Let

T1 = {ti = (1, αi, βi) ∈ R3 : i = 1, · · · ,m1} (48)

T2 = {ti = (αi, 1, βi) ∈ R3 : i = m1 + 1, · · · ,m1 +m2} (49)

T3 = {ti = (αi, βi, 1) ∈ R3 : i = m1 +m2 + 1, · · · ,m1 +m2 +m3} (50)

and T = T1 ∪ T2 ∪ T3 be the total set of m = m1 +m2 +m3 projection directions.
LetAj = QjRj be the partial measurement matrix and decomposition corresponding to Tj , j = 1, 2, 3.

Let A = [AT1 ,AT2 ,AT3 ]T be the full measurement matrix which can be decomposed as A = QR where
Q = diag[Q1,Q2,Q3] is the collective masked Fourier transform and R = [RT1 ,RT2 ,RT3 ]T the collective
ray transform.

To compute A† = R†Q† the key is R†. Since R† = (R∗R)−1R∗, we have

R† = (R∗1R1 +R∗2R2 +R∗3R3)−1R∗. (51)

Analogous to (39), we have

R1 = F∗23Ψ1F23

R2 = F∗13Ψ2F13

R3 = F∗12Ψ3F12.

where for any g = (gj) ∈ Cp

Ψ1g =
(

Φg(αlk2 + βlk3)
)m1

l=1

Ψ2g =
(

Φg(αlk1 + βlk3)
)m1+m2

l=m1+1

Ψ3g =
(

Φg(αlk1 + βlk2)
)m
l=m1+m2+1

with the transform Φ defined by (36). Hence by (51), the key to R† is to invert the matrix

F∗23Ψ∗1Ψ1F23 + F∗13Ψ∗2Ψ2F13 + F∗12Ψ∗3Ψ3F12 (52)

or, equivalently, to solve for v = R†h from the equation analogous to (47):

√
pF∗

(
u�Fv

)
= R∗h, u :=

3∑
l=1

Flwl, (53)

where R∗ = [R1,R2,R3] (over-line denotes complex conjugation) and

w1(k1, k2, k3) =

m1∑
l=1

e−i2πk1(k2αl+k3βl)/p, (54)

w2(k1, k2, k3) =

m1+m2∑
l=m1+1

e−i2πk2(k1αl+k3βl)/p, (55)

w3(k1, k2, k3) =

m∑
l=m1+m2+1

e−i2πk3(k1αl+k2βl)/p. (56)
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