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DIFFUSIVE AND NONDIFFUSIVE LIMITS OF TRANSPORT IN 
NONMIXING FLOWS* 

ALBERT FANNJIANGt AND TOMASZ KOMOROWSKIt 

Abstract. We study the passive scalar transport in a class of nonmixing Markovian flows 
with power-law spectra and correlation times. We establish a new diffusion regime under an optimal 
condition (convergent Kubo formula) on the spatial/temporal structure of this family of flows. Under 
such a condition, the Peclet number of the problem may be infinite. 

We propose a general criterion for the diffusion regime that takes into account of both the effect 
of molecular diffusion and the spatial/temporal structure of the velocity field. We conjecture the 
criterion to be applicable in general for temporally ergodic, reversible Markovian flows. We show 
heuristically that the violation of this criterion may lead to a nondiffusive scaling limit. 
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1. Introduction. Mass and heat transport in moving fluids is ubiquitous. The 
study of turbulent transport is fundamental to understanding temperature fields as 
well as pollutant or tracer particles' movements in the atmosphere and oceans and 
solute transport in groundwater flows. The simplest model of turbulent transport is 
the motion of a passive scalar described by It6's stochastic differential equation 

(1.1) dx(t) = V(t, x)dt + 2Dodw(t), x(O) = 0, 

where V(t, x) = (V (t, x),. . ., Vd(t, x)) is a random incompressible (V V = 0) veloc- 
ity field whose statistical properties are given (see below) and w(t) is the standard 
Brownian motion. The molecular diffusivity, Do > 0, accounts for the effect of ran- 
dom collisions with ambient fluid moleculars. Our objective is to describe the limit 
of the rescaled trajectories 

x (t) := x(t/e26), t > 0, 

as Ec 0, with an appropriate 6 > 0. Of particular interest is when the scaling limit is 
diffusive (i.e., 6 = 1) and when it is not. 

One criterion (see [2] and [12]) is in terms of the generalized Peclet number defined 
as follows. Let V(t, x) be a temporally stationary, spatially homogeneous velocity field 
whose correlation matrix 

R(t, x) = [Rij(t, x)] = [E{V(s + t, y + x)Vj(s, y)}] 

is given by 

(1.2) R(t, x) = cos (k. x)R(t, k) dk, 
Rd 
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with 

R(t, k):= p(t, k)F(k)?(k) Ikl-d dk, F(k):= I- k 0 k|kj-2, 

where p(t, k) is the temporal correlation function such that p(0, ) 1 and E(.) is the 
energy spectrum. Both here and in what follows E denotes the average with respect 
to the ensemble of the velocity fields. The Peclet number Pe is defined as 

(1.3) Pe 'Do-D1 tr R(0, k) dk=D1 (d-) f (k) dk (1.~~3) Pe ~ dk J 
0 d kd+1 

It has been proved (see [2],[12],[7]) for general random velocity fields that the finiteness 
of the Peclet number, Pe < oc, implies the diffusive scaling limit. For time independent 
flows, the condition is in some sense optimal. A finite Peclet number means that the 
energy of low wavenumbers is sufficiently small and, therefore, that the velocity field 
has a finite spatial correlation length. Indeed, an associated effective correlation length 
can be defined as 

?* := DoPe/VEIVl2, 

which is finite whenever Pe is finite. However, the condition of the finite Peclet 
number is far from being optimal for time dependent flows since the definition of the 
Peclet number does not take into account the temporal structure of the velocity. For 
example, we proved in [6] that the scaling limit is diffusive if the velocity is a strongly 
mixing Markov process; namely, spatial decorrelation is not needed. Such a flow has 
a finite correlation time, and the Peclet number is irrelevant for the diffusive scaling. 
Moreover, in this case the molecular diffusion was shown to be a regular perturbation 
in the sense that as Do -) 0 the effective diffusivity tends to the turbulent diffusivity 
for Do - 0. On the other hand, temporal mixing is not always needed for the diffusive 
limit even when the Peclet number is infinite. 

In this paper, we seek to establish a general criterion that takes into account the 
spatial temporal structure of the flow as well as the effect of molecular diffusion. We 
shall focus on Markovian velocity fields V with the power-law energy spectrum 

(1.4) ?(k) = ?(|k|), with ?(k) := a(k)k1-2a, 

and the power-law correlation time 

(1.5) p(t, k) = p(t, Ikl), with p(t, k) := exp{-k2't}. 

The nonnegative function a(.) in (1.4) is the cutoff (infrared or ultraviolet) necessary 
for the velocity to have a finite averaged energy. In particular, an ultraviolet cutoff is 
necessary for a < 1. We assume that a < 1 and that a(.) has a compact support, say 
in [0, Ko],Ko < oo. 

Under additional assumptions (see section 3), the flow then is strongly mixing 
in time if and only if 3 = 0 (therefore uniformly finite correlation times). If /3 > 0, 
the flow is not strongly mixing and has arbitrarily long correlation times Ikl-20 as 
|kl -+ 0. Also, it is easy to check that the flow has a finite Peclet number if and only 
if a < 0. Hence we know from the previous results that the scaling is diffusive for 
c < 0 [2], [12], [7] or / = 0 [6]. 

A main result of this paper is the establishment of a new diffusion regime in which 
the flow neither is mixing nor has finite Peclet number but meets other more suitable 
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(and possibly sharp) conditions. Namely, if V(t, x), (t, x) e R x Rd is the temporally 
stationary, spatially homogeneous Markov velocity field with the properties (3.4) and 

(3.5) of section 3.1 and with the covariance matrix given by (1.2), (1.4), and (1.5), 
then, for a + 3 < 1,/3 > 0, the finite dimensional distributions of the rescaled tra- 
jectories x6(t) with 6 = 1 converge weakly, as E I 0, to a Wiener measure with the 
nontrivial covariance matrix 2D > 2DoI. Moreover, the effective diffusivity D as a 
function of Do satisfies 

(1.6) 0 < liminfD(D0) < limsupD(Do) < +0o. 
Do -o Do --O 

It is not clear if the limit limD0o-o D(D0) exists; neither is it clear if the diffusive 
limit holds when Do is zero from the outset, except in the mixing case (43 = 0) for 
which we also know that limDoo0 D(Do) = D(0) [6]. It is worthwhile to point out 
the example that displays a nonperturbative effect of the molecular diffusion, i.e., 
limD0o0 D(Do) > D(0) [10]. We also give a heuristic scaling argument in section 8 to 
show that, when a +/3 > 1 but a + 2/3 < 2, the scaling is not diffusive and the limit 
should be a fractional Brownian motion (FBM). A partial result in this direction is 
given in [8] (see also [10]). These results suggest the criterion 

(1.7) j TrR(t,0)dt < oc 

as a sufficient condition for the diffusive limit in time dependent flows and that in such 
a case the molecular diffusion is not needed for homogenization (perhaps in the sense 
of (1.6)). In contrast to the spatial integration in the definition (1.3), the integration 
in (1.7) is temporal. We have proved the validity and the sharpness of the criterion 

(1.7) for a different class of Markovian flows [9]. 
Finally, we observe that the condition Pe < oo and (1.7) can be combined into a 

single condition 

(1.8) J ME [Vi (t, 2Dow(t))Vj(0, 0) dt < oo, 

where M and E are expectations with respect to the molecular Brownian motion 
and the ensemble of the velocity, respectively. For Do -) 0, (1.8) becomes (1.7); for 
time independent flows except Do > 0, (1.8) becomes Pe < oo. Thus the formulation 
(1.8) takes into account the effect of molecular diffusion as well as the spatial/temporal 
structures of the velocity field. In section 7 we explain why (1.8) is a plausible criterion 
for a diffusive limit in temporary ergodic, reversible Markovian flows. 

Although our approach relies on the Markov property of the velocity, it seems 
likely that (1.8) is also applicable to general (Markovian or non-Markovian) stationary 
flows whose time correlation functions p(t, k) decay exponentially in time for each k. 
For nondecaying p(t, k), the condition may be far from optimal (cf. [10]). 

2. Outline of the approach. The main object to analyze is the Lagrangian 
velocity process 

(t, ) V(t, (t)+ .) 

(see section 4.1) in a state space X defined in section 3. Roughly speaking, rj describes 
the velocity field from the vintage point of an observer sitting at the moving particle. 
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The particle path can be recovered readily from (-.): 

Jo 
x(t) = x(O) - j (u, 0) du. 

It can be shown that the Lagrangian velocity field is also a Markov process. The com- 
plication, however, is that its generator L is not self-adjoint even when the (Eulerian) 
velocity process has a self-adjoint generator A. The Lagrangian generator takes the 
form 

= D0AA + A+V V, 

where V, defined in (3.3), can be thought of as the random value of the sample velocity 
field at a fixed (space-time) point. 

One can decompose the diffusively scaled displacement as follows: 

t/E2 

exi (t/E2) 
= /2Dew, (t/E2)+ej V/(rq(s))ds = R'(t)+ENF (t/c2) Vi = 1,... ,d, 

Jo 

where Nf(.) is a martingale with respect to the natural filtration corresponding to 
r(.) and R? (.) the remainder. The martingale NE () = (NV (.),... , N (.)) is related 
to the solution Xx,i (i.e., the corrector) of the abstract cell problem 

-LXx,i + AXx,i = Vi, i = 1,...,d 

(cf. (4.3)), by the expression 

N6(t) := V2Dowi(t) -+ Xe2, i(7(t)) - Xe2,i(7(0)) - X X2, i(?(s))ds, 

while the remainder R? has the expression 

tt2 
(2.1) R (t) =e 

3 
Xe2,i(T(s)) ds + X - 2, i( (0)) -- X2,i 

Thus, if 

(2.2) lim A X,i 112 0 Vi = 1,..., d, 

then the remainder Rs vanishes in the limit E -- 0 and by the martingale central limit 
theorem ENE(t/E2), and, consequently, cx(t/e2) converges to a Brownian motion. 

In the case of strongly mixing Markov velocity, the generator A has a spectral 
gap: -(Af,f)L2 > c(f, f)L2 for some positive constant c. As a consequence, the 
(Lagrangian) semigroup Tt associated with L has an exponential decay property [6] 
so that 

p+00 

(2.3) f= TtVdt Vi=l,...,d 

converges in L2 and is the spatially homogeneous L2-solution of the corrector equation 
with A = 0. Therefore, the condition (2.2) is automatically satisfied. This case 
corresponds to either a3 > 0 with additional infrared cutoff (i.e., the cutoff a(.) in 
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(1.4) is supported away from zero) or 3 = 0 for both of which the correlation time for 
any k is uniformly bounded. 

In the nonmixing case, the integral (2.3) diverges in general, and the correctors 
XAx,i cease to be spatially homogeneous in the limit of A -O 0. In this case the condition 
(2.2) is more difficult to check. This is the main technical difficulty resolved in this 
paper. 

A standard argument shows that the energy identity (4.9) for the correctors is 
more or less equivalent to the condition (2.2) (cf. Theorem 1 and Corollary 1). While 
the energy inequality (4.7) is straightforward and holds true in general, the strict 
equality requires careful estimation of the large scale behavior of the correctors man- 
ifest in (3.4). 

In section 7 we sketch a plausible generalization of the above argument to general 
temporally ergodic, reversible Markovian flows satisfying the condition (1.8). 

3. The random velocity fields. We will describe the time evolution of the 
velocity field as a Markov process V(t, .), with values in the space of d-dimensional 
divergence-free fields X endowed with a probability measure ,/. 

Since the velocity fields are spatially homogeneous elements of the state space of 
the X, we have to account for a possible growth at oo. This can be accomplished by 
introducing a weight function which decays at x = oc. For the examples considered 
below, in particular for Gaussian fields, a sufficiently high power-law decaying weight 
is enough. Therefore, let X be a Banach space of d-dimensional divergence-free fields 
f : Rd - Rd, that is, the completion of S(Rd, Rd) with respect to the norm 

-r -i/p 

R (If(x)|^ + 
|Vxf(x)fP 

+ * * + |Vxmf(x)|P)(l + Ix22)-P dx 
Rd 

for p C [1, oc), a positive integer m, and p > d/2. We can choose m > d/p to ensure 
every element is spatially continuous by the Sobolev imbedding theorem. 

3.1. General formulation. For spatial homogeneity, the measure ,t is assumed 
to be invariant under the group of translations Tx, x C Rd, acting on X: Txf(') := 
f(x + ) for all f E X. As a result, the field f C X has the Fourier spectral represen- 
tation 

f(x) = X fdk cos(x. k) + fdk sin(x k)], 

with 

(3.1) k f^0 Vk, O-c,s, 

where fdk and fdk are, respectively, the Fourier sine and cosine modes of f(.). Equa- 
tion (3.1) is to ensure the divergence-free property. The translation Txf then has the 
Fourier modes (fx,dk, fx,dk) with 

fx,dk = fdk cos(k . x) + fdk sin(k . x) + fdkcos(k - x). 

It is easy to see that 

fdk, ? fdk i(df) = 6o,06(k - k')(kl)r(k) dkdk', 
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where E(k) := ?(k)kl-d. Notice also the useful fact 

2 

/ hl fk l(df) = (d- 1) j ?(jkl) dk O(l(1-()), 0 
E 

{c, s}, l0 << 1. 
J kl <lo Ik\\<lo 

(3.2) 
Here and below we use the short-hand notation ?(k) - ?(k)k1-d. 

Let LP, L' 1 < p < +oo00, be, respectively, the Banach space of all real valued 
random variables F: X -* R satisfying IF P p f:= IF(f)IP i(df) < +00 and the space 

of all random vectors F = (F1..., Fd) such that ||F|P|p := Z= IlFmllp < +00. 
d 

Similarly, we can define the spaces L?? and L . 
We will also need the space H1 consisting of all first degree homogeneous poly- 

nomials, i.e., the L2-closure of the elements 

(<1 (k) fdk 
+ 

02 (k) fk) Vd ;l,2 E S(Rd Rd). 

Let IIi denote the orthogonal projection onto the subspace H1. 
The translation group Tx induces a Co-group of unitary transformations UXF(.) 

on LP(X), p E [1,+oo), as given by UXF(f) := F(Tx(f)), x E Rd, f E X. Let 
DiF := 9XUXFx=o, i = 1,... , d be the L2-generators of Uxe1, x E R. Here ei is 

the i-the vector of the standard basis in Rd. Let Cb7 be the space of those elements 
F E L?? such that F(x, f) = F(-rf) are m times differentiable in x, , a.s., with all 
derivatives up to order m bounded. Let C := n,m>i Cb. For any p E [1, oc] and a 

positive integer m, we define Sobolev spaces Wp'm consisting of closures of C in the 
norms 

IFIIPIm = Dm I .D . DMd FIllp 
ml+...+md_<m 

Let P(l), 1 > 0: L1 -> L1 be the conditional expectation conditioned on {fdk fdk: 

|kl > 1}. It is easy to check that the projection P(l), 1 > 0, commutes with the operator 
UX,x E Rd, because the conditional measure corresponding to P(1) is also spatially 
homogeneous. 

The purpose of considering these function spaces on X is to construct the correc- 
tors by solving the abstract cell problems defined on them. To this end, we shall also 
consider a linear Rd valued functional V C H1 that assigns to each realization of the 
field its value at the origin: 

(3.3) V(f) - f(0) =- fdk Vf E X. 
Rd 

Equation (3.3) is well defined since f E X is spatially continuous. With V we can 

explicitly write down the Lagrangian generator L (see formula (4.1) below). 
We think of the temporal evolution V(t),t > 0, as a reversible Markov process 

on X with a self-adjoint L2-generator A and the invariant measure , (so that V(t) 
is temporally stationary as well as spatially homogeneous with respect to [u). We 
assume that the generator A has the following properties: 

rKo 
(3.4) EA(F, F) > 2 Ci 3 123-1 

|P(1)F|12 2dl, F E L2, 
Jo 

?4(F,F) > C2 A(HlF,nlF), F c L2, 

914 
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for some positive constants C1, C2 independent of F, where EA(F, F) := -(AF, F) is 
the Dirichlet form associated with A. As we will see in the following sections, as the 
construction of the velocity field becomes more explicit, (3.4) and (3.5) can often be 
derived from more intuitive assumptions. 

From (3.4) it immediately follows that ,t is ergodic with respect to temporal 
shifts. Indeed, if F E L2 and SA(F,F) = 0, then from (3.4) we obtain P(1l)F = 0 
for all I > 0, which implies F = 0. However, the generator A does not have a spectral 
gap; i.e., the temporal evolution is not mixing. And, as we will see more directly in 
the examples below, the factor 120-1 in (3.4) accounts for the time scales of different 
Fourier modes. 

3.2. Velocity with independent Fourier modes. The construction is most 
straightforward and explicit when each sine or cosine mode (Vdk(t), Vdk(t)) of the 
process V(t) evolves independently. This is what we assume in this section and in 
section 3.3. With this and other assumptions, we will derive the properties (3.4) and 
(3.5). 

Because different Fourier modes are independent, P(1) is the orthogonal projection 
on L2 onto the subspace spanned by {fk, fdk: |kl > 1}. It is easy to check that 
the projection P(1),1 > 0, commutes with the operator UX,x c Rd, because the 
conditional measure corresponding to P(1) is also spatially homogeneous. Moreover, 
the projection P(l), 1 > 0, commutes with the generator A, and we have 

(3.6) EA(F, F) > EA(P(I)F, P(l)F). 

To account for the power-law behavior of the correlation times (1.5) we assume 
that the formal generator A has the form 

(3.7) AF= j k Ik\2Ao(dk)F(fdl fd; 1 e ), 
ERd 

where Ao(dk), acting only on fdk Ifdk variables, is the (formal) generator of the 
strongly mixing, reversible Markov process for each mode k E Rd. We assume that 
fkeRd Ao(dk) is self-adjoint and satisfies the spectral gap estimate 

(3.8) -/ (Ao(dk)F, F)L2 > ci|| F , Cl > 0, 
ERd 

for all F C L2, the square integrable functions with zero mean defined on X. 
The factor [k120 plays the role of time change: it rescales the time for each 

mode k c Rd by the factor [k 20. The generator A is thus the synthesis of the 
generators kkl2Ao(dk) for different Fourier modes (Vk(), Vdk(t)), k c Rd. The 
expression (3.7) is formal and should be defined via the limiting procedure of periodic 
approximation (cf. [11]). 

Set 

Ao (k) := Ao (dl). 
\>k 

The operator Ao(k), k > 0, is the generator of a strongly mixing, reversible Markov 
process and, as a result of (3.8), satisfies the spectral gap property 

-(Ao(k)P(k)F, P(k)F)L2 > cillPF(k)F L'2, 
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We now show that (3.4) follows from (3.7) and (3.6). We have from (3.7) that 

(3.10) E?A(F, F) = 12; (dAo (1)F F) L2, 

where dAo(l) denotes the differential of Ao(l). An integration by parts gives 

Ko _/3Ko 
?A(F,F) [12 (Ao (l)F,F)]L2 =0- 23J 12-1 (Ao (l)F, F)L2 dl 

0o 
=-2/3 12-1(Ao(l)F, F)L2 dl. 

Here we have used the fact that the support of the cutoff function a is contained in 
[0, Ko]. Similar to (3.6), we have 

-(Ao (1)F, F)L2 > -(Ao(1)P9(1)F, P(l)F)L2 

for all F C Lo. Since P(1)F C Lo for all F C Lo, (3.4) follows from (3.9). 

3.3. Example: The Ornstein-Uhlenbeck velocity. We now describe an im- 
portant example of Gaussian velocity fields in greater detail. 

The Fourier modes of the velocity field are the stationary solution of the infinite 
dimensional SDEs: 

(3.11) dVdk(t) = - k2Vdk(t)dt + Ik| V/2(1k1)rF(k) Wdk(dt) 

and 

(3.12) dVdk(t) = -k 23Vdk(t)dt + -k 3 
2?{(k)Fr(k) Wdk(dt), 

where WdCk(dt), Wdk(dt) are two independent Rd valued space-time white noise fields. 
The generator of the process (Vdk(t), Vd()) is of the form Ikl^2odk) with 

4Ao(dk): '-(kl)(Vfdk (k)Vfdk + Vfdk Vfdk) fdk V fdk Vdk 

where Vfc and Vfs denote the differentiations with respect to fdk and fik, respec- 
-dk dk 

tively. Conditions (3.7) and (3.8) can be easily verified. Further, note that the space 
H1 is invariant under A, and the action of A on H1 is given by 

(3.13) A f(l (k). fdk + 2(k) fdk) 

- - Ikl ((k) fdk + 2(k) * fdk) V8X1, 02 E S(Rd'; d). 

Here we make a useful observation that the generator A commutes with the orthogonal 
projection 11 onto H1 because H1 is an invariant subspace of the self-adjoint operator 
A, and so (3.5) is automatically satisfied. 

The initial condition (Vdk(O), Vdk(0)), k C Rd, is independent of the white noise 
fields and is distributed according to the Gaussian invariant measure /, formally 
written as 

p[A] f [(2r)( (k1W)dkI]-1 exp - k fk dfkdfdk 

fEA kE Rd 28(|k|) 
dkl J 

(3.14) 
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The continuum product can be defined as the weak limit of Gaussian periodic measures 
given by 

n[A J J ] |; [(27r)d(JkiJ)J6k]-lexp kf2 ) f 
T-1(A) i:0<lkil<2 2( ki) } f 

for all A c B(X), where B(X) is the Borel a-algebra of X, ki := i2-n, i E Zd, 

1(5k := 2-nd, and the map T is given by 

T((fki fki)iezd) (x) := [fki cos(x ? ki) + fks sin(x ki)] 
i:0<1kiI<2_ 

for all (f/, f/k), with 0 < Ikil < 2n and fk - i fk . i = 0 (see [11] for details). The 
orthogonal projection P(lo) can be written as 

P(lo)F =/ F(fdk, fdk; k E Rd) 
kl <(lo 

(3.15) ]7 [27r(]kJ) dk]- exp {- dfdkdfdk. 
Ik1<1( Q([kJ) ldkl 

For non-Gaussian examples, one may consider, instead of the white noise driving 
field in (3.11)-(3.12), the differential of Poisson random fields as the driving field to 
construct Poisson shot noise velocity fields (cf. [5]). 

4. The Lagrangian velocity process. 

4.1. The generator and the correctors. Set 

7(t) := Tx(t)V(t), t > 0. 

It is well known (see, e.g., [15]) that this process is Markovian, stationary, and ergodic 
with respect to the invariant measure [u. The generator of the process is given by 

(4.1) ?F=DoAF+AF+V VVF VF E CA := D(A)n W2',o 
where V is defined in (3.3), V := (Di,..., Dd), A := D 2 +. + D', and D(A) is the 
domain of A. On CA x CA we define a nonnegative definite bilinear form 

(4.2) (f,g)+:= A(f, g) + Do /Vf Vg d. 

The form is closable, and we denote by 7-+ the completion of CA,o := CA n Lo2 under 
the norm ( * ||+ := (,)+/2 It is easy to see that H+ = W1,2 n D(?A) (cf. [9]), the 
latter being the domain of ?A. The scalar product (-,)+ over XH+ is the Dirichlet 
form associated with the Markovian process t := Tw(t)V(t), t > 0, with w(t), t > 0, 
a standard d-dimensional Brownian motion independent of V(t), t > 0. 

Consider the resolvent equation on H7+: 

(4.3) -LXA,i + AX,i =- i, i - 1,... , d. 

It can be shown that (4.3) has a unique weak solution XA,,i C H+ in the sense that 

(4.4) ?.A(XxA,i, )+Do X VXA,i . V duJ+ V.VXA,i4 dp+?A J XA,iD dl= f Vibd 

for all b CE L 0 H + (see [11]). 
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4.2. The energy estimate and the energy identity. To study the long time 
limit, we need to pass to the limit A -* 0. To this end, we consider the right side of 
(4.4) as a linear functional 

Gi()-:= Vd J dy = HV i dl- [ (k( ) ( .- k .l(k) dk, 

with HIIi = fRd(I(k)fdk + 02(k)fdk) E H1 for some 1,, 2 C S(Rd;Rd). By the 
Cauchy-Schwarz inequality we have 

JVi d] < /dJ () lkl -23 dk/J j|k|2(lk|k) l(k)j2 dk 

< C'A4(H1i, Hi1 D)1/2 
< C2 C'&A (, (,) 1/2 

(4.5) < C ll 11+ 

with C2 given in (3.5) and 

C'-l /R ?(|kj)[k|-20 dk < oo for a + 3 < 1. 

Thus Gi c -_, the dual space to 7-+. Using the test function &n(XA) with n(r) '= 
-n7 V (r A n7) in (4.4) and passing to the limit as n -+ oc, we have 

(4.6) |IXA,z 1+ A|XA,,i2 =2 Gi(X,i) < ||Gi||-||xxA,il+ 

(cf. [11]), from which the energy estimate follows: 

(4.7) x,ll < Gi(X,i). 

Moreover, XA,i, A > 0, is weakly compact in A+. Let X*,i be an 7-+-weak limit of 
XA,i as A $ 0. It satisfies the following equation: 

(4.8) SA(X*,i ) + Do J Vx*,i V ( d + / V. Vx*i d 

=Gi((>) V~cL??nH+. 

Now we prove the crucial fact: 

A (X*,i,,i*,i) + Do / VX*, VX*,i dp = Gi(x,i) 

The key point of the proof is to show that the convection term drops out in the limit. 
Here we repeat the argument in [11]. 

THEOREM 1 (energy identity). Suppose a + /3 < 1. Then 

(4.9) = G 

Proof. Property (3.4) implies that P(l)X*,i E L 0n 7H+ for any 1 > 0. Since 
UX,x e Rd, and P(l), 1 > 0, commute, we have 

'P(1)(V. Vx*,i) = P()(V_<. Vx*,i) + V>,. VP(1)x*,,, 

918 



DIFFUSION IN NONMIXING FLOWS 

where V<l(f) = jlk< f~k and V>l(f) := kl> fdk. Hence V(f) - V<l(f)+V>(f). 
Consider the test function k := ~n(P(l)X*,i) in (4.8) with ~n as before. Notice 

that 

J v> VP()x* i ( (P()x ( i) c = J v (V> nB(P(l)x*i)) d = 0, 

with En the primitive of (> satisfying B,,(0) = 0. Passing to the limit as n oo, in 
(4.8) we get (cf. [11]) 

(410) A(*,i, (/)X,) +Do f VX*,i * VP(l)X*, d/ + f V<1 VX*,iP(1)X*, c d/ 

= G2(P(l)x*,i) V4? c L? n +. 

Note that 

f <l' VX. v P(l)cx*, i dp < ( 2 
v 2 |P()X, x2 d Vx) *,I/ 

(4.11) -|V<I |L P(||l()X, L||V2 IL,l 

Using (3.2) and (3.4), we find I|V< |L2 |P(l)X*,i l2 o(l)l1-a- as I - 0. Passing 
to the limit as I l 0, in (4.10) we conclude (4.9). 0 

It is easy to see that the 7H+-weak solution of (4.8) satisfying the energy identity 
(4.9) is unique up to a constant. 

From the energy identity, we immediately have the following corollary. 
COROLLARY 1. For any i = 1..., d we have 

(4.12) lim Ax,ill2 = 0. 

In addition, X,i converges 1+ strongly as A 4 0. 

5. Convergence of finite dimensional distributions. The remainder RE,i 
(2.1) satisfies 

t/E2 

(5.1) ME RE,i(t)l < 
3 

t MEX2, i(T1(5))| ds + 2EcIXE2,i[\L2 < EcXE2,i L2(t + 2). 

The right-hand side of (5.1) tends to 0 as Ec 0 by Corollary 1. A standard calculation 
shows that, for any l, e2 > 0, 

ME(N.1 (t) - N2 (t) 2 =-2t(C(x2i- Xe2,i), X2,i- Xe2,i )L2 

= 2tIlX,2 - 2, 11 

(cf. [11]). From Corollary 1, (5.2), and Kolmogorov's inequality for martingales, we 
know immediately that for an arbitrary g > 0 there exists Eo > 0 such that, for 
0 < ? < ?0, 

0T(5.3) ME sn p _<(- CIX,, 
- ,)T < CT VT > 0. 

Here C > 0 is some constant. 
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Stationarity and ergodicity of r71(-) implies that N6 (.) is a martingale with sta- 
tionary and ergodic increments (see [9, Lemma 2]). The classical martingale central 
limit theorem of Billingsley [4, Theorem 23.1] implies that finite dimensional distribu- 
tions of eNEO (t/E2), t > 0, tend weakly as Ec 0 to those of a Brownian motion whose 
covariance equals 2D(eo) := [2Di,j(o)] with 

Di,j(Eo) = 
(X2,,i, X,o,j)+ + D06i,j. 

Passing to the limit Co l 0, we conclude convergence of the finite dimensional distri- 
butions of x,(t), t > 0, as E I 0, to the respective finite dimensional distributions of 
the Wiener measure with the covariance matrix given by D = [Di,j], where 

(5.4) Dij : = (X*,i, X*,i)+ + DoSij > Do6ij. 

6. Vanishing molecular diffusion limit. In this section, we shall write the 
dependence of the correctors and the effective diffusivity on Do explicitly. 

By the same argument, the uniform estimate (4.6) is valid independent of A and 
Do. Passing to the limit A -- 0, we have 

(6.1) |(!p)(Do) K+ < C for some constant C > 0, 

which, together with (5.4), implies that the limiting diffusivity is bounded as Do tends 
to zero. 

For the lower bound, we turn to (4.8), which with the test function Vi can be 
written, after some elementary approximation arguments, in the form 

(6.2) A4(x*,i) (Do), Vi) + Do J VX*,i (Do)) Vi dit + J V. V , i (Do) Vi d = Gi(Vi). 

We want to show that, if the infimum of D is zero as Do tends to zero, then the entire 
left side of (6.2) drops out in the limit while the right side equals Il VIL2 > 0, leading 
to a contradiction. 

Let us assume the infimum of D as Do -4 0 is zero and take an infimum-achieving 
subsequence of X*,i (Do), i = 1,... , d. For that sequence we shall have 

d 

(6.3) Z?A(X*,i(Do),X*,i(Do)) -' 0. 
i=1 

By (6.1), the Cauchy inequality, and the assumption, both the first and second terms 
on the left side of (6.2) vanish. 

Let us denote Wi := V. VV and 

l Wi H = sup fWi F d. 
C, (F,F)=1 

Then 

+0 
wiH = (RWi,Wi)L2dt 

o(6.4) 
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The right side of (6.4) can be explicitly calculated using the Feynman diagrams, and 
the result is 

EdIll 112 d / [ 1 ?()kl)?(lk'l) {Ik' 2 (k k')2 dkdk < + 
W11 H_ - d 

|kI 2,+ |k', 12x |kld-ik' I -1 
d |k|2 

dkdk < +co 

R Rd 

for ca + /3 < 1. The third term on the left-hand side of (6.2) can therefore be bounded 
by 

IWiI\H_A (x,i)(Do), X*,i(Do)), i 1, ..., d, 

which vanishes by (6.3). 

7. Heuristic criterion for diffusive limit. In this section, we explain why the 
condition (1.8) is a plausible criterion for the diffusive limit for Markovian flows and 
discuss its possible extensions and limitations. 

First, consider Markovian flows with a symmetric, positive generator A. We have 
the identity 

(7.1) 

? 
ME [Vi(t, 2Dow(t)) Vj(0, 0)] dt 

= ((DoA-A)A+ `i, Vj)I i, = 1,..., d, 

if the right side can be suitably defined. This suggests the definition of reduced 
A-correctors \x,i as solutions of the reduced resolvent equation 

(7.2) (DoA + A)xA,i + AXx, = -Vi, i 1,.. ., d. 

Note that the convection term V V is dropped out of (7.2). The condition that the 
right side of (7.1) is finite is equivalent to Vi C H-, the dual of 7-+. 

As before, if V C H-, the energy estimate 

X + < (Vi, XX,i)L2 

can be established in general by a standard argument. Passing to the limit with 
A - 0, we have an 7-+-weak solution x*,i of (7.2). We want to show that 

(7.3) lim A X|x,i 0, 

which is equivalent to the energy identity for the limiting solution X*, 

Il,x*,l l = Gi ( ,i). 

Since there is no convection term V V in (7.2), the energy identity is true in general 
by the truncation argument. Note that Gi(X*,i) equals the right side of (7.1). Now, 
since the operator V V is antisymmetric and of lower order than the symmetric part 
DoA + A, we can expect to bound ||XA,i| L2 by I||I x, L2, where Xx,i is the "true" 
corrector, i.e., 
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Therefore, we expect to see 

lim A XA,||1122 = 0 

and, hence, the convergence to the diffusive limit under the condition Vi E H_. 
In previous sections, we did not prove the diffusive limit theorem in such a gen- 

erality. Because the formulation of (1.8) does not rely on the Markov property of the 
velocity, it is tempting to apply it to general (Markovian or non-Markovian) flows 
whose time correlation functions p(t, k) decay exponentially in time for each k. For 
flows with nondecaying but oscillating time correlation functions, condition (1.8) may 
be far from optimal (see [10] for examples). 

8. Nondiffusive limit. In this section we present a nondiffusive scaling argu- 
ment under the conditions a + /3 > 1, a + 2/3 < 2. We set x?(t) := Ex(t/E26), where 

dx(t)= V(t,x(t)), x(0) = 0, dt 

and the parameter 6 < 1 is yet to be determined. Here we drop the molecular diffusion 
for the simplicity of the argument. Molecular diffusion is irrelevant because, as we 
shall see below, the scaling is superdiffusive (i.e., 6 < 1). Let V-(t, x) be the Gaussian 
velocity with the power spectrum 

(8.1) %?(k) = a(ck)k1-2a 

instead of (1.4). Then it follows from the spectral representation that VE is related 
to V via 

V( 
t 

x) 1-aVE 
t 

x) 
^ 

' 
e) ^2(_ 

(6-) ,) 

With a unique pair of parameters 6 = //(a + 23 - 1), rE = 2-(a+20), the equation 
of motion can be written as 

(8.2) dx(t) 1 VE (t x(t)) , x() = 0. 

Since a + 2/3 < 2, q, must tend to zero, and (8.2) is in the form of the FBM limit 
theorem established in [8] under the conditions a + 3 > 1 and a < 1. The only differ- 
ence is that the velocity V* has increasingly smaller scales as E tends to zero, while 
the FBM limit theorem of [8] deals with velocity fields with a fixed ultraviolet cutoff. 
However, as the following physical argument shows, the high frequency components 
of the velocity fields are negligible under a +/3 > 1, a < 1, and a + 2/3 < 2. Therefore, 
the FBM limit should be valid. The small scale velocity has the magnitude 

J ES(l)dl kl-0, k >>1, 
<k 

and the correlation time of the order k-2/. Then particles carried by small scale 
velocity travel a distance less than or equal to the sum of tk2o of roughly uncorrelated 
random increments of magnitude k1-"-20. Thus, by the central limit theorem on the 
time scale t - r2726, the displacement induced by a high wave number k is of the order 
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of magnitude less than or equal to v/r? 26k2k1-a-20 which equals r 6k1-l-0 and 
is always smaller than ? 1 (the scale of observation) since a + d > 1 and 6 < 1. The 
two conditions are equivalent to each other: a + 43 > 1 if and only if 6 < 1. Thus, 
for a + 43 > 1, the transport effect of high wave numbers is negligible compared to 
that of low wave numbers. Transport is essentially determined by the wave numbers 

of order 7/i/, which is right on the edge of Eulerian correlation; therefore, we could 

derive the scaling exponent based solely on those wave numbers. 
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