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Phase retrieval, i.e. the problem of recovering a function from the squared
magnitude of its Fourier transform, arises in many applications, such as
X-ray crystallography, diffraction imaging, optics, quantum mechanics and
astronomy. This problem has confounded engineers, physicists, and mathem-
aticians for many decades. Recently, phase retrieval has seen a resurgence in
research activity, ignited by new imaging modalities and novel mathematical
concepts. As our scientific experiments produce larger and larger datasets
and we aim for faster and faster throughput, it is becoming increasingly
important to study the involved numerical algorithms in a systematic and
principled manner. Indeed, the past decade has witnessed a surge in the sys-
tematic study of computational algorithms for phase retrieval. In this paper
we will review these recent advances from a numerical viewpoint.
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126 A. Fannjiang and T. Strohmer

1. Introduction

When algorithms fail to produce correct results in real-world applications,
we would like to know why they failed. Is it because of some mistakes in
the experimental set-up, corrupted measurements, calibration errors or in-
correct modelling assumptions, or is it due to a deficiency of the algorithm
itself? If it is the latter, can it be fixed by a better initialization, a more
careful tuning of the parameters, or by choosing a different algorithm? Or
is a more fundamental modification required, such as developing a different
model, including additional prior information, taking more measurements,
or a better compensation of calibration errors? As our scientific experiments
produce larger and larger datasets and we aim for faster and faster through-
put, it is becoming increasingly important to address the aforementioned
challenges in a systematic and principled manner. Thus, a rigorous and
thorough study of computational algorithms, both from a theoretical and
numerical viewpoint, is not a luxury, but is emerging as a vital ingredient
of effective data-driven discovery.

The past decade has witnessed a surge in the systematic study of numer-
ical algorithms for the famous phase retrieval problem, i.e. the problem of
recovering a signal or image from the intensity measurements of its Fourier
transform (Hurt 1989, Klibanov, Sacks and Tikhonravov 1995). In many
applications we would like to acquire information about an object but it
is impossible or impractical to measure the phase of a signal. We are then
faced with the difficult task of reconstructing the object of interest from
these magnitude measurements. Problems of this kind fall into the realm of
phase retrieval problems, and are notoriously difficult to solve numerically.
In this paper we will review recent advances in the area of phase retrieval
with a strong focus on numerical algorithms.

Historically, one of the first important applications of phase retrieval is
X-ray crystallography (Millane 1990, Harrison 1993), and today this is still
one of the most important applications. In 1912, Max von Laue discovered
the diffraction of X-rays by crystals. In 1913, W. H. Bragg and his son
W. L. Bragg realized that one could determine crystal structure from X-ray
diffraction patterns. Max von Laue received the Nobel Prize in 1914 and
the Braggs in 1915, marking the beginning of many more Nobel Prizes to
be awarded for discoveries in the area of X-ray crystallography. Later, the
Shake-and-Bake algorithm became one of the most successful direct methods
for phasing single-crystal diffraction data, and opened a new era in research
into mapping the chemical structures of small molecules (Hauptman 1997).

The phase retrieval problem permeates many other areas of imaging sci-
ence. For example, in 1980, David Sayre suggested extending the approach
of X-ray crystallography to non-crystalline specimens. This approach is
today known by the name of coherent diffraction imaging (CDI) (Miao,
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Charalambous, Kirz and Sayre 1999). See Shechtman et al. (2015) for a de-
tailed discussion of the benefits and challenges of CDI. Phase retrieval also
arises in optics (Walther 1963), fibre optic communications (Kumar and
Deen 2014), astronomical imaging (Dainty and Fienup 1987), microscopy
(Miao, Ishikawa, Shen and Earnest 2008), speckle interferometry (Dainty
and Fienup 1987), quantum physics (Reichenbach 1944, Corbett 2006) and
even in differential geometry (Bianchi, Segala and Volčič 2002).

In particular, X-ray tomography has become an invaluable tool in bio-
medical imaging to generate quantitative three-dimensional density maps
of extended specimens at the nanoscale (Dierolf et al. 2010). We refer to
Hurt (1989) and Luke, Burke and Lyon (2002) for various examples of the
phase problem and additional references. A review of phase retrieval in
optical imaging can be found in Shechtman et al. (2015).

Uniqueness and stability properties from a mathematical viewpoint are
reviewed in Grohs, Koppensteiner and Rathmair (2020). We just note here
that the very first mathematical findings regarding uniqueness related to
the phase retrieval problem are Norbert Wiener’s seminal results on spectral
factorization (Wiener 1932).

Phase retrieval has seen a significant resurgence in activity in recent years.
This resurgence is fuelled by:

(i) the desire to image individual molecules and other nano-particles;

(ii) new imaging capabilities such as ptychography, single-molecule dif-
fraction and serial nanocrystallography, as well as the availability of
X-ray free-electron lasers (XFELs) and new X-ray synchrotron sources
that provide extraordinary X-ray fluxes (see e.g. Chapman et al. 2011,
Neutze et al. 2000, Millane 2006, Scapin 2006, Bogan et al. 2008, Miao,
Ishikawa, Shen and Earnest 2008, Dierolf et al. 2010, Thibault et al.
2008);

(iii) the influx of novel mathematical concepts and ideas, spearheaded by
Candès, Eldar, Strohmer and Voroninski (2013a) and Candès, Stroh-
mer and Voroninski (2013b), as well as deeper understanding of non-
convex optimization methods such as alternating projections (Gerch-
berg and Saxton 1972) and Fienup’s hybrid input–output (HIO) al-
gorithm (Fienup 1982).

These mathematical concepts include advanced methods from convex and
non-convex optimization, techniques from random matrix theory and in-
sights from algebraic geometry.

Let x be a (possibly multi-dimensional) signal. Then, in its most basic
form, the phase retrieval problem can be expressed as

Recover x, given |x̂(ω)|2 =
∣∣∣∣
∫

T
x(t)e−2πit·ω dt

∣∣∣∣
2

, ω ∈ Ω, (1.1)
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128 A. Fannjiang and T. Strohmer

where T and Ω are the domain of the signal x and its Fourier transform
x̂, respectively (and the Fourier transform in (1.1) should be understood as
possibly multi-dimensional transform).

When we measure |x̂(ω)|2 instead of x̂(ω), we lose information about the
phase of x. If we could somehow retrieve the phase of x, then it would be
trivial to recover x, hence the term phase retrieval. Its origin comes from the
fact that detectors can often only record the squared modulus of the Fresnel
or Fraunhofer diffraction pattern of the radiation that is scattered from an
object. In such settings one cannot measure the phase of the optical wave
reaching the detector, and therefore much information about the scattered
object or the optical field is lost since, as is well known, the phase encodes
a lot of the structural content of the image we wish to form.

Clearly there are infinitely many signals that have the same Fourier mag-
nitude. This includes simple modifications such as translations or reflec-
tions of a signal. While in practice such trivial ambiguities are probably
acceptable, there are infinitely many other signals sharing the same Fourier
magnitude which do not arise from a simple transform of the original signal.
Thus, to make the problem even theoretically solvable (ignoring for a mo-
ment the existence of efficient and stable numerical algorithms), additional
information about the signal must be harnessed. To achieve this we can
either assume prior knowledge of the structure of the underlying signal or
we can somehow take additional (yet still phaseless) measurements of x, or
we pursue a combination of the two approaches.

Phase retrieval problems are usually ill-posed and notoriously difficult to
solve. Theoretical conditions that guarantee uniqueness of the solution for
generic signals exist for certain cases. However, as mentioned in Luke et al.
(2002) and Fannjiang (2012), these uniqueness results do not translate into
numerical computability of the signal from its intensity measurements, nor
do they concern the robustness and stability of commonly used reconstruc-
tion algorithms. Indeed, many of the existing numerical methods for phase
retrieval rely on all kinds of a priori information about the signal, and none
of these methods is proven to actually recover the signal.

This is the main difference between inverse and optimization problems:
the latter focuses on minimizing the loss function while the former emphas-
izes minimization of reconstruction error of the unknown object. The bridge
between the loss function and the reconstruction error depends precisely on
the measurement schemes, which are domain-dependent.

Practitioners, not surprisingly, care less about theoretical guarantees of
phase retrieval algorithms as long as they perform reasonably well in prac-
tice. Yet, it is a fact that algorithms do not always succeed. And then we
want to know what went wrong. Was it a fundamental misconception in the
experimental set-up? After all, Nature does not always cooperate. Was it
due to underestimating measurement noise or unaccounted-for calibration
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The numerics of phase retrieval 129

errors? How robust is the algorithm in the presence of corrupted measure-
ments or perturbations caused by lack of calibration? How much parameter
tuning is acceptable when we are dealing with a large throughput of data?
All these questions require systematic empirical study of algorithms com-
bined with careful theoretical numerical analysis. This paper provides a
snapshot from an algorithmic viewpoint of recent activities in the applied
mathematics community in this field. In addition to traditional conver-
gence analysis, we give equal attention to the sampling schemes and the
data structures.

1.1. Overview

In Section 2 we introduce the main set-up and some mathematical nota-
tion, and introduce various measurement techniques arising in phase re-
trieval, such as coded diffraction illumination and ptychography. Section 3
is devoted to questions of uniqueness and feasibility. We also analyse vari-
ous noise models. Non-convex optimization methods are covered in Sec-
tion 4. We first review and analyse iterative projection methods, such as
alternating projections, averaged alternating reflections and the Douglas–
Rachford splitting. We also review issues of convergence. We then analyse
gradient descent methods and the alternating direction method of multi-
pliers in detail. We discuss convergence rates, fixed points and robustness
of these algorithms. The question of the right initialization method is ad-
dressed in Section 5, as initialization plays a key role in the performance
of many algorithms. In Section 6 we introduce various convex optimization
methods for phase retrieval, such as PhaseLift and convex methods without
‘lifting’. We also discuss applications in quantum tomography and how to
take advantage of signal sparsity. Section 7 focuses on blind ptychography.
We describe connections to time-frequency analysis, discuss in detail ambi-
guities arising in blind ptychography, and describe a range of blind recon-
struction algorithms. Holographic coded diffraction imaging is the topic of
Section 8. We conclude in Section 9.

2. Phase retrieval and ptychography: basic set-up

2.1. Mathematical formulation

There are many ways in which one can pose the phase retrieval problem,
for instance depending upon whether one assumes a continuous or discrete-
space model for the signal. In this paper we consider discrete-length signals
(one-dimensional or multi-dimensional) for simplicity, and because numer-
ical algorithms ultimately operate with digital data. Moreover, for the same
reason we will often focus on finite-length signals. We refer to Grohs et al.
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130 A. Fannjiang and T. Strohmer

(2020) and the many references therein regarding the similarities and delic-
ate differences arising between the discrete and the continuous setting.

To fix ideas, suppose our object of interest is represented by a discrete
signal x(n),n= (n1,n2, . . . ,nd) ∈ Z

d. Define the Fourier transform of x∗ as
∑

n

x∗(n)e
−2πin·w, w ∈ Ω.

We denote the Fourier transform operator by F, and F−1 is its inverse Four-
ier transform.1 The phase retrieval problem consists in finding x from the
magnitude coefficients |(Fx)[ω]|, ω ∈Ω. Without further information about
the unknown signal x, this problem is in general ill-posed since there are
many different signals whose Fourier transforms have the same magnitude.
Clearly, if x is a solution to the phase retrieval problem, then (i) cx is also
a solution for any scalar c ∈ C obeying |c| = 1, (ii) the ‘mirror function’
or time-reversed signal x̄(−t) is also a solution, and (iii) the shifted signal
x(t−s) is also a solution. From a physical viewpoint these ‘trivial associates’
of x are usually acceptable ambiguities. But in general infinitely many solu-
tions can be obtained from {|x̂(ω)| : ω ∈ Ω} beyond these trivial associates
(Sanz 1985).

Most phase retrieval problems are formulated in two dimensions, of-
ten with the ultimate goal of reconstructing – via tomography – a three-
dimensional structure. But phase retrieval problems also arise in one dimen-
sion (e.g. fibre optic communications) and potentially even four dimensions
(e.g. mapping the dynamics of biological structures).

Thus, we formulate the phase retrieval problem in a more general way as
follows. Let x ∈ C

n and ak ∈ C
n:

Recover x, given yk = |〈x,ak〉|2, k = 1, . . . ,N. (2.1)

Here x and the ak can represent multi-dimensional signals. We assume
intensity measurements but obviously the problem is equivalent from a the-
oretical viewpoint if we assume magnitude measurements

bk = |〈x,ak〉|, k = 1, . . . ,N.

To ease the burden of notation, when x represents an image and the two-
dimensionality of x is essential for the presentation, we will often denote
its dimension as x ∈ C

n×n (instead of the more cumbersome notation x ∈
C
√
n×√

n), in which case the total number of unknowns is n2. In other
cases, when the dimensionality of x is less relevant to the analysis, we will
simply consider x ∈ C

n, where x may be one- or multi-dimensional. The
dimensionality will be clear from the context.

1 Here, F may correspond to a one- or multi-dimensional Fourier transform, and operate
in the continuous, discrete or finite domain. The set-up will be clear from the context.
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Also, the measurement vectors ak can represent different measurement
schemes (e.g. coded diffraction imaging, ptychography, . . .) with specific
structural properties, which we will describe in more detail later.

We note that if x is a solution to the phase retrieval problem, then cx
for any scalar c ∈C obeying |c|= 1 is also a solution. Thus, without further
information about x, all we can hope for is to recover x up to a global phase.
Thus, when we talk in this paper about exact recovery of x, we always mean
recovery up to this global phase factor.

As mentioned before, the phase retrieval problem is notoriously ill-posed
in its most classical form, where one tries to recover x from intensities of
its Fourier transform, |x̂|2. We will discuss questions about uniqueness in
Section 3; see also the reviews by Grohs et al. (2020), Jaganathan, Eldar
and Hassibi (2015) and Bendory, Beinert and Eldar (2017). To combat his
ill-posedness, we have the options to include additional prior information
about x or acquire additional measurements about x, or a combination of
the two. We will briefly outline the most common strategies below.

2.2. Prior information

A natural way to attack the ill-posedness of phase retrieval is to reduce
the number of unknown parameters. The most common assumption is to
invoke support constraints on the signal (Fienup 1982, Chen, Miao, Wang
and Lee 2007). This is often justified since the object of interest may have
clearly defined boundaries, outside of which one can assume that the signal
is zero. The effectiveness of this constraint often hinges on the accuracy on
the estimated support boundaries. Positivity and real-valuedness are other
frequent assumptions suitable in many settings, while atomicity is more
limited to specific scenarios (Fienup 1978, Fienup 1982, Marchesini 2007,
Chen et al. 2007). Another assumption that has gained popularity in recent
years is sparsity (Shechtman et al. 2015). Under the sparsity assumption,
the signal of interest has only relatively few non-zero coefficients in some
(known) basis, but we do not know a priori the indices of these coefficients,
so we do not know the location of the support. This can be seen as
a generalization of the usual support constraint.

Oversampling in the Fourier domain has been proposed as a means to
mitigate the non-uniqueness of the phase retrieval problem in connection
with prior signal information (Miao, Chapman and Sayre 1997). While over-
sampling offers no benefit for most one-dimensional signals, the situation
is more favourable for multi-dimensional signals, where it has been shown
that twofold oversampling in each dimension almost always yields unique-
ness for finitely supported, real-valued and non-negative signals (Bruck and
Sodin 1979, Hayes 1982, Sanz 1985; see also Grohs et al. 2020). Luke et al.
(2002) point out that these uniqueness results do not say anything about
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132 A. Fannjiang and T. Strohmer

how a signal can be recovered from its intensity measurements, or about the
robustness and stability of commonly used reconstruction algorithms. We
will discuss throughout the paper how to incorporate various kinds of prior
information in the algorithm design.

2.3. Measurement techniques

The set-up of classical X-ray crystallography (aside from oversampling) cor-
responds to the most basic measurement set-up where the measurement vec-
tors ak are the columns of the associated two-dimensional DFT matrix. This
means that if x is an n×n image, we obtain n2 Fourier-intensity samples,
which is obviously not enough to recover x. Thus, besides oversampling,
different strategies have been devised to obtain additional measurements
about x. We briefly review these strategies and discuss many of them in
more detail throughout the paper.

2.3.1. Coded diffraction imaging
The combination of X-ray diffraction, oversampling and phase retrieval has
launched the field of coherent diffraction imaging or CDI (Miao et al. 1999,
Marchesini 2007). A detailed description of CDI and phase retrieval can
be found in Shechtman et al. (2015). As pointed out by Shechtman et al.
(2015), the lensless nature of CDI is actually an advantage when dealing
with extremely intense and destructive pulses, where one can only carry out
a single pulse measurement with each object (say, a molecule) before the
object disintegrates. Lensless imaging is mainly used in short wavelength
spectral regions such as extreme ultraviolet (EUV) and X-ray, where high
precision imaging optics are difficult to manufacture, expensive, and exper-
ience high losses. We discuss CDI in more detail in Section 2.4, as well as
throughout the paper.

2.3.2. Multiple structured illuminations
A very popular approach to increasing the number of measurements is to
collect several diffraction patterns providing ‘different views’ of the sample
or specimen, as illustrated in Figure 2.1. The concept of using multiple
measurements as an attempt to resolve the phase ambiguity for diffraction
imaging is of course not new, and was suggested by Misell (1973). Since
then, a variety of methods have been proposed to carry out these multiple
measurements; depending on the particular application, these may include
the use of various gratings or masks, the rotation of the axial position of the
sample, and the use of defocusing implemented in a spatial light modulator;
see Duadi et al. (2011) for details and references.

Inspired by work on compressive sensing and coded diffraction imaging,
theoretical analysis clearly revealed the potential of combining random-
ness with multiple illuminations (Candès et al. 2013b, Fannjiang 2012).
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Figure 2.1. Typical set-up for structured illuminations in diffraction imaging using
a phase mask.

Despite the sometimes expressed scepticism towards the feasibility of ran-
dom illuminations (Luke 2017), this concept has a long history in optics
and X-ray imaging, and great progress continues to be made (Maiden
et al. 2013, Horisaki, Egami and Tanida 2016, Peng, Ruane, Quadrelli
and Swartzlander 2017, Seaberg, d’Aspremont and Turner 2015, Zhang
et al. 2016, Marchesini and Sakdinawat 2019), thereby exemplifying the ex-
citing advances that can be achieved by an efficient feedback loop between
theory and practice. To quote from Marchesini and Sakdinawat (2019): ‘The
ability to arbitrarily shape coherent x-ray wavefronts at new synchrotron
and x-ray free electron facilities with these new optics will lead to ad-
vances in measurement capabilities and techniques that have been difficult
to implement in the x-ray regime.’

We can create multiple illuminations in many ways. One possibility is to
modify the phase front after the sample by inserting amask or a phase plate;
see Liu et al. (2008), for example. A schematic layout is shown in Figure 2.1.
Another standard approach would be to change the profile or modulate the
illuminating beam, which can easily be accomplished by the use of optical
gratings (Loewen and Popov 1997). A simplified representation would look
similar to the scheme depicted in Figure 2.1, with a grating instead of the
mask (the grating could be placed before or after the sample).

Ptychography can be seen as an example of multiple illuminations. But
due to its specific structure, ptychography deserves to be treated separately.
In ptychography, one records several diffraction patterns from overlapping
areas of the sample; see Rodenburg (2008), Thibault et al. (2009) and ref-
erences therein. We discuss ptychography in more detail in Sections 2.7
and 2.5. In Johnson et al. (2008), the sample is scanned by shifting the
phase plate as in ptychography; the difference is that one scans the known
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134 A. Fannjiang and T. Strohmer

phase plate rather than the object being imaged. Oblique illuminations are
another way to create multiple illuminations. Here one can use illuminating
beams hitting the sample at a user-specified angle (Faridian et al. 2010).

In mathematical terms, the phase retrieval problem when using multiple
structured illuminations in the measurement process can be expressed as
follows:

Find x

subject to yk,ℓ = |(FDℓx)k|2, k = 1, . . . ,n;ℓ= 1, . . . ,L,

where Dℓ is a diagonal matrix representing the ℓth mask out of a total of L
different masks, and the total number of measurements is given by N = nL.

2.3.3. Holography
Holographic techniques, going back to the seminal work of Dennis Gabor
(1948), are among the more popular methods that have been proposed to
measure the phase of the optical wave. The basic idea of holography is to
include a reference in the illumination process. This prior information can
be utilized to recover the phase of the signal. While holographic techniques
have been successfully applied in certain areas of optical imaging, they can
generally be difficult to implement in practice (Duadi et al. 2011). In recent
years we have seen significant progress in this area (Saliba et al. 2016, La-
tychevskaia, Longchamp and Fink 2012). We postpone a more detailed
discussion of holographic methods to Section 8.

2.4. Measurement of coded diffraction patterns

Due to the importance of coded diffraction patterns for phase retrieval,
we describe this scheme in more detail. Let Z

2
n = J0,n− 1K2 be the object

domain containing the support of the discrete object x∗, where Jk,lK denotes
the integers between, and including, k ≤ l ∈ Z.

For any vector u, define its modulus vector |u| as |u|(j) = |u(j)| and its
phase vector sgn(u) as

sgn(u)(j) =

{
eiα if u(j) = 0,

u(j)/|u(j)| else,

where j is the index for the vector component. The choice of α ∈ R is
arbitrary when u(j) vanishes. However, for numerical implementation, α
can be conveniently set to 0.

In the noiseless case the phase retrieval problem is to solve

b= |u| with u=Ax∗ (2.2)

for unknown object x∗ with given data b and some measurement matrix A.
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The numerics of phase retrieval 135

Let x∗(n), n = (n1,n2, . . . ,nd) ∈ Z
d, be a discrete object function sup-

ported in

M= {0≤m1 ≤M1,0≤m2 ≤M2, . . . ,0≤md ≤Md}.
Define the d -dimensional discrete-space Fourier transform of x∗ as

∑

n∈M
x∗(n)e

−2πin·w, w = (w1, . . . ,wd) ∈ [0,1]d.

However, only the intensities of the Fourier transform, called the diffraction
pattern, are measured, that is,

M∑

n=−M

∑

m∈M
x∗(m+n)x∗(m)e−i2πn·w, M= (M1, . . . ,Md),

which is the Fourier transform of the autocorrelation

R(n) =
∑

m∈M
x∗(m+n)x∗(m).

Here and below the over-line means complex conjugacy.
Note that R is defined on the enlarged grid

M̃= {(m1, . . . ,md) ∈ Z
d : −M1 ≤m1 ≤M1, . . . ,−Md ≤md ≤Md},

whose cardinality is roughly 2d times that of M. Hence, by sampling the
diffraction pattern on the grid

L=

{
(w1, . . . ,wd) | wj = 0,

1

2Mj+1
,

2

2Mj+1
, . . . ,

2Mj

2Mj+1

}
,

we can recover the autocorrelation function by the inverse Fourier transform.
This is the standard oversampling with which the diffraction pattern and
the autocorrelation function become equivalent via the Fourier transform.

A coded diffraction pattern is measured with a mask whose effect is multi-
plicative and results in a masked object x∗(n)µ(n), where µ(n) is an array of
random variables representing the mask. In other words, a coded diffraction
pattern is just the plain diffraction pattern of a masked object.

We will focus on the effect of random phases φ(n) in the mask function
µ(n) = |µ|(n)eiφ(n), where φ(n) are independent, continuous real-valued
random variables and |µ|(n) 6= 0 for all n ∈ M (i.e. the mask is transpar-
ent). The mask function by assumption is a finite set of continuous random
variables and so is y∗ = Ax∗. Therefore y∗ vanishes nowhere almost surely,
that is,

bmin =min
j
bj > 0.
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For simplicity we assume |µ|(n) = 1 for all n, which gives rise to a phase
mask and an isometric, or unitary, propagation matrix

(1-mask) A= cΦ diag{µ}, (2.3)

that is, A∗A = I (with a proper choice of the normalizing constant c),
where Φ is the oversampled d -dimensional discrete Fourier transform (DFT).

Specifically, Φ ∈ C
|M̃|×|M| is the sub-column matrix of the standard DFT

on the extended grid M̃, where |M| is the cardinality of M.
If the non-vanishing mask µ does not have uniform transparency, i.e.

|µ|(n) 6= 1 for all n, then we can define a new object vector |µ|⊙x∗ and a
new isometric propagation matrix

A= cΦ diag

{
µ

|µ|

}

with which to recover the new object first.
When two phase masks µ1,µ2 are deployed, the propagation matrix A∗ is

the stacked coded DFTs, that is,

(2-mask case) A= c

[
Φ diag{µ1}
Φ diag{µ2}

]
. (2.4)

With proper normalization, A is isometric.
All of the results with coded diffraction patterns present in this work apply

to d ≥ 2. But the most relevant case is d = 2, which is assumed hereafter.
We can vectorize the object/masks by converting the n×n square grid into
a long vector. Let N be the total number of measured data. In other words
A ∈ C

N×n2

, where N is about 4×n2 and 8×n2, respectively, in the case of
(2.3) and (2.4).

2.5. Ptychography

Ptychography is a special case of coherent diffractive imaging that uses mul-
tiple micro-diffraction patterns obtained by scanning across the unknown
specimen with a mask, making a measurement for each location via a loc-
alized illumination on the specimen (Hoppe 1969, Rodenburg 2008). This
provides a much larger set of measurements, but at the cost of a longer, more
involved experiment. As such, ptychography is a synthetic aperture tech-
nique and, along with advances in detection and computation techniques,
has enabled microscopies with enhanced resolution and robustness without
the need for lenses. Ptychography offers numerous benefits and has thus at-
tracted significant attention. See Dierolf et al. (2010), Thibault et al. (2009),
Rodenburg (2008), Qian et al. (2014), Pfeiffer (2018) and Horstmeyer et al.
(2016) for a small sample of different activities in this field.

Figure 2.2 is a schematic depiction of a ptychography experiment in which
a probe scans through a two-dimensional object in an overlapping fashion
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Zone-plate lens

Sample Motion
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Diffraction Pattern

Transmission Image

Ptychographic Image

Figure 2.2. Schematic depiction of a ptychography experiment in which a probe
scans through a two-dimensional object in an overlapping fashion and produces
a sequence of diffraction patterns of the scanned regions. Image courtesy of Qian
et al. (2014).

and produces a sequence of diffraction patterns of the scanned regions. Each
image frame represents the magnitude of the Fourier transform of µ(s)x(s+
t), where µ(s) is a localized illumination (window) function or a mask, x(s)
is the unknown object of interest and t is a translational vector. Thus the
measurements taken in ptychography can be expressed as

|F (µ(s)x(s+ t)|2. (2.5)

Due to its specific underlying mathematical structure, ptychography war-
rants its own analysis. A detailed discussion of various reconstruction al-
gorithms for ptychography can be found in Qian et al. (2014). For a convex
approach using the PhaseLift idea, see for instance Horstmeyer et al. (2015).
An intriguing algorithm that combines ideas from PhaseLift with the local
nature of the measurements can be found in Iwen, Preskitt, Saab and
Viswanathan (2016).

2.6. Ptychography and time-frequency analysis

An inspection of the basic measurement mechanism of ptychography in
(2.5) shows an interesting connection to time-frequency analysis (Gröchenig
2001). To see this, we recall the definition of the short-time Fourier trans-
form (STFT) and the Gabor transform. For s,ω ∈ R

d we define the trans-
lation operator Ts and the modulation operator Mω by

Tsx(t) = x(t− s), Mωx(t) = e2πiω·tx(t),
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where x ∈ L2(Rd). Let µ ∈ S(Rd), where S denotes the Schwartz space. The
STFT of x with respect to the window µ is defined by

Vµx(s,ω) =

∫

Rd

x(t)µ(s− t)e−2πiω·tdt= 〈x,MωTsµ〉, (s,ω) ∈ R
2d.

A Gabor system consists of functions of the form

e2πibltµ(t−ak) =MblTakµ, (k,l) ∈ Z
d×Z

d,

where a,b > 0 are the time- and frequency-shift parameters (Gröchenig
2001). The associated Gabor transform G : L2(R) 7→ ℓ2(Z×Z) is defined as

Gx= {〈x,MblTakµ〉}(k,l)∈Zd×Zd .

G is clearly just an STFT that has been sampled at the time-frequency
lattice aZ× bZ. It is clear that the definitions of the STFT and Gabor
transform above can be adapted in an obvious way for discrete or finite-
dimensional functions.

Since ptychographic measurements take the form {|〈x,MωTsµ〉|2}, where
(s,ω) are indices of some time-frequency lattice, it is now evident that these
measurements simply correspond to squared magnitudes of the STFT or
(depending on the chosen time-frequency shift parameters) of the Gabor
transform of the signal x with respect to the mask µ. Thus, methods de-
veloped for the reconstruction of a function from magnitudes of its (sampled)
STFT (see e.g. Eldar et al. 2014, Pfander and Salanevich 2019 and Grohs,
Koppensteiner and Rathmair 2020) become relevant for ptychography.

Beyond ptychography, phase retrieval from the STFT magnitude has been
used in speech and audio processing (Nawab, Quatieri and Lim 1983, Balan
2010). It has also found extensive applications in optics. As described in
Jaganathan et al. (2015), one example arises in frequency-resolved optical
gating (FROG) or XFROG, which is used for characterizing ultra-short laser
pulses by optically producing the STFT magnitude of the measured pulse.

2.7. Two-dimensional ptychography

While the mathematical framework of ptychography can be formulated in
any dimension, the two-dimensional case is the most relevant in practice. In
the ptychographic measurement, the m×m mask has a smaller size than
the n×n object, i.e. m< n, and is shifted around to various positions for
measurement of coded diffraction patterns so as to cover the entire object.

Let M0 := Z
2
m, m < n, be the initial mask area, i.e. the support of the

mask µ0 describing the illumination field. Let T be the set of all shifts (i.e.
the scan pattern), including (0,0), involved in the ptychographic measure-
ment. Let µt be the t-shifted mask for all t ∈ T and let Mt be the domain
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(a) raster scan (b) (c)

Figure 2.3. A complete undirected graph (a) representing four connected object
parts (b), where the grey level indicates the number of coverages by the mask in
four scan positions (c).

of µt. Let xt∗ be the object restricted to Mt. We refer to each xt∗ as a
part of x∗ and write x∗ = ∨tx

t
∗, where ∨ is the ‘union’ of functions consist-

ent over their common support set. In ptychography, the original object is
broken up into a set of overlapping object parts, each of which produces a
µt-coded diffraction pattern. The totality of the coded diffraction patterns
is called the ptychographic measurement data. For convenience of analysis,
we assume the value zero for µt,xt∗ outside Mt and the periodic boundary
condition on Z

2
n when µt crosses over the boundary of Z2

n.
A basic scanning pattern is the two-dimensional lattice with the basis

{v1,v2},
T = {tkl ≡ kv1+ lv2 : k,l ∈ Z}, v1,v2 ∈ Z

2,

acting on the object domain Z
2
n. Instead of v1 and v2 we can also take u1 =

ℓ11v1+ℓ12v2 and u2 = ℓ21v1+ℓ22v2 for integers ℓij with ℓ11ℓ22−ℓ12ℓ21 =±1.
This ensures that v1 and v2 themselves are integer linear combinations of
u1,u2. Every lattice basis defines a fundamental parallelogram, which de-
termines the lattice. There are five two-dimensional lattice types, called
period lattices, as given by the crystallographic restriction theorem. In con-
trast, there are 14 lattice types in three dimensions, called Bravais lattices.

Under the periodic boundary condition, the raster scan with step
size τ = n/q,q ∈ N, T consists of tkl = τ(k,l), with k,l ∈ {0,1, . . . ,q − 1}
(Figure 2.3(a)). The periodic boundary condition means that for k = q−1
or l = q− 1 the shifted mask is wrapped around into the other end of the
object domain.

A basic requirement is the strong connectivity property of the object with
respect to the measurement scheme. It is useful to think of connectivity in
graph-theoretical terms. Let the ptychographic experiment be represented
by a complete graph G whose nodes correspond to {xt∗ : t ∈ T } (see Fig-
ure 2.3(b)).
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(a) matrix Aν (b) matrix Bx

Figure 2.4. (a) Aν is a concatenation of shifted blocks {Φ diag(νt) : t ∈ T }. (b)
Bx is a concatenation of unshifted blocks {Φ diag(xt) : t ∈ T }. In both cases, each
block gives rise to a coded diffraction pattern |Φ(νt⊙xt)|.

An edge between two nodes corresponding to xt∗ and xt
′

∗ is s-connective
if

|Mt∩Mt
′ ∩ supp(x∗)| ≥ s≥ 2, (2.6)

where | · | denotes the cardinality. In the case of full support (i.e. supp(x∗) =
M), (2.6) becomes |Mt ∩Mt

′ | ≥ s. An s-connective subgraph Gs of G
consists of all the nodes of G but only the s-connective edges. Two nodes
are adjacent (and neighbours) in Gs if and only if they are s-connected.
A chain in Gs is a sequence of nodes such that two successive nodes are
adjacent. In a simple chain all the nodes are distinct. Then the object parts
{xt∗ : t ∈ T } are s-connected if and only if Gs is a connected graph, i.e.
every two nodes is connected by a chain of s-connective edges. Loosely
speaking, an object is strongly connected with respect to the ptychographic
scheme if s≫ 1. We say that {xt∗ : t ∈ T } are s-connected if there is an
s-connected chain between any two elements.

Let us consider the simplest raster scan corresponding to the square lattice
with v1 = (τ,0),v2 = (0,τ) of step size τ > 0, that is,

tkl = τ(k,l), k,l = 0, . . . ,q−1. (2.7)

For even coverage of the object, we assume that τ = n/q =m/p for some
p < q ∈ N.

Denote the tkl-shifted masks and blocks by µkl and Mkl, respectively.
Likewise, let xkl∗ denote the object restricted to the shifted domain Mkl.

Let F(ν,x) be the bilinear transformation representing the totality of the
Fourier (magnitude and phase) data for any mask ν and object x. From
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F(ν0,x) we can define two measurement matrices. First, for a given ν0 ∈
C
m2

, let Aν be defined via the relation Aνx := F(ν0,x) for all x ∈ C
n2

.

Second, for a given x ∈ C
n2

, let Bx be defined via Bxν = F(ν0,x) for all

ν0 ∈ C
m2

.
More specifically, let Φ denote the oversampled Fourier matrix. The

measurement matrix Aν is a concatenation of {Φdiag(νt) : t ∈ T } (Fig-
ure 2.4(a)). Likewise, Bx is {Φdiag(xt) : t ∈ T } stacked on top of each
other (Figure 2.4(b)). Since Φ has orthogonal columns, both Aν and Bx
have orthogonal columns. Both matrices will be relevant when we discuss
blind ptychography, which does not assume prior knowledge of the mask in
Section 7.

3. Uniqueness, ambiguities, noise

In this section we discuss various questions of uniqueness and feasibility
related to the phase retrieval problem. Since a detailed and thorough current
review of uniqueness and feasibility can be found in Grohs et al. (2020), we
mainly focus on aspects not covered in that review. We will also discuss
various noise models.

3.1. Uniqueness and ambiguities with coded diffraction patterns

We say that x∗ is a line object if the original object support is part of a line
segment. Otherwise x∗ is said to be a nonlinear object.

A phase retrieval solution is unique only up to a constant of modulus
one, no matter how many coded diffraction patterns are measured. Thus
the proper error metric for an estimate x of the true solution x∗ is given by

min
θ∈R

‖e−iθx∗−x‖=min
θ∈R

‖eiθx−x∗‖,

where the optimal phase adjustment θ∗ is given by

θ∗ = ∡(x∗x∗).

Now we recall the uniqueness theorem of phase retrieval with coded dif-
fraction patterns.

Theorem 3.1 (Fannjiang 2012). Let x∗ ∈C
n2

be a nonlinear object and
let x be a solution of the phase retrieval problem. Suppose that the phases of
the random mask(s) are formed of independent continuous random variables
on (−π,π].

(i) One-pattern case. Suppose, in addition, that ∡x∗(j) ∈ [−απ,βπ] for all j,
with α+ β ∈ (0,2) and that the density function for φ(n) is a constant
(i.e. (2π)−1) for every n.
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(a) original object (b) AP (c) AAR

Figure 3.1. (a) Non-negative real-valued phantom with a plain uniform mask, along
with its AP (b) and AAR (c) reconstructions.

Then x= eiθx∗ for some constant θ ∈ (−π,π], with high probability, which
has the simple lower bound

1−n2
∣∣∣∣
β+α

2

∣∣∣∣
TS/2U

, (3.1)

where S is the number of non-zero components in x∗ and TS/2U is the
greatest integer less than or equal to S/2.

(ii) Two-pattern case. Here x = eiθx∗ for some constant θ ∈ (−π,π] with
probability one.

The proof of Theorem 3.1 is given in Fannjiang (2012), where more general
uniqueness theorems can be found. It is noteworthy that the probability
bound for uniqueness (3.1) improves exponentially with higher sparsity of
the object.

We have the analogous uniqueness theorem for ptychography.

Theorem 3.2 (Fannjiang and Chen 2020). Let x∗ ∈C
n2

be a nonlin-
ear object and let x be a solution of the phase retrieval problem. Suppose
that the phases of the random mask(s) are formed of independent continu-
ous random variables on (−π,π].

If the connectivity condition (2.6) holds, then x∗ is the unique ptycho-
graphic solution up to a constant phase factor.

3.2. Ambiguities with one diffraction pattern

By the methods in Fannjiang (2012), it can be shown that an object estimate
x produces the same coded diffraction pattern as x∗ if and only if

x(n) =




eiθx∗(n+m)µ(n+m)/µ(n),

eiθx∗(N−n+m)µ(N−n+m)/µ(n),
(3.2)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492920000069
Downloaded from https://www.cambridge.org/core. UC Davis, on 01 Dec 2020 at 19:44:38, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492920000069
https://www.cambridge.org/core


The numerics of phase retrieval 143

for some m ∈ Z
2,θ ∈ R almost surely. The ‘if’ part of the above statement

is straightforward to check. The ‘only if’ part is a useful result of using a
random mask in measurement. Therefore, in addition to the trivial phase
factor, there are translational (related to m), conjugate-inversion (related
to x∗(N−·)) modulation ambiguities (related to µ(n+m)/µ(n) or µ(N+
m−n)/µ(n)). Among these, the conjugate inversion (also known as the
twin image) is more prevalent as it cannot be eliminated by a tight support
constraint.

If, however, we have the prior knowledge that x∗ is real-valued, then none
of the ambiguities in (3.2) can happen since the right-hand side of (3.2) has
a non-zero imaginary part almost surely for any θ,m.

On the other hand, if the mask is uniform (i.e. µ= constant), then (3.2)
becomes

x(n) =




eiθx∗(n+m),

eiθx∗(N−n+m),
(3.3)

for some m ∈ Z
2,θ ∈ R. Thus, even with the real-valued prior, all the

ambiguities in (3.3) are present, including translation, conjugate-inversion
(twin image) and constant phase factor. In addition, there may be other
ambiguities not explicit in (3.3).

These ambiguities result in poor reconstruction, as shown in Figure 3.1
for the non-negative real-valued phantom with a plain uniform mask, us-
ing two widely used algorithms, alternating projections (AP) and averaged
alternating reflections (AAR), both of which are discussed in Section 3.3.

The phantom and its complex-valued variant, randomly phased phantom
(RPP), used in Figure 3.2, have the distinguishing feature that their support
is not the whole n×n grid but is surrounded by an extensive area of dark
pixels, thus making the translation ambiguity in (3.3) show up. This is
particularly apparent in Figure 3.1(c). In general, when the unknown object
has full n×n support, phase retrieval becomes somewhat easier, because
translation ambiguity is absent regardless of the mask used.

3.2.1. Twin-like ambiguity with a Fresnel mask
The next example shows that a commonly used mask can harbour a twin-
like image as ambiguity, and the significance of using a ‘random’ mask for
phase retrieval.

Consider the Fresnel mask function which, up to a shift, has the form

µ0(k1,k2) := exp{iπf(k21 +k22)/m}, k1,k2 = 1, . . . ,m, (3.4)

where f ∈ R is an adjustable parameter (see Figure 4.1(c) for the phase
pattern of (3.4)).

We construct a twin-like ambiguity for the Fresnel mask with f ∈ Z and
q = 2. Similar twin-like ambiguities can be constructed for general q.
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Figure 3.2. Relative error (RE) and relative residual (RR) on the semi-log scale
versus the parameter f of the Fresnel mask for the test object RPP.

For constructing the twin-like ambiguity we shall write the object vector
x∗ as an n×n matrix. Let ξ̌ be the conjugate inversion of any ξ ∈ C

n×n,
that is,

ξ̌ij = ξn+1−i,n+1−j .

Proposition 3.3 (Chen and Fannjiang 2018a). Let f ∈ Z and µ ∈
C
m×m be the Fresnel mask (3.4). For an even integer n, the matrix

µ̌⊙µ := h=

(
h1 h2
h3 h4

)
, hj ∈ C

m/2×m/2, j = 1,2,3,4,

satisfies the symmetry

h1 = h4 = σh2 = σh3, σ = (−1)f(1+m/2).

Moreover, for q = 2 (hence m= n and τ =m/2), x= x̌∗⊙h and x∗ produce
the same ptychographic data set with the Fresnel mask µ.

To demonstrate the danger of using a ‘regularly’ structured mask, we
plot the relative error (RE) and relative residual (RR) of reconstruction
(200 AAR iterations followed by 100 AP iterations) in Figure 3.2. The test
object is a randomly phased phantom (RPP) whose modulus is exactly the
non-negative phantom (Figure 3.1(a)) but whose phase is randomly and
uniformly distributed in [−π,π]. The scan scheme is the raster scan with
τ =m/2, i.e. 50% overlap ratio between adjacent masks. Both RE and RR
spike at integer-valued f and the spill-over effect gets worse as q increases.

3.3. Phase retrieval as feasibility

For two-dimensional, complex-valued objects, let C
n2

be the object space
where n is the number of pixels in each dimension. Sometimes it may be
more convenient to think of the object space as C

n×n. Let N be the total
number of data. The data manifold

Y := {u ∈ C
N : |u|= b}
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is an N -dimensional real torus. For phase retrieval it is necessary that
N > 2n2 (Balan, Casazza and Edidin 2006). Without loss of generality we
assume that A has full rank.

Due to the rectangular nature (more rows than columns) of the measure-
ment matrix A, it is more convenient to work with the transform domain
C
N . Let X :=ACn

2

, i.e. the range of A.
The problem of phase retrieval and ptychography can be formulated as

the feasibility problem

Find u ∈X ∩Y ,
in the transform domain instead of the object domain. Let PX and PY be
the projection onto X and Y, respectively.

Let us clarify the meaning of solution in the transform domain since A is
overdetermining. Let ⊙ denote the component-wise (Hadamard) product,
and we can write

PXu=AA+u, PY u= b⊙ sgn(u),

where the pseudo-inverse

A+ = (A∗A)−1A∗

becomes A∗ if A is isometric (unitary), which we assume henceforth.
We refer to u = eiαAx∗, α ∈ R, as the true solution (in the transform

domain), up to a constant phase factor eiα. We say that u is a generalized
solution (in the transform domain) if

|ũ|= b, ũ := PXu.

In other words, u is said to be a generalized solution if A+u is a phase
retrieval solution. Typically a generalized solution u is neither a feasible
solution (since |u| may not equal b) nor unique (since A is overdetermining),
and u+ z is also a generalized solution if PXz = 0.

We call u a regular solution if u is a generalized solution and PXu = u.
Let ũ = PXu for a generalized solution u. Since PX ũ = ũ and |ũ| = b, ũ is
a regular solution. Moreover, since PXRXu= PXu and RXRXu= u, u is a
generalized solution if and only if RXu is a generalized solution.

The goal of the inverse problem (2.2) is the unique determination of x∗, up
to a constant phase factor, from the given data b. In other words, uniqueness
holds if and only if all regular solutions ũ in the transform domain have the
form

ũ= eiαAx∗,

or equivalently, any generalized solution u is an element of the (2N −2n2)
real-dimensional vector space

{eiαAx∗+ z : PXz = 0, z ∈ C
N, α ∈ R}. (3.5)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492920000069
Downloaded from https://www.cambridge.org/core. UC Davis, on 01 Dec 2020 at 19:44:38, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492920000069
https://www.cambridge.org/core


146 A. Fannjiang and T. Strohmer

In the transform domain, the uniqueness is characterized by the unique-
ness of the regular solution, up to a constant phase factor. Geometrically,
uniqueness means that the intersection X ∩Y is a circle (parametrized eiα

times Ax∗).

3.4. Noise models and log-likelihood functions

In the noisy case, it is more convenient to work with the optimization
framework instead of the feasibility framework. When the noise statist-
ics is known, it is natural to consider the maximum likelihood estimation
(MLE) framework. In MLE, the negative log-likelihood function is the nat-
ural choice for the loss function.

3.4.1. Poisson noise
For Poisson noise, the negative log-likelihood function is (Thibault and
Guizar-Sicairos 2012, Bian et al. 2016)

L(u) =
∑

i

|u(i)|2− b2(i) ln |u(i)|2. (3.6)

A disadvantage of working with the Poisson loss function (3.6) is the occur-
rence of divergent derivative, where u(i) vanishes but b(i) does not. This
roughness can be softened as follows.

At the high signal-to-noise (SNR) limit, the Poisson distribution

P (n) =
λn e−λ

n!

has the asymptotic limit

P (n)∼ e−(n−λ)2/(2λ)
√
2πλ

. (3.7)

Namely, in the low noise limit the Poisson noise is equivalent to the Gaussian
noise of the mean |Ax∗|2 and the variance is equal to the intensity of the
diffraction pattern. The overall SNR can be tuned by varying the signal
energy ‖Ax∗‖2.

The negative log-likelihood function for the right-hand side of (3.7) is

∑

j

ln |u(j)|+ 1

2

∣∣∣∣
b2(j)

|u(j)| − |u(j)|
∣∣∣∣
2

, (3.8)

which is even rougher than (3.6), where u(i) vanishes but b(i) does not. To
get rid of the divergent derivatives at u(j) = 0 we make the substitution

b(j)

|u(j)| → 1, ln |u(j)| → lnb(j) = const.,
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in (3.8) and obtain

L(u) =
1

2
‖|u|− b‖2 (3.9)

after dropping irrelevant constant terms. Expanding the loss function (3.9),

L(u) =
1

2
‖u‖2−

∑

j

b(j)|u(j)|+ 1

2
‖b‖2, (3.10)

we see that (3.10) has a bounded sub-differential where u(j) vanishes but
b(j) does not. There are various tricks to smooth out (3.9), for example by
introducing an additional regularization parameter as

L(u) =
1

2
‖
√
|u|2+ε−

√
b2+ε‖2, ε > 0

(see Chang, Enfedaque and Marchesini 2019).

3.4.2. Complex Gaussian noise
Another type of noise due to interference from multiple scattering can be
modelled as complex circularly symmetric Gaussian noise (also known as a
Rayleigh fading channel), resulting in

b= |Ax∗+η|, (3.11)

where η is a complex circularly symmetric Gaussian noise. Squaring the
expression, we obtain

b2 = |Ax∗|2+ |η|2+2Re(η⊙Ax∗).
Suppose |η| ≪ |Ax∗| so that |η|2 ≪ 2Re(η⊙Ax∗). Then

b2 ≈ |Ax∗|2+2Re(η⊙Ax∗). (3.12)

Equation (3.12) says that at the photon counting level, the noise appears
additive and Gaussian but with variance proportional to |Ax∗|2, resem-
bling the distribution (3.7). Therefore the loss function (3.9) is suitable for
Rayleigh fading interference noise at low level.

3.4.3. Thermal noise
On the other hand, if the measurement noise is thermal (i.e. incoherent
background noise) as in

|b|2 = |Ax∗|2+η,
where η is real-valued Gaussian vector of covariance σ2IN , then the suitable
loss function is

L(u) =
1

2
‖|u|2− b2‖2, (3.13)
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which is smooth everywhere. See Godard, Allain, Chamard and Rodenburg
(2012), Zhang, Song and Dai (2017) and Konijnenberg, Coene and Urbach
(2018) for more choices of loss functions.

In general the amplitude-based Gaussian loss function (3.9) outperforms
the intensity-based loss function (3.13) (Yeh et al. 2015).

Finally, we note that the ambiguities discussed in Section 3.2 are global
minimizers of the loss functions (3.6), (3.9) and (3.13) along with eiθAx∗ in
the noiseless case. Therefore, to remove the undesirable global minimizers,
we need sufficient number of measurement data as well as proper measure-
ment schemes.

3.5. Spectral gap and local convexity

For the sake of convenience we shall assume that A is an isometry which
can always be realized by rescaling the columns of the measurement matrix.

In local convexity of the loss functions as well as geometric convergence
of iterative algorithms, the following matrix plays a central role:

B = diag[sgn(Ax)]A, (3.14)

which is an isometry and varies with x.
With the notation

∇f(x) := 1

2

(
∂f(x)

∂Re(x)
+ i

∂f(x)

∂Im(x)

)
, x ∈ C

n2

, (3.15)

we can write the subgradient of the loss function (3.9) as

2Re[ζ∗∇L(Ax)] = Re(x∗ζ)− b⊤Re(Bζ) for all ζ ∈ C
n2

.

In other words, x is a stationary point if and only if

x=B∗b=A∗(sgn(Ax)⊙ b)
or equivalently

B∗[|Ax|− b] = 0. (3.16)

Clearly, with noiseless data, |Ax∗| = b and hence x∗ is a stationary point.
In addition, there are probably other stationary points since B∗ has many
more columns than rows.

On the other hand, with noisy data there is no regular solution to |Ax|= b
with high probability (since A has many more rows than columns) and the
true solution x∗ is unlikely to be a stationary point (since (3.16) imposes
extra constraints on noise).

Let Hess(x) be the Hessian of L(Ax). If Ax has no vanishing components,
Hess(x) can be given explicitly as

Re[ζ∗Hess(x)ζ] = ‖ζ‖2− Im(Bζ)Tdiag

[
b

|Ax|

]
Im(Bζ) for all ζ ∈ C

n2

.
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Theorem 3.4 (Chen, Fannjiang and Liu 2018, Chen and Fannjiang
2018a, Chen and Fannjiang 2018b). Suppose x∗ is not a line object.
For A given by (2.3), (2.4) or the ptychography scheme under the connectiv-
ity condition (2.6) with independently and continuously distributed mask
phases, the second-largest singular value λ2 of the real-valued matrix

B = [−Re(B) Im(B)] (3.17)

is strictly less than 1 with probability one.
Therefore, the Hessian of (3.9) at Ax∗ (which is non-vanishing almost

surely) is positive semidefinite and has one-dimensional eigenspace spanned
by ix∗ associated with eigenvalue zero.

4. Non-convex optimization

4.1. Alternating projections (AP)

The earliest phase retrieval algorithm for a non-periodic object (such as a
single molecule) is the Gerchberg–Saxton algorithm (Gerchberg and Saxton
1972) and its variant, error reduction (Fienup 1982). The basic idea is alter-
nating projections (AP), going all the way back to the works of von Neu-
mann, Kaczmarz and Cimmino in the 1930s (Cimmino 1938, Kaczmarz
1937, vonNeumann 1950). These further trace the history back to Schwarz
(1870), who used AP to solve the Dirichlet problem on a region given as a
union of regions, each having an easily solved Dirichlet problem.

AP is defined by

xk+1 =A∗[b⊙ sgn(Axk)]. (4.1)

In the case with real-valued objects, (4.1) is exactly Fienup’s error reduction
algorithm (Fienup 1982).

The AP fixed points satisfy

x=A∗[b⊙ sgn(Ax)] or B∗[|Ax|− b] = 0,

which is exactly the stationarity equation (3.16) for L in (3.9). The existence
of non-solutional fixed points (i.e. |Ax| 6= b), and hence local minima of L
in (3.9), cannot be proved at present but manifests in numerical stagnation
of AP iteration.

Indeed, AP can be formulated as a gradient descent for the loss function
(3.9). The function (3.9) has the subgradient

2∇L(Ax) = x−A∗[b⊙ sgn(Ax)],

and hence we can write the AP map as

T (x) = x−2∇L(Ax),
implying a constant step size 1. Chen et al. (2018) proved local geometric
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convergence to x∗ for AP. In other words, AP is both noise-agnostic in the
sense that it projects onto the data set and noise-aware in the sense that it
is the subgradient descent of the loss function (3.9).

The following result identifies any limit point of the AP iterates with a
fixed point of AP with a norm criterion for distinguishing the phase retrieval
solutions from the non-solutions among many coexisting fixed points.

Proposition 4.1 (Chen, Fannjiang and Liu 2018). Under the condi-
tions of Theorem 3.1 or Theorem 3.2, the AP sequence xk = T k−1(x1), with
any starting point x1, is bounded and every limit point is a fixed point.

Furthermore, if a fixed point x satisfies ‖Ax‖= ‖b‖, then |Ax|= b almost
surely. On the other hand, if |Ax| 6= b, then ‖Ax‖< ‖b‖.

4.2. Averaged alternating reflections (AAR)

AAR is based on the following characterization of convex feasibility prob-
lems.

Let

RX = 2PX − I, RY = 2PY − I.
Then we can characterize the feasibility condition as

u ∈X ∩Y if and only if u=RYRXu

in the case of convex constraint sets X and Y (Giselsson and Boyd 2016).
This motivates the Peaceman–Rachford (PR) method: for k = 0,1,2, . . . ,

uk+1 =RYRXyk.

AAR is the averaged version of PR: for k = 0,1,2, . . . ,

uk+1 =
1

2
uk+

1

2
RYRXuk, (4.2)

hence the name averaged alternating reflections (AAR). With a different
variable vk :=RXuk, we see that AAR (4.2) is equivalent to

vk+1 =
1

2
vk+

1

2
RXRY vk. (4.3)

In other words, the order of applying Rx and RY does not matter.
A standard result for AAR in the convex case is as follows.

Proposition 4.2 (Bauschke, Combettes and Luke 2004). Suppose X
and Y are closed and convex sets of a finite-dimensional vector space E. Let
{uk} be an AAR-iterated sequence for any u1 ∈ E. Then one of the follow-
ing alternatives holds:

(i) X ∩Y 6= ∅ and (uk) converges to a point u such that PXu ∈X ∩Y ,

(ii) X ∩Y = ∅ and ‖uk‖→∞.
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In alternative (i), the limit point u is a fixed point of the AAR map (4.2),
which is necessarily in X ∩Y ; in alternative (ii) the feasibility problem is
inconsistent, resulting in divergent AAR iterated sequences, a major draw-
back of AAR since the inconsistent case is prevalent with noisy data because
of the higher dimension of data compared to the object.

Accordingly, the alternative (i) in Proposition 4.2 means that if a convex
feasibility problem is consistent, then every AAR iterated sequence con-
verges to a generalized solution and hence every fixed point is a generalized
solution.

We begin by showing that AAR can be viewed as an ADMM method
with the indicator function IY of the set Y = {z ∈ C

N : |z| = b} as the loss
function.

AAR for phase retrieval can be viewed as relaxation of the linear con-
straint of X by alternately minimizing the augmented Lagrangian function

L(z,x,λ) = IY (z)+λ
∗(z−Ax)+ 1

2
‖z−Ax‖2 (4.4)

in the order

zk+1 = argmin
z

L(z,xk,λk) = PY [Axk−λk], (4.5)

xk+1 = argmin
ν

L(zk+1,x,λk) =A+(zk+1+λk), (4.6)

λk+1 = λk+ zk+1−Axk+1. (4.7)

Let uk := zk+λk−1, and we have from (4.7)

λk = uk−Axk = uk−PXuk
and hence

uk+1 = PY (Axk−λk)+λk
= PY (PXuk−λk)+λk
= PYRXuk+uk−PXuk
=

1

2
uk+

1

2
RYRXuk,

which is AAR (4.2).
As proved in Chen and Fannjiang (2018b), when uniqueness holds, the

fixed point set of the AAR map (4.2) is exactly the continuum set

{u= eiαAx∗− z : PXz = 0,sgn(u) = α+sgn(Ax∗),z ∈ C
N,α ∈ R}. (4.8)

In (4.8), the phase relation sgn(u) = α+ sgn(Ax∗) implies that z = η⊙
sgn(u),η ∈ R

N,b+η ≥ 0. So the set (4.8) can be written as

{eiα(b−η)⊙ sgn(Ax∗) : PX(η⊙ sgn(Ax∗)) = 0,b+η ≥ 0,η ∈ R
N,α ∈ R},

(4.9)
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which is an (N − 2n2) real-dimensional set, a much larger set than the
circle {eiαAx∗ : α ∈ R} for a given f. On the other hand, the fixed point set
(4.9) has N dimensions less than the set (3.5) of generalized solutions and
projected (by PX) onto the circle of true solution {eiαAx∗ : α ∈ R}.

A more intuitive characterization of the fixed points can be obtained by
applying RX to the set (4.9). Since

RX [e
iα(b−η)⊙ sgn(Ax∗)] = eiα(b+η)⊙ sgn(Ax∗),

amounting to the sign change in front of η, the set (4.9) under the map RX
is mapped to

{eiα(b+η)⊙ sgn(Ax∗) : PX(η⊙ sgn(Ax∗)) = 0, b+η ≥ 0, η ∈ R
N,α ∈ R}.

(4.10)

The set (4.10) is the fixed point set of the alternative form of AAR:

vk+1 =
1

2
xk+

1

2
RXRY vk (4.11)

in terms of vk :=RXuk. The expression (4.10) says that the fixed points of
(4.11) are generalized solutions with the ‘correct’ Fourier phase.

However, the boundary points of the fixed point set (4.10) are degenerate
in the sense that they have vanishing components, i.e. |v|(j) = (b+η)(j) = 0
for some j, and can slow down convergence (Fienup and Wackerman 1986).
Such points are points of discontinuity of the AAR map (4.11) because
they are points of discontinuity of PY = b⊙ sgn(·). Indeed, even though
AAR converges linearly in the vicinity of the true solution, numerical evid-
ence suggests that globally (starting with a random initial guess) AAR
converges sub-linearly. Due to the non-uniformity of convergence, the addi-
tional step of applying PX (Proposition 4.2(i)) at the ‘right timing’ of the
iterated process can jump-start the geometric convergence regime (Chen
and Fannjiang 2018b).

As noted in Section 3.2, with a uniform mask, noiseless data and the real-
valued prior, all the ambiguities in (3.3) are global minima of L in (3.9) and
fixed points of both AP and AAR. Figure 3.1 demonstrates how detrimental
these ambiguities are to numerical reconstruction.

4.3. Douglas–Rachford splitting (DRS)

AAR (4.2) is often written in the form

uk+1 = uk+PYRXuk−PXuk, (4.12)

which is equivalent to the three-step iteration

vk = PXuk, (4.13)

wk = PY (2vk−uk) = PYRXuk, (4.14)

uk+1 = uk+wk−vk. (4.15)
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AAR can be modified in various ways by the powerful method of Douglas–
Rachford splitting (DRS), which is simply an application of the three-step
procedure (4.13)–(4.15) to proximal maps.

Proximal maps are generalization of projections. The proximal map rel-
ative to a function f is defined by

proxf (u) := argmin
x

f(x)+
1

2
‖x−u‖2.

Projections PX and PY are proximal maps relative to IX and IY , the indic-
ator functions of X and Y, respectively.

By choosing proxy functions other than IX and IY , we may obtain differ-
ent DRS methods that have more desirable properties than AAR.

4.4. Convergence rate

Next we recall the local geometric convergence property of AP and AAR
with convergence rate expressed in terms of λ2, the second-largest singular
value of B.

The Jacobians of the AP and AAR maps are given, respectively, by

∂T (ξ) = iB∗Im(Bξ), ξ ∈ C
n2

and

∂Γ(ζ) = (I−BB∗)ζ+i(2BB∗− I) diag
[
b

|ζ|

]
Im(ζ), ζ ∈ C

N .

Note that ∂Γ is a real, but not complex, linear map since ∂Γ(cζ) 6= c∂Γ(ζ),
c ∈ C in general.

Theorem 4.3 (Chen and Fannjiang 2018a, Chen and Fannjiang
2018b, Chen et al. 2018). The local geometric convergence rate of AAR
and AP is λ2 and λ22, respectively, where λ2 is the second-largest singular
value of B in (3.17).

As pointed out above, AAR has the true solution as the unique fixed
point in the object domain while AP has a better convergence rate than
DR (since λ22 < λ2). A reasonable way to combine their strengths is to use
AAR as the initialization method for AP.

With a carefully chosen parameter f (= 6/(5π)), the performance of a
Fresnel mask (Figure 4.1(b)) is only slightly inferior to that of a random
mask (Figure 4.1(a)). Figure 4.1 also demonstrates different convergence
rates of AP with various q.

4.5. Fourier versus object domain formulation

It is important to note that due to the rectangular nature (more rows than
columns) of the measurement matrix A, the following object domain version
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Figure 4.1. RE on the semi-log scale for the 128×128 RPP of phase range [0,2π]
versus 100 AP iterations after initialization given by 300 AAR iterations with
various q.

is a different algorithm from AAR discussed above:

xk+1 = xk+A
+RY (Axk)−A+PY (Axk), (4.16)

which resembles (4.12) but operates on the object domain instead of the
transform domain. Indeed, as demonstrated in Chen and Fannjiang (2018b),
the object domain version (4.16) significantly underperforms the Fourier
domain AAR.

As remarked earlier, this problem can be rectified by zero-padding and
embedding the original object vector into C

N and explicitly accounting for
this additional support constraint. Let PS denote the projection from C

N

onto the zero-padded subspace and let Ã be an invertible extension of A to
C
N . Then it is not hard to see that the ODR map

G(x) = x+PSÃ
−1RY Ãx− Ã−1PY Ãx

satisfies

ÃGÃ−1(y) = y+ ÃPSÃ
−1RY y−PY y,

which is equivalent to (4.12) once we recognize that PX = ÃPSÃ
−1.

In terms of the enlarged object space C
N , Fienup’s well-known hybrid

input–output (HIO) algorithm can be expressed as

xk+1 =
1

2
Ã−1[RX(RY +(β−1)PY )+ I+(1−β)PY ]Ãxk

(Fienup 1982). With vk = Ãxk, we can also express HIO in the Fourier
domain:

vk+1 =
1

2
[RX(RY +(β−1)PY )+ I+(1−β)PY ]vk. (4.17)

For β = 1, HIO (4.17) is exactly AAR (4.3).
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It is worth pointing out again that the lifting from C
n2

to C
N is key to

the success of HIO over AP (4.1), which is an object domain scheme. In the
optics literature, however, the measurement matrix is usually constructed
as a square matrix by zero-padding the object vector with sufficiently large
dimensions (see e.g. Miao, Sayre and Chapman 1998, Miao, Kirz and Sayre
2000). Zero-padding, of course, results in an additional support constraint
that must be accounted for explicitly.

4.6. Wirtinger flow

We have already mentioned that the AP map (4.1) is a gradient descent
for the loss function (3.9). In a nutshell, Wirtinger flow is a gradient des-
cent algorithm with the loss function (3.13) proposed by Candès, Li and
Soltanolkotabi (2015), which establishes a basin of attraction at x∗ of ra-
dius O(n−1/2) for a sufficiently small step size.

Unlike many other non-convex methods, Wirtinger flow (and many of its
modifications) comes with a rigorous theoretical framework that provides
explicit performance guarantees in terms of required number of measure-
ments, rate of convergence to the true solution, and robustness bounds.
The Wirtinger flow approach consists of two components:

(i) a carefully constructed initialization based on a spectral method related
to the PhaseLift framework;

(ii) starting from this initial guess, applying iteratively a gradient descent
type update.

The resulting algorithm is computationally efficient and, remarkably, yields
rigorous guarantees under which it will recover the true solution. We de-
scribe the Wirtinger flow approach in more detail. We consider the non-
convex problem

min
z

f(z) :=
1

2N

N∑

k=1

(|〈ak,z〉|2−yk)2, z ∈ C
n.

The gradient of f(z) is calculated via the Wirtinger gradient (3.15)

∇f(zj) =
1

N

N∑

k=1

(|〈ak,z〉|2−yk)〈ak,z〉ak.

Starting from some initial guess z0, we compute

zj+1 = zj−
τj

‖z0‖22
∇f(zj), (4.18)

where τj > 0 is a step size (learning rate). Note that the Wirtinger flow,
like AP (4.1), is an object domain scheme.
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The initialization of z0 is computed via spectral initialization discussed
in more detail in Section 5.1. We set

λ := n

∑
j nj∑

k ‖ak‖22
and let z0 be the principal eigenvector of the matrix

Y =
1

N

N∑

k=1

ykaka
∗
k,

where z0 is normalized such that ‖z0‖22 = λ.

Definition 4.4. Let x ∈ C
n be any solution to (2.1). For each z ∈ C

n,
define

dist(z,x) = min
φ∈[0,2π)

‖z− eiφx‖2.

Theorem 4.5 (Candès, Li and Soltanolkotabi 2015). Assume that

the measurement vectors ak ∈ C
n satisfy ak

i.i.d.∼ N (0,I/2) + iN (0,I/2).
Let x∗ ∈ C

n and y = {|〈ak,x∗〉|2}Nk=1 with N ≥ c0n logn, where c0 is
a sufficiently large constant. Then the Wirtinger flow initial estimate z0,
normalized such that ‖z0‖2 =m−1

∑
k yk, obeys

dist(z0,x∗)≤
1

8
‖x∗‖2, (4.19)

with probability at least 1− 10e−γn− 8/n2, where γ is a fixed constant.
Further, choose a constant step size τj = τ for all j = 1,2, . . . , and assume
τ ≤ c1/n for some fixed constant c1. Then, with high probability starting
from any initial solution z0 obeying (4.19), we have

dist(zj,x∗)≤
1

8

(
1− τ

4

)j/2
‖x∗‖2.

A modification of this approach, called truncated Wirtinger flow (Chen
and Candès 2017), proposes a more adaptive gradient flow, both at the ini-
tialization step and during iterations. This modification seeks to reduce the
variability of the iterations by introducing three additional control paramet-
ers (Chen and Candès 2017).

Various other modifications of Wirtinger flow have been derived; see
e.g. Wang, Giannakis and Eldar (2018), Tu et al. (2015) and Cai, Li
and Ma (2016). While it is possible to obtain global convergence for such
gradient descent schemes with random initialization (Chen, Chi, Fan and
Ma 2019), the price is a larger number of measurements. See Section 5 for
a detailed discussion and comparison of various initializers combined with
Wirtinger flow.
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The general idea behind Wirtinger flow, of solving a non-convex method
provably by a careful initialization followed by a properly chosen gradi-
ent descent algorithm, has inspired research in other areas, where rigorous
global convergence results for gradient descent type algorithms have been
established (often for the first time). This includes blind deconvolution (Li,
Ling, Strohmer and Wei 2019, Ma, Wang, Chi and Chen 2020), blind demix-
ing (Ling and Strohmer 2019, Jung, Krahmer and Stöger 2017) and matrix
completion (Sun and Luo 2016).

4.7. Alternating direction method of multipliers (ADMM)

The alternating direction method of multipliers (ADMM) is a powerful tool
for solving the joint optimization problem

min
u
K(u)+L(u), (4.20)

where the loss functions L and K represent the data constraint Y and the
object constraint X, respectively.

Douglas–Rachford splitting (DRS) is another effective method for the
joint optimization problem (4.20) with a linear constraint. For convex op-
timization, DRS applied to the primal problem is equivalent to ADMM
applied to the Fenchel dual problem (Fortin and Glowinski 2000). For non-
convex optimization such as (4.20) there is no clear relation between the
two in general.

However, for phase retrieval, DRS and ADMM are essentially equivalent
(Fannjiang and Zhang 2020). So our subsequent presentation will mostly
focus on ADMM.

ADMM seeks to minimize the augmented Lagrangian function

L(y,z) =K(y)+L(z)+λ∗(z−y)+ ρ

2
‖z−y‖2 (4.21)

alternatively as

yk+1 = argmin
x

L(y,zk,λk), (4.22)

zk+1 = argmin
z

L(yk+1,z,λk), (4.23)

or

zk+1 = argmin
x

L(yk,z,λk), (4.24)

yk+1 = argmin
z

L(y,zk+1,λk), (4.25)

and then update the multiplier by the gradient ascent

λk+1 = λk+ρ(zk+1−yk+1).
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4.8. Noise-aware ADMM

We apply ADMM to the augmented Lagrangian L (4.21) with K = IX

(the indicator function of the set X ) and L given by the Poisson (3.6) or
Gaussian (3.9) loss function.

Consider (4.24)–(4.25) and let

uk := zk+λk−1/ρ.

Then we have

zk+1 = proxL/ρ(yk−λk/ρ), (4.26)

yk+1 = proxK/ρ(zk+1+λk/ρ) =AA∗(zk+1+λk/ρ), (4.27)

λk+1 = λk+ρ(zk+1−yk+1). (4.28)

We have from (4.28) that

uk+1 = yk+1+λk+1/ρ.

By (4.27) we also have

yk+1 = PX(zk+1+λk/ρ) = PXuk+1

and

yk−λk/ρ= 2yk−uk =RXuk.

So (4.26) becomes

zk+1 = proxL/ρ(RXuk).

Note also that by (4.28)

uk−PXuk = λk/ρ,

and hence

uk+1 = zk+1+λk/ρ= uk−PXuk+proxL/ρ(RXuk).

For the Gaussian loss function (3.9), the proximal map proxL/ρ can be
calculated exactly:

proxL/ρ(u) =
1

ρ+1
b⊙ sgn(u)+

ρ

ρ+1
u

=
1

ρ+1
(b+ρ|u|)⊙ sgn(u).

The resulting iterative scheme is given by

uk+1 =
1

ρ+1
uk+

ρ−1

ρ+1
PXuk+

1

ρ+1
b⊙ sgn(RXuk)

: = Γ(uk). (4.29)
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Like AAR, (4.29) can also be derived by the DRS method

vl = proxK/ρ(ul) =AA∗(ul),

wl = proxL/ρ(2vl−ul),
ul+1 = ul+wl−vl,

instead of (4.13)–(4.15). For the Gaussian loss function (3.9), the proximal
map proxL/ρ is

proxL/ρ(u) =
1

ρ+1
b⊙ sgn(u)+

ρ

ρ+1
u

=
1

ρ+1
(b+ρ|u|)⊙ sgn(u),

an averaged projection with the relaxation parameter ρ. With this, {uk}
satisfy (4.29). Following Fannjiang and Zhang (2020), we refer to (4.29) as
the Gaussian-DRS map.

For the Poisson case the DRS map has a more complicated form,

uk+1

=
1

2
uk−

1

ρ+2
RXuk+

ρ

2(ρ+2)

[
|RXuk|2+

8(2+ρ)

ρ2
b2
]1/2

⊙ sgn(RXuk)

: = Π(uk)x (4.30)

where b2 is the vector with component b2(j) = (b(j))2 for all j.
Note that Γ(u) and Π(u) are continuous except where RXu vanishes but

b does not due to arbitrariness of the value of the sgn function at zero.

4.9. Fixed points

With the proximal relaxation in (4.29), we can ascertain desirable properties
that are either false or unproven for AAR.

By definition, all fixed points u satisfy the equation

u= Γ(u),

and hence, after some algebra,

PXu+ρP
⊥
Xu= b⊙ sgn(RXu),

which in terms of v =RXu becomes

PXv−ρP⊥
X v = b⊙ sgn(v). (4.31)

The following demonstrates the advantage of Gaussian-DRS in avoiding
the divergence behaviour of AAR (as stated in Proposition 4.2(ii) for the
convex case) when the feasibility problem is inconsistent and has no (gen-
eralized or regular) solution.
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Theorem 4.6 (Fannjiang and Zhang 2020). Let uk+1 := Γ(uk), k ∈N.
Then, for ρ > 0, {uk} is a bounded sequence satisfying

limsup
k→∞

‖uk‖ ≤
‖b‖

min{ρ,1} for ρ > 0.

Moreover, if u is a fixed point, then

‖u‖< ‖b‖ for ρ > 1

and

‖b‖< ‖u‖ ≤ ‖b‖/ρ for ρ ∈ (0,1)

unless PXu = u, in which case u is a regular solution. On the other hand,
for the particular value ρ= 1, ‖u‖= ‖b‖ for any fixed point u.

The next result says that all attracting points are regular solutions and
hence one need not worry about numerical stagnation.

Theorem 4.7 (Fannjiang and Zhang 2020). Let ρ ≥ 1. Let u be a
fixed point such that RXu has no vanishing components. Suppose that the
Jacobian J of Gaussian-DRS satisfies

‖J(η)‖ ≤ ‖η‖ for all η ∈ C
N .

Then

u= PXu= b⊙ sgn(RXu),

implying that u is a regular solution.

The indirect implication of Theorem 4.7 is noteworthy. In the inconsistent
case (such as with noisy measurements prohibiting the existence of a regular
solution), convergence is impossible since all fixed points are locally repelling
in some directions. The outlook, however, need not be pessimistic. A good
iterative scheme need not converge in the traditional sense as long as it
produces a good outcome when properly terminated, i.e. its iterates stay
in the true solution’s vicinity of size comparable to the noise level. In this
connection, let us recall the previous observation that in the inconsistent
case the true solution is probably not a stationary point of the loss func-
tion. Hence a convergent iterative scheme to a stationary point may not
be a good idea. The fact that Gaussian-DRS performs well in noisy blind
ptychography (Figure 7.7(b)) with an error amplification factor of about
1/2 dispels much of the pessimism.

The next result says that, for any ρ ≥ 0, all regular solutions are indeed
attracting fixed points.
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Theorem 4.8 (Fannjiang and Zhang 2020). Let ρ ≥ 0. Let u be a
non-vanishing regular solution. Then the Jacobian J of Gaussian-DRS is
non-expansive:

‖J(η)‖ ≤ ‖η‖ for all η ∈ C
N .

Finally, we are able to pinpoint the parameter corresponding to the op-
timal rate of convergence.

Theorem 4.9 (Fannjiang and Zhang 2020). The leading singular value
of the Jacobian J of Gaussian-DRS is 1 and the second-largest singular
value is strictly less than 1. Moreover the second-largest singular value as
a function of the parameter ρ is increasing over [ρ∗,∞) and decreasing over
[0,ρ∗], achieving the global minimum

λ2√
1+ρ∗

at ρ∗ = 2λ2

√
1−λ22 ∈ [0,1], (4.32)

where λ2 is the second-largest singular value of B in (3.17).
Moreover, for ρ= 1, the local convergence rate is λ22 the same as AP.

By the arithmetic–geometric mean inequality,

ρ∗ ≤ 2× 1

2

√
λ22+1−λ22 = 1,

where the equality holds only when λ22 = 1/2.
As λ22 tends to 1, ρ∗ tends to 0, and as λ22 tends to 1/2, ρ∗ tends to 1.

Recall that λ22+λ
2
2n2−1 = 1 and hence [1/2,1] is the proper range of λ22.

4.10. Perturbation analysis for Poisson-DRS

The full analysis of Poisson-DRS (4.30) is more challenging. Instead, we give
a perturbative derivation of analogous result to Theorem 4.6 for Poisson-
DRS with small positive ρ.

For small ρ, by keeping only the terms up to O(ρ) we obtain the perturbed
DRS

uk+1 =
1

2
uk−

1

2

(
1− ρ

2

)
RXuk+PYRXuk.

Writing

I = PX +P⊥
X and RX = PX −P⊥

X ,

we then have the estimates

‖uk+1‖ ≤
∥∥∥∥
ρ

4
PXuk+

(
1− ρ

4

)
P⊥
Xuk

∥∥∥∥+‖PYRXuk‖

≤
(
1− ρ

4

)
‖uk‖+‖b‖,
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since ρ is small. Iterating this bound, we obtain

‖uk+1‖ ≤
(
1− ρ

4

)k
‖u1‖+‖b‖

k−1∑

j=0

(
1− ρ

4

)j

and hence

limsup
k→∞

‖uk‖ ≤
4

ρ
‖b‖. (4.33)

Note that the small ρ limit and the Poisson-to-Gaussian limit do not com-
mune, resulting in a different constant in (4.33) from Theorem 4.6.

4.11. Noise-agnostic method

In addition to AAR, relaxed averaged alternating reflections (RAAR) is
another noise-agnostic method that is formulated as the non-convex optim-
ization problem

min‖P⊥
X z‖2, subject to |z|= b, (4.34)

or equivalently (4.20) with the loss functions

K(y) =
1

2
‖P⊥

X y‖2, L(z) = Ib(z), (4.35)

where the hard constraint represented by the indicator function Ib of the set
{z ∈C

N : |z|= b} is oblivious to the measurement noise, while the choice of
K represents a relaxation of the object domain constraint.

If the noisy phase retrieval problem is consistent, then the minimum value
of (4.34) is zero and the minimizer is a regular solution (corresponding to
the noisy data b). If the noisy problem is inconsistent, then the minimum
value of (4.34) is unknown and the minimizer z∗ is the generalized solution
with the least inconsistent component. In this case we can use PXz∗ as the
reconstruction.

Let us apply ADMM to the augmented Lagrangian function

Lγ(y,z,λ) :=K(y)+L(z)+λ∗(z−y)+ γ

2
‖z−y‖2,

with K and L given in (4.35) in the order

yk+1 = argmin
y

Lγ(y,zk,λk), (4.36)

zk+1 = argmin
|z|=b

Lγ(yk+1,z,λk), (4.37)

λk+1 = λk+γ(zk+1−yk+1). (4.38)

Solving (4.36), we have

yk+1 = (I+P⊥
X /γ)

−1(zk+λk/γ) = (I−βP⊥
X )(zk+λk/γ), (4.39)
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where

β :=
1

1+γ
< 1. (4.40)

Likewise, solving (4.37) we obtain

zk+1 = PY uk+1, uk+1 := yk+1−λk/γ
and hence by (4.38) and (4.39)

uk+1 = (I−βP⊥
X )(PY uk+λk/γ)−λk/γ.

On the other hand we can rewrite (4.38) as

λk/γ = zk−uk = PY uk−uk,
and hence

uk+1 = (I−βP⊥
X )PY uk−βP⊥

Xλk/γ

= (I−βP⊥
X )PY uk+βP

⊥
X (I−PY )uk,

which after reorganization becomes

uk+1 = Tβ(uk) := β

(
1

2
I+

1

2
RXRY

)
uk+(1−β)PY uk. (4.41)

The scheme (4.41) resembles the RAAR method first proposed by Luke
(2004, 2008) and formulated in the object domain from a different perspect-
ive. RAAR becomes AAR for β = 1 (obviously) and AP for β = 1/2 (after
some algebra) (Marchesini et al. 2016, Luke 2004, Luke 2008).

Let us demonstrate again that the properly formulated DRS method can
also lead to RAAR. Let us apply (4.13)–(4.15) to (4.20) in the order

zk+1 = proxL/γ(uk) = PY uk, (4.42)

yk+1 = proxK/γ(2zk+1−uk) = (I−βP⊥
X )(2PY uk−uk), (4.43)

uk+1 = uk+yk+1− zk+1. (4.44)

Substituting (4.42) and (4.43) into (4.44), we obtain after straightforward
algebra the RAAR map (4.41).

With the splitting I and RX as

I = PX +P⊥
X and RX = PX −P⊥

X ,

the fixed point equation u= Tβ(u) becomes

PXu+P
⊥
Xu= βP⊥

Xu+[PX +(1−2β)P⊥
X ]PY u,

from which it follows that

PXu= PXPY u, P⊥
Xu=

(
1−2β

1−β

)
P⊥
XPY u,
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and hence

PXu−
(

1−β
2β−1

)
P⊥
Xu= PXPY u+P

⊥
XPY u= PY u. (4.45)

If the fixed point satisfies P⊥
Xu= 0, then (4.45) implies

u= PXu= PY u= b⊙ sgn(u),

that is, u is a regular solution.
Notably, (4.45) is exactly the RAAR fixed point equation (4.31) with the

corresponding parameter

ρ=
1−β
2β−1

∈ [0,∞), (4.46)

which tends to 0 and ∞ as β tends to 1 and 1/2, respectively.
Local geometric convergence of RAAR has been proved by Li and Zhou

(2017). Moreover, like Theorem 4.6, RAAR possesses the desirable property
that every RAAR sequence is explicitly bounded in terms of β as follows.

Theorem 4.10. Let {uk} be an RAAR-iterated sequence. Then

limsup
k→∞

‖uk‖ ≤
‖b‖
1−β . (4.47)

Let u be an RAAR fixed point. Then

‖u‖ ≤ ‖b‖×





2β−1

1−β for β ∈ [2/3,1),

1 for β ∈ [1/2,2/3].

(4.48)

Proof. For β ∈ [1/2,1), 2β−1 ∈ [0,1) and hence we have

‖uk+1‖ ≤ β‖uk‖+‖PY uk‖
= β‖uk‖+‖b‖.

Iterating the above equation, we obtain

‖uk+1‖ ≤ βk‖u1‖+‖b‖
k−1∑

j=0

βj

and conclude (4.47).
From (4.45) it follows that

‖u‖ ≤max

(
2β−1

1−β ,1
)
‖PY u‖

≤max

(
2β−1

1−β ,1
)
‖b‖,

and hence (4.48). �
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(a) (b)

Figure 4.2. The real (a) and imaginary (b) parts of test image 256×256 CiB.

4.12. Optimal parameter

We briefly explore the optimal parameter for Gaussian-DRS (4.29) in view
of the optimal convergence rate (4.32).

Our test image, shown in Figure 4.2, is 256×256 Cameraman + i Barbara,
or CiB.

We use three baseline algorithms as the benchmark. The first two are
AAR and RAAR. The third is Gaussian-DRS with ρ= 1:

Γ1(u) =
1

2
u+

1

2
PYRXu, (4.49)

given the basic guarantee that, for ρ≥ 0, the regular solutions are attracting
(Theorem 4.8), that for the range ρ≥ 1 no fixed points other than the regular
solution(s) are locally attracting (Theorem 4.7) and that Gaussian-DRS
with ρ= 1 produces the best convergence rate for any ρ≥ 1 (Corollary 4.9).
The contrast between (4.49) and AAR (4.2) is noteworthy. The simplicity
of the form (4.49) suggests the name averaged projection reflection (APR)
algorithm.

According to Li and Zhou (2017), the optimal β is usually between 0.8
and 0.9, corresponding to ρ = 0.125 and 0.333 according to (4.46). We set
β = 0.9 in Figure 4.3.

In the experiments we consider the setting of non-ptychographic phase
retrieval with two coded diffraction patterns: the plane wave (µ = 1), and
µ = exp(iθ) where θ is independent and uniformly distributed over [0,2π).
The uniqueness of the solution, up to a constant phase factor, is given in
Fannjiang (2012).
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(a) ρ = 1.1, β = 0.9 (b) ρ = 0.5, β = 0.9

(c) ρ = 0.3, β = 0.9 (d) ρ = 0.1, β = 0.9

Figure 4.3. Reconstruction (relative) error versus iteration by various methods
indicated in the legend with random initialization. The straight line feature (in all
but AAR) in the semi-log plot indicates geometric convergence.

Figure 4.3 shows the relative error (modulo a constant phase factor) versus
iteration of RAAR (β =0.9 red dots, solid line), APR (blue triangles, dotted
line), AAR (black stars, dashed line) and Gaussian-DRS with (a) ρ = 1.1,
(b) ρ = 0.5, (c) ρ = 0.3 and (d) ρ = 0.1. Note that the AAR, APR and
RAAR lines vary slightly across different plots because of random initializ-
ation.

The straight line feature (in all but AAR) in the semi-log plot indicates
global geometric convergence. The case with AAR is less clear in Figure 4.3,
but it has been shown that the AAR sequence converges geometrically near
the true object (after applying A+) but converges in power-law (∼ k−α with
α ∈ [1,2]) from random initialization (Chen and Fannjiang 2018b).

Figure 4.3 shows that APR outperforms AAR but underperforms RAAR.
By decreasing ρ to either 0.5 or 0.1, the performance of Gaussian-DRS
closely matches that of RAAR. The optimal parameter appears to lie in
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between 0.1 and 0.5. For example, with ρ = 0.3, Gaussian-DRS signific-
antly outperforms RAAR. The oscillatory behaviour of Gaussian-DRS in
Figure 4.3(d) is due to the dominant complex eigenvalue of J.

5. Initialization strategies

Initialization is an important part of non-convex optimization to avoid local
minima. Good initialization can also help to reduce the number of iterations
of iterative solvers for convex optimization problems. A simple idea for
effective initialization is to first capture basic features of the original object.
There are three tasks we want a good initializer to fulfil: (i) it should ensure
that the algorithm converges to the correct solution, (ii) it should reduce
the number of iterations, and (iii) it should be inexpensive to compute.
Naturally, there will be a trade-off between achieving the first two tasks
and task (iii).

5.1. Spectral initialization

Spectral initialization (Candès et al. 2015) has become a popular method in
phase retrieval, bilinear compressive sensing, matrix completion and related
areas. In a nutshell, one chooses the leading eigenvector of the positive
semidefinite Hermitian matrix

Y :=
∑

k

ykaka
∗
k =A∗diag(y)A (5.1)

as initializer. The leading eigenvector of Y can be computed efficiently via
the power method by repeatedly applying A, entry-wise multiplication by y
and A∗.

To give an intuitive explanation for this choice, consider the case in which
the measurement vectors ak are i.i.d. N (0,In). Let x be a solution to (2.1) so
that yk = |〈x,ak〉|2 for k= 1, . . . ,N . In the Gaussian model, a simple moment
calculation gives

E

[
1

N

m∑

k=1

ykaka
∗
k

]
= In+2xx∗.

By the strong law of large numbers, the matrix Y =
∑

k ykaka
∗
k converges

to the right-hand side as the number of samples goes to infinity. Since any
leading eigenvector of In+2xx∗ is of the form λx for some λ ∈ R, it follows
that if we had infinitely many samples, this spectral initialization would
recover x exactly (up to a usual global phase factor). Moreover, the ratio
between the top two eigenvalues of In+2xx∗ is 1 + 2‖x‖22, which means
these eigenvalues are well separated unless ‖x‖2 is very small. This in turn
implies that the power method would converge fast. For a finite amount
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of measurements, the leading eigenvector of Y will of course not recover
x exactly, but with the power of concentration of measure on our side, we
can hope that the resulting (properly normalized) eigenvector will serve as
a good initial guess to the true solution. This is made precise in connection
with Wirtinger flow in Theorem 4.5.

There is a nice connection between the spectral initialization and the
PhaseLift approach, which will become evident in Section 6.

5.2. Null initialization

Another approach to constructing an effective initializer proceeds by choos-
ing a threshold for separating the ‘weak’ signals from the ‘strong’ signals.
The classification of signals into classes of weak and strong signals is a basic
feature of the data.

Let I ⊂ {1, . . . ,N} be the support set of the weak signals and Ic its
complement such that b(i) ≤ b(j) for all i ∈ I,j ∈ Ic. In other words,
{b(i) : i ∈ Ic} are the strong signals. Denote the sub-row matrices consisting
of {ai}i∈I and {aj}j∈Ic by AI and AIc , respectively. Let bI = |AIx∗| and
bIc = |AIcx∗|. We always assume |I| ≥ n so that AI has a trivial null space
and hence preserves the information of x∗.

The significance of the weak signal support I lies in the fact that I contains
the best loci to ‘linearize’ the problem since A∗

Ix∗ is small. We then initialize
the object estimate by the ground state of the sub-row matrix AI , i.e. the
variational principle

xnull ∈ arg min{‖AIx‖2 : x ∈ C
n,‖x‖= ‖b‖}, (5.2)

which by the isometric property of A is equivalent to

xnull ∈ arg max{‖AIcx‖2 : x ∈ C
n,‖x‖= ‖b‖}. (5.3)

Note that (5.3) can be solved by the power method for finding the leading
singular value. The resulting initial estimate xnull is called the null vector
(Chen, Fannjiang and Liu 2017, Chen et al. 2018); see Wang et al. (2018)
for a similar idea for real-valued Gaussian matrices.

In the case of non-blind ptychography, for each diffraction pattern k, the
‘weak signals’ are those less than some chosen threshold τk, and we collect
the corresponding indices in the set Ik. Let I = ∪kIk. We then initialize
the object estimate by the variational principle (5.2) or (5.3).

A key question then is how to choose the threshold for separating weak
from strong signals. The following performance guarantee provides a guide-
line for choosing the threshold.

Theorem 5.1 (Chen, Fannjiang and Liu 2017). Let A be an N ×n
i.i.d. complex Gaussian matrix and let

ξnull ∈ arg min{‖AIx‖2 : x ∈ C
n,‖x‖= ‖x∗‖}. (5.4)
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Let ε := |I|/N < 1, |I|> n. Then, for any x∗ ∈ C
n, the error bound

‖x∗x∗∗− ξnullξ∗null‖F/‖x∗‖2 ≤ c0
√
ε (5.5)

holds with probability at least 1− 5exp(−c1|I|2/N)− 4exp(−c2n). Here
‖ · ‖F denotes the Frobenius norm.

By Theorem 5.1, we have that, for N = Cn lnn and |I|= Cn, C > 1,

‖x∗‖−2‖x∗x∗∗− ξnullξ∗null‖F ≤ c√
lnn

,

with probability exponentially (in n) close to one, implying that crude re-
construction from a one-bit intensity measurement is easy. Theorem 5.1 also
gives a simple guideline

n < |I| ≪N ≪ |I|2

for the choice of |I| (and hence the intensity threshold) to achieve a small ε
with high probability. In particular, the choice

|I|= ⌈n1−αNα⌉= ⌈nδα⌉, α ∈ [0.5,1) (5.6)

yields the (relative) error bound O(δ(α−1)/2), with probability exponentially
(in n) close to 1, achieving the asymptotic minimum at α = 1/2 (the geo-
metric mean rule). The geometric mean rule will be used in the numerical
experiments below.

Given the wide range of effective thresholds, the null vector is robust
because the noise primarily tends to mess up the indices near the threshold
and can be compensated by choosing a smaller I, unspoiled by noise and
thus satisfying the error bound (5.5).

For null vector initialization with a non-isometric matrix such as the
Gaussian random matrix in Theorem 5.1, it is better to first perform QR
factorization of A, instead of computing (5.4), as follows.

For a full rank A ∈ C
N×n, let A = QR be the QR-decomposition of A

where Q is isometric and R is an invertible upper-triangular square matrix.
Let QI and QIc be the sub-row matrices of Q corresponding to the index
sets I and Ic, respectively. Clearly AI =QIR and AIc =QIcR.

Let z0 =Rx∗. Since bI = |QIz0| is small, the rows of QI are nearly ortho-
gonal to z0. A first approximation can be obtained from xnull = R−1znull,
where

znull ∈ argmin{‖QIz‖2 : z ∈ C
n,‖z‖= ‖b‖}.

In view of the isometry property

‖z‖2 = ‖QIz‖2+‖QIcz‖2 = ‖b‖2,
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minimizing ‖QIz‖2 is equivalent to maximizing ‖QIcz‖2 over {z : ‖z‖ =
‖b‖}. This leads to the alternative variational principle

xnull ∈ argmax{‖AIcx‖2 : x ∈ C
n,‖Rx‖= ‖b‖} (5.7)

solvable by the power method.
The initial estimate ξnull in (5.4) is close to xnull in (5.7) when the over-

sampling ratio δ = N/n of the i.i.d. Gaussian matrix is large or when the
measurement matrix is isometric (R = I) as for the coded Fourier mat-
rix. Numerical experiments show that ξnull is close to xnull for δ ≥ 8. But
for δ = 4, xnull is a significantly better approximation than ξnull. Note that
δ = 4 is near the threshold of having an injective intensity map: x−→ |Ax|2
for a generic (i.e. random) A (Balan et al. 2006).

5.3. Optimal preprocessing

In both null and spectral initializations, the estimate x is given by the
principal eigenvector of a suitable positive definite matrix constructed from
A and b. In the case of spectral initialization, an asymptotically exact
recovery is guaranteed; in the case of null initialization, a non-asymptotic
error bound exists and guarantees asymptotically exact recovery.

Contrary to these, the weak recovery problem of finding an estimate x
that has a positive correlation with x∗, that is,

liminf
N→∞

E

{ |x∗x∗|
‖x∗‖‖x‖

}
> ε for some ε > 0, (5.8)

is analysed in Mondelli and Montanari (2019), Lu and Li (2017) and Luo,
Alghamdi and Lu (2019). The fundamental interest of the weak recovery
problem lies in the phase transition phenomenon stated below.

Theorem 5.2. Let x∗ be uniformly distributed on the n-dimensional com-
plex sphere with radius

√
n and let the rows of A ∈ C

N×n be i.i.d. complex
circularly symmetric Gaussian vectors of covariance In/n. Let

ỹ = |Ax∗|2+η, (5.9)

where η is real-valued Gaussian vector of covariance σ2IN and let N,n→∞
with N/n→ δ ∈ (0,∞).

• For δ < 1, no algorithm can provide non-trivial estimates on x∗.

• For δ > 1, there exists σ0(δ)> 0 and a spectral algorithm that returns
an estimate x satisfying (5.8) for any σ ∈ [0,σ0(δ)].

Like spectral initialization, weak recovery theory considers the spectral
algorithm of computing the principal eigenvalue of A∗TA, where T is a
preprocessing diagonal matrix. An important discovery of Mondelli and
Montanari (2019) is that by removing the positivity assumption T > 0 and
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allowing negative values, an explicit recipe for T is given and shown to
be optimal in the sense that it provides the smallest possible threshold
δu for the signal model (5.9). Specifically, with vanishing noise σ→ 0, the
threshold δu tends to 1 as

δu(σ
2) = 1+σ2+o(σ2),

and the optimal function is given by

Top(ỹ,δ) =
ỹ+−1

ỹ++
√
δ−1

, ỹ+ =max(0,ỹ), (5.10)

which has a large negative part for small ỹ (Mondelli and Montanari 2019).
This counterintuitive feature tends to slow down convergence of the power
method as the principal eigenvalue of A∗TA may not have the largest mod-
ulus; see Mondelli and Montanari (2019) for more details.

5.4. Random initialization

While the aforementioned initializations are computationally quite efficient,
one may wonder if such carefully designed initialization is even necessary for
achieving convergence for non-convex algorithms or to reduce the number of
iterations for iterative solvers of convex approaches. In particular, random
initialization has been proposed as a cheap alternative to the more costly
initialization strategies described above. In this case we simply construct a
random signal in C

n, for instance with i.i.d. entries chosen from N (0,In),
and use it as initialization.

For non-convex solvers, we clearly cannot expect that starting the iter-
ations at an arbitrary point will work, since we may get stuck at a saddle
point or some local minimum. But if the optimization landscape is benign
enough, it may be that there are no undesirable local extrema or that they
can be easily avoided. A very thorough study of the optimization landscape
of phase retrieval has been conducted by Sun, Qu and Wright (2018), Chen
et al. (2019) and Mondelli and Montanari (2019).

For instance, Chen et al. (2019) have shown that for Gaussian meas-
urements, gradient descent combined with random initialization will con-
verge to the true solution and at a favourable rate of convergence, assuming
that the number of measurements satisfies N & n polylog N . This result
may suggest that random initialization is just fine and there is no need
for more advanced initializations. The precise theoretical condition for N is
N & n log13N . This large exponent in the log-factor becomes negligible if
n is of the order of at least, say, 1025, which makes this result somewhat
less compelling from a theoretical viewpoint. However, it is likely that this
large exponent can be attributed to technical challenges in the proof and in
truth it is actually much smaller. This is also suggested by the numerical
simulations conducted in Section 5.5.
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(a) NSR 0% (b) NSR 10% (c) NSR 20%

Figure 5.1. Initialization for RPP with two OCDPs at NSR 0% (a), 10% (b) and
20% (c). Each panel shows |Re[x⊙sgn(x∗)]| (left half) and |Ims[x⊙sgn(x∗)]| (right
half), where x= xnull (top row) or xop (bottom row).

Table 5.1. Relative errors for xnull and xop of Figure 5.1.

Two OCDPs at NSR 0% 10% 20%

xnull 0.6531 0.6943 0.8146
xop 1.3636 1.3952 1.3889

5.5. Comparison of initializations

We conduct an empirical study by comparing the effectiveness of different
initializations.

First we present experiments comparing the performance of the null ini-
tialization and the optimal preprocessing methods for noiseless as well as
noisy data; see Figures 5.1 and 5.2. While the optimal preprocessing func-
tion has no adjustable parameter, we use the default threshold |I| =

√
Nn

for the null initialization (α= 1/2 in (5.6)).
In the noisy case, we consider the complex Gaussian noise model (3.11)

which sits between the Poisson noise and the thermal noise in some sense.
The nature of noise is unimportant for the comparison but the level of
noise is. We consider three different levels of noise (0%, 10% and 20%) as
measured by the noise-to-signal ratio (NSR) defined as

NSR =
‖b−|Ax∗|‖

‖Ax∗‖
. (5.11)

Because the noise dimension N is larger than that of the object dimension,
the feasibility problem is inconsistent with high probability.
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(a) NSR 0% (b) NSR 10% (c) NSR 20%

Figure 5.2. Initialization for RPP with four CDPs at NSR 0% (a), 10% (b) and
20% (c). Each panel shows |Re[x⊙sgn(x∗)]| (left half) and |Im[x⊙sgn(x∗)]| (right
half), where x= xnull (top row) or xop (bottom row).

Table 5.2. Relative errors for xnull and xop of Figure 5.2.

Four CDPs at NSR 0% 10% 20%

xnull 0.7374 0.7761 0.8991
xop 0.6269 0.6437 0.6888

Figure 5.1 shows the results for two oversampled randomly coded diffrac-
tion patterns (OCDPs). Hence δ = 8 for the optimal preprocessing function
(5.10) and the outcome is denoted by xop. We see that xnull significantly
outperforms xop, consistent with the relative errors shown in Table 5.1.

Here the optimal preprocessing method returns an essentially random
output at all noise levels. This is somewhat surprising since the null vec-
tor uses only 1-bit information (the threshold), compared to the optimal
preprocessing function (5.10), which uses the full information of the signals.

On the other hand, with four randomly coded diffraction patterns (CDPs)
that are not oversampled (δ = 4 for (5.10)), xop outperforms xnull especially
at large NSR. See Figure 5.2 for the visual effect and Table 5.2 for the
relative errors of initialization.

The important lesson here is that the null vector and the optimal pre-
processing function make use of differently sampled CDPs in different ways:
the oversampled CDPs favour the former while the standard CDPs favour
the latter. In particular, the optimal spectral method (5.10) is optim-
ized for independent measurements and does not perform well with highly
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correlated data in oversampled CDPs (Figure 5.1). As pointed out by
Mondelli and Montanari (2019), the performance of (5.10) can often be
improved by manually setting δ very close to 1.

What follows are more simulations with a higher number of CDPs that
are not oversampled, for various initialization methods. We analyse their
performance with respect to three different aspects: (i) number of measure-
ments; (ii) number of iterations, (iii) overall runtime. The initializers under
comparison are the standard spectral initializer, the truncated spectral ini-
tializer introduced in Chen and Candès (2017), the optimal spectral initial-
izer, the null initializer (sometimes also referred to as the ‘orthogonality-
promoting’ initializer) and random initialization. The computational com-
plexity of constructing each of the first four initializers is roughly similar;
they all require the computation of the leading eigenvector of a self-adjoint
matrix associated with the measurement vectors ak, which can be done
efficiently with the power method (the matrix itself does not have to be
constructed explicitly).

We choose a complex-valued Gaussian random signal of length n= 128 as
ground truth and obtain phaseless measurements with k diffraction illumin-
ations, where k = 3, . . . ,12. Thus the number N of phaseless measurements
ranges from 3n to 12n. The signal has no structural properties that we can
take advantage of; for example, we cannot exploit any support constraints.
We use the PhasePack toolbox (Chandra et al. 2017) with its default settings
for this simulation, except that for the threshold for the null initialization
we use |I|= ⌈

√
nN⌉, as suggested by Theorem 5.1.

We run Wirtinger flow with different initializations until the residual error
is smaller than 10−4. For each k = 3, . . . ,12 and each fixed choice of signal
and illuminations we repeat the experiment 100 times, and do so for 100
different random choices of signal and illuminations. For each k the results
are then averaged over these 10000 runs. For each number of illuminations,
we compare the number of iterations as well as the overall runtime of the
algorithm needed to achieve the desired residual error. We also compare the
rate of successful recovery, where success is (generously) defined as the case
when the algorithm returns a solution with relative ℓ2-error less than 0.1.
A success rate of 1 means that the algorithm succeeded in all simulations
for a fixed number of illuminations. See Figures 5.3 and 5.4 for results.

The most relevant and important case from a practical viewpoint is when
the required number of illuminations is as small as possible, as this re-
duced the experimental burden. The clear winner in this case is the op-
timal spectral initializer. When we use only three illuminations, it signific-
antly outperforms all the other initializers. In general, for the recovery of a
complex-valued signal of length n from phaseless measurements, we cannot
expect any method to succeed at a perfect rate when we use only N = 3n
measurements.
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(a) (b)

Figure 5.3. The initializers under comparison are the standard, truncated and op-
timal spectral initializers, the ‘orthogonality-promoting’ initializer, and random ini-
tialization. We run Wirtinger flow with different initializations and compare (a)
the number of iterations and (b) the total computation time needed for Wirtinger
flow to achieve a residual error less than 10−4.

Figure 5.4. The same set-up as in Figure 5.3. We compare the success rate for
Wirtinger flow with different initializations. For this experiment, a ‘successful
recovery’ means that the algorithm returns a solution with relative ℓ2-error less
than 0.1. A success rate of 1 means that the algorithm succeeded in all simulations.
The optimal spectral initialization clearly outperforms all other initializations when
the number of measurements is small.

The exact number of measurements necessary to make recovery of a signal
x ∈ R

n from phaseless measurements at least theoretically possible (setting
aside the existence of a feasible algorithm and issues of numerical stability)
is n ≥ 2n− 1. For complex-valued signals the precise lower bound is still
open. The asymptotic estimate N = (4+ o(1))n follows from Heinosaari,
Mazzarella and Wolf (2013) and Balan, Casazza and Edidin (2007); see
also Bandeira, Cahill, Mixon and Nelson (2014). For dimensions n= 2k = 1,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492920000069
Downloaded from https://www.cambridge.org/core. UC Davis, on 01 Dec 2020 at 19:44:38, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492920000069
https://www.cambridge.org/core


176 A. Fannjiang and T. Strohmer

Conca, Edidin, Hering and Vinzant (2015) have shown that N = 4n− 4
is necessary.2 In general, for the recovery of a complex-valued signal of
length n from phaseless measurements we have 4n−4; we cannot expect any
method to succeed at a perfect rate when we use only N =3nmeasurements,

As the number of illuminations increases, the difference becomes less pro-
nounced, which is in line with theoretical predictions. For a moderate num-
ber of illuminations the random initializer performs as well as the others, at
a lower computational cost. As expected, the theory for random initializa-
tion (which involves the term log13N) is overly pessimistic. Nevertheless, in
practice there can be a substantial difference in the experimental effort if
we need to carry, say, six illuminations instead of just three illuminations.
Hence, we conclude that ‘there is no free lunch with random initialization!’

6. Convex optimization

While phase retrieval is a non-convex optimization problem, it has become
very popular in recent years to pursue convex relaxations of this problem.
A major breakthrough in this context was the PhaseLift approach (Candès
et al. 2013a, Candès et al. 2013b), which demonstrated that under fairly
mild conditions the solution of a properly constructed semidefinite program
coincides with the true solution of the original non-convex problem. This
discovery has ignited a renewed interest in the phase retrieval problem. We
will describe the key idea of PhaseLift below.

6.1. PhaseLift: phase retrieval via matrix completion

As is well known, quadratic measurements can be lifted up and interpreted
as linear measurements about the rank-one matrix X = xx∗. Indeed,

|〈ak,x〉|2 =Tr(x∗aka
∗
kx) = Tr(aka

∗
kxx

∗). (6.1)

We writeHn for the Hilbert space of all n×nHermitian matrices equipped
with the Hilbert–Schmidt inner product 〈X,Y 〉HS := Tr(Y ∗X). Now, letting
A be the linear transformation

Hn → R
N

X 7→ {aka∗kX}1≤i≤N,
(6.2)

which maps Hermitian matrices into real-valued vectors, one can express
the data collection bk = |〈x,ak〉|2 as

y =A(xx∗).

2 However, this is not true for all n. Vinzant (2015) has given an example of a frame
with 4n−5 = 11 elements in C

4 which enables phase retrieval.
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For reference, the adjoint operator A∗ maps real-valued inputs into Her-
mitian matrices, and is given by

R
N →Hn×n

z 7→
∑

i

ziaka
∗
k.

Moreover, we define Tx to be the set of symmetric matrices of the form

Tx = {X = xz∗+ zx∗ : z ∈ C
n}

and let T ⊥
x denote its orthogonal complement. Note that X ∈ T ⊥

x if and
only if both the column and row spaces of X are perpendicular to x.

Hence the phase retrieval problem can be cast as the matrix recovery
problem (Candès et al. 2013a, Candès et al. 2013b)

Minimize rank(X)

subject to A(X) = y

X � 0.

Indeed, we know that a rank-one solution exists so the optimal X has rank
at most one. We then factorize the solution as xx∗ in order to obtain
solutions to the phase retrieval problem. This gives x up to multiplication
by a unit-normed scalar.

Rank minimization is in general NP hard, and we instead propose solving
a trace-norm relaxation. Although this is a fairly standard relaxation in
control (Beck and D’Andrea 1998, Mesbahi and Papavassilopoulos 1997),
the idea of casting the phase retrieval problem as a trace minimization
problem over an affine slice of the positive semidefinite cone is more recent.3

Formally, we suggest solving

Minimize Tr(X)

subject to A(X) = y

X � 0.

(6.3)

If the solution has rank one, we factorize it as above to recover our signal.
This method, which lifts up the problem of vector recovery from quadratic
constraints into that of recovering a rank-one matrix from affine constraints
via semidefinite programming, is known by the name of PhaseLift (Candès
et al. 2013a, Candès et al. 2013b).

A sufficient (and nearly necessary) condition for xx∗ to be the unique
solution to (6.3) is given by the following lemma.

3 This idea was first proposed by one of the authors at the workshop ‘Frames for the finite
world: Sampling, coding and quantization’ at the American Institute of Mathematics
in August 2008.
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Lemma 6.1. For a given vector x ∈ C
n, suppose the measurement map-

ping A satisfies the following two conditions.

(i) The restriction of A to T is injective (X ∈ T and A(X) = 0⇒X = 0).

(ii) There exists a dual certificate Z in the range of A∗ obeying4

ZT = xx∗ and ZT ⊥ ≺ IT ⊥ .

Then X = xx∗ is the only matrix in the feasible set of (6.3), that is, X is
the unique solution of (6.3).

The proof of Lemma 6.1 follows from standard duality arguments in semi-
definite programming.

Proof. Let X̃ =X+H be a matrix in the feasible set of (6.3). We want to
show that H = 0. By assumption H ∈Hn and H ∈ (A), so we can express H
as H =HT +H⊥

T . Since X̃ ≺ 0, it follows for all z ∈ C
n with 〈z,x〉= 0 that

z∗X̃z = z∗(xx∗+HT +H⊥
T )z = z∗H⊥

T y ≥ 0.

Because the range spaces of H⊥
T and of H∗

T ⊥ are contained in orthogonal

complement of span{x}, this shows that H⊥
T ≺ 0. Since Z ∈ R(A) = (A)⊥

it holds that 〈H,Z〉 = 0, and because ZT = 0 it follows that 〈H,Z〉 =
〈H⊥

T ,Z
⊥
T 〉 = 0. But since Z⊥

T ≺ 0, this shows that H⊥
T = 0. By injectivity

of A on T we also have HT = 0, such that H = 0 and therefore X̃ =X. �

The real challenge here is asserting that the conditions of Lemma 6.1
hold under reasonable conditions on the number of measurements. Careful
strengthening of the injectivity property in Lemma 6.1 allows us to relax
the properties of the dual certificate, as in the approach pioneered by Gross
(2011) for matrix completion. This observation is at the core of the proof
of Theorem 6.2 below. In a nutshell, the theorem states that under mild
conditions PhaseLift can recover x exactly (up to a global phase factor)
with high probability, provided that the number of measurements is of the
order of n logn.

Theorem 6.2 (Candès, Strohmer and Voroninski 2013b). Consider
an arbitrary signal x in R

n or C
n. Let the measurement vectors ak be

sampled independently and uniformly at random on the unit sphere, and
suppose that the number of measurements obeys N ≥ c0n logn, where c0
is a sufficiently large constant. Then the solution to the trace minimization
program is exact with high probability, in the sense that (6.3) has a unique
solution obeying

X̂ = xx∗.

4 The notation A≺B means that B−A is positive definite.
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This holds with probability at least 1− 3e−γ(m/n), where γ is a positive
absolute constant.

Theorem 6.2 can be extended to noisy measurements (Candès et al. 2013b,
Hand 2017), demonstrating that PhaseLift is robust vis-à-vis noise. Candès
and Li (2014) further improved the condition m=O(n logn) to m= O(n).
As noted by Candès and Li (2014) and Demanet and Hand (2014), under
the conditions of Lemma 6.1 the feasible set of (6.3) reduces to the single
point X = xx∗. Thus, from a purely theoretical viewpoint, the trace minim-
ization in (6.3) is actually not necessary, while from a numerical viewpoint,
particularly in the case of noisy data, using the program (6.3) still seems
beneficial.

We also note that the spectral initialization of Section 5.1 has a natural
interpretation in the PhaseLift framework. Comparing equation (5.1) with
the definition of A in (6.2), it is evident that the spectral initializer is simply
given by the solution extracted from computing A∗y.

Although PhaseLift favours low-rank solutions, in the case of noisy data
it is not guaranteed to find a rank-one solution. Therefore, if our optimal
solution X̂ does not have exactly rank one, we extract the rank-one approx-
imation x̂x̂∗ where x̂ is an eigenvector associated with the largest eigenvalue
of X̂. In that case one can further improve the accuracy of the solution x̂
by ‘debiasing’ it. We replace x̂ with its rescaled version sx̂, where

s=

√√√√
n∑

k=1

λ̂k/‖x̂‖2.

This corrects for the energy leakage occurring when X̂ is not exactly a rank-
one solution, which could cause the norm of x̂ to be smaller than that of
the actual solution. Other corrections are of course possible.

Remark 6.3. For the numerical solution of (6.3) it is not necessary to
actually set up the matrix X explicitly. Indeed, this fact has already been
described in detail by Candès et al. (2013a). Yet, the misconception that
the full matrix X needs to be computed and stored can sometimes be found
in the non-mathematical literature (Elser, Lan and Bendory 2018).

Theorem 6.2 serves as a benchmark result, but using Gaussian vectors
as measurement vectors ak is not very realistic. For practical purposes, we
prefer sets of measurement vectors that obey, for example, the coded dif-
fraction structure illustrated in Figure 2.1. The extension of PhaseLift to
these more realistic conditions was first shown by Candès et al. (2015),
who proved that a result similar to Theorem 6.2 also holds for Fourier-
type measurements when O(log4n) different specifically designed random
masks are employed. Thus, compared to Theorem 6.2, the total number
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of measurements increases to N = O(n log4n). This result was improved
in Gross, Krahmer and Kueng (2017), where the number of measurements
was reduced to O(n log2n). Since the coded diffraction approach is both
mathematically appealing and relevant in practice, we will describe below,
in more detail, a typical set-up that is also the basis of Candès et al. (2015)
and Gross et al. (2017).

We assume that we collect the magnitudes of the discrete Fourier trans-
form of a random modulation of the unknown signal x. Each such modu-
lation pattern represents one mask and is modelled by a random diagonal
matrix. Let {e1, . . . ,en} denote the standard basis of Cn. We define the ℓth
(coded diffraction) mask via

Dℓ =
n∑

i=1

εℓ,ieie
∗
i ,

where the εℓ,i are independent copies of a real-valued random variable ε
which obeys

E[ε] = E[ε3] = 0

|ε| ≤ b almost surely for some b > 0,

E[ε4] = 2E[ε2]2.

(6.4)

Denote

fk =
n∑

j=1

e2πijk/nej .

Then the measurements captured via this coded diffraction approach can
be written as

yk,ℓ = |〈fk,Dℓx〉|2, k = 1, . . . ,n, ℓ= 1, . . . ,L. (6.5)

As shown by Gross et al. (2017), condition (6.4) ensures that the meas-
urement ensemble forms a spherical 2-design, a concept proposed by Balan,
Bodmann, Casazza and Edidin (2009) and Gross, Krahmer and Kueng
(2015) in connection with phase retrieval. As a particular choice in (6.4)
we may select each modulation to correspond to a Rademacher vector with
random erasures, that is,

ε∼





√
2 with probability 1/4,

0 with probability 1/2,

−
√
2 with probability 1/4,

as suggested by Candès et al. (2015).
In the case of such coded diffraction measurements, the following theorem,

proved by Gross et al. (2017), guarantees the success of PhaseLift with high
probability (see also Candès, Li and Soltanolkotabi 2015).
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Theorem 6.4. Let x ∈C
n with ‖x‖2 = 1 and let n≥ 3 be an odd number.

Suppose that N = nL Fourier measurements using L independent random
diffraction patterns (as defined in (6.4) and (6.5)) are gathered. Then,
with probability at least 1− e−ω, PhaseLift endowed with the additional
constraint Tr(X) = 1 recovers x up to a global phase, provided that

L≥ Cω log2n.

Here, ω ≥ 1 is an arbitrary parameter and C is a dimension-independent
constant that can be explicitly bounded.

While the original PhaseLift approach works for multi-dimensional sig-
nals, there exist specific constructions of masks for the special case of one-
dimensional signals that provide further improvements. For instance, Pohl,
Yang and Boche (2015) derived a deterministic, carefully designed set of
4n− 4 measurement vectors and proved that a semidefinite program will
successfully recover generic signals from the associated measurements. They
accomplished this by showing that the conditions of Lemma 6.1 hold on a
dense subspace of Cn. Another approach that combines the PhaseLift idea
with the construction of a few specially designed one-dimensional masks can
be found in Jaganathan et al. (2015).

The PhaseCut method, proposed by Waldspurger, d’Aspremont and Mal-
lat (2015), casts the phase retrieval problem as an equality constrained
quadratic program and then uses the famous MaxCut relaxation for this
type of problem. Interestingly, while the PhaseCut and PhaseLift relaxa-
tions are in general different, there is a striking equivalence between these
two approaches; see Waldspurger et al. (2015).

Concerning the numerical solution of (6.3), there exists a wide array of
fairly efficient numerical solvers; see e.g. Nesterov (2004), Toh, Todd and
Tütüncü (1999) and Monteiro (1997). The numerical algorithm to solve
(6.3) in the example illustrated in Figure 6.2 was implemented in MATLAB
using TFOCS (Becker, Candès and Grant 2011). That implementation avoids
setting up the matrix X explicitly and only keeps an n× r matrix with
r≪ n in memory. More custom-designed solvers have also been developed;
see e.g. Huang, Gallivan and Zhang (2017).

6.2. Convex phase retrieval without lifting

Despite its mathematical elegance, a significant drawback of PhaseLift is
that its computational complexity is too high (even when X is not set
up explicitly) for large-scale problems. A different route to solving the
phase retrieval problem via convex relaxation was pursued independently in
Bahmani and Romberg (2016) and Goldstein and Studer (2018). Starting
from our usual set-up, assume we are given phaseless measurements

|〈ak,x〉|2 = yk, k = 1, . . . ,N. (6.6)
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Figure 6.1. The ‘complex polytope’ of feasible solutions intersecting at x∗ = x∗.
Here, the role of the anchor vector u is played by a0. Image courtesy of Bahmani
and Romberg (2016).

We relax each measurement to an inequality

|〈ak,x〉| ≤
√
yk = bk, k = 1, . . . ,N. (6.7)

This creates a symmetric slab Si of feasible solutions. Collectively, these
slabs describe a ‘complex polytope’ K of feasible solutions. The target signal
x is one of the extreme points of K, as illustrated in Figure 6.1.

How do we distinguish the desired solution x from all the other extreme
points of K? The idea proposed in Bahmani and Romberg (2016) and
Goldstein and Studer (2018) is to use a (non-zero) ‘anchor’ vector u that
is sufficiently close to x. Following Bahmani and Romberg (2016), from a
geometrical viewpoint, the idea is to find a hyperplane tangent to K at x and
the anchor vector u acts as the normal for the desired tangent hyperplane
see Figure 6.1; u is required to have a non-vanishing correlation with x in
the sense that

|〈x,u〉|
‖u‖2‖x‖2

> ǫ, (6.8)

for some ǫ > 0. See also (5.8) related to the optimal initialization in Sec-
tion 5.3. The idea of Bahmani and Romberg (2016) and Goldstein and
Studer (2018) is now to recover x by finding the vector that is most aligned
with u and satisfies the relaxed measurement constraints in (6.7).

This approach can be expressed as the following convex problem, dubbed
PhaseMax by Goldstein and Studer (2018):

max
x

〈x,u〉

subject to bk ≤ |〈ak,x〉|2+ ξk, k = 1, . . . ,N.
(6.9)
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It is remarkable that this convex relaxation of the phase retrieval problem
does not involve lifting and operates in the original parameter space.

Choosing an appropriate anchor vector u is crucial, since u must be suf-
ficiently close to x. Bahmani and Romberg (2016) have shown that under
the assumptions of Theorem 6.2, the condition (6.8) holds with probability
at least 1−O(n−2). They then showed that the convex program in (6.9)
can successfully recover the original signal from measurements of the form
(6.6) under conditions similar to those in Theorem 6.2 (and under addi-
tional technical assumptions), and moreover that this recovery is robust in
the presence of measurement noise. A slightly stronger result was proved by
Hand and Voroninski (2016), who established the following result.

Theorem 6.5 (Hand and Voroninski 2016). Fix x ∈ R
n. Let ak be

i.i.d. N (0,In) for k = 1, . . . ,N . Let |〈ak,x〉|2 = yk. Assume that u ∈ R
n

satisfies ‖u− x‖2 ≤ 0.6‖x‖2. If N ≥ cn, then with probability at least
1−6e−γN , x is the unique solution of the linear program PhaseMax. Here,
γ and c are universal constants.

Using for instance the truncated spectral initialization proposed in Chen
and Candès (2017), one can show that ‖u = x‖2 ≤ 0.6‖x‖2 holds with
probability at least 1− e−γN, provided that N ≥ c0n.

Dhifallah, Thrampoulidis and Lu (2017) showed that even better signal
recovery guarantees can be achieved by iteratively applying PhaseMax. The
resulting method is called PhaseLamp; the name derives from the fact that
the algorithm is based on the idea of successive linearization and maximiz-
ation over a polytope.

Denote the n×N matrix A= [a1, . . . ,aN ] and the N ×N diagonal matrix
B = diag(b1, . . . ,bN ). Then, as noticed by Goldstein and Studer (2018), the
basis pursuit problem

min
z∈CN

‖z‖1

subject to u=AB−1z
(6.10)

is dual to the convex program (6.9). Moreover, as pointed out by Goldstein
and Studer (2018), as a consequence, if PhaseMax succeeds, then the phases
of the solution vector z to (6.10) are exactly the phases that were lost in
the measurement process in (6.6), that is,

zk
|zk|

bk = 〈ak,x〉, k = 1, . . . ,N.

These observations open up the possibility of using algorithms associated
with basis pursuit for phase retrieval.

Yet another convex approach to phase retrieval has been proposed by
Doelman, Thao and Verhaegen (2018). They proposed a sequence of convex
relaxations, where the obtained convex problems are affine in the unknown
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signal x∗. No lifting is required in this approach. However, no theoretical
conditions are provided (in terms of number of measurements or otherwise)
that would ensure that the computed solution actually coincides with the
true solution x∗.

To illustrate the efficacy of the approaches described in this section, we
consider a stylized version of a set-up encountered in X-ray crystallography
or diffraction imaging. The test image, shown in Figure 6.2(a) (magnitude),
is a complex-valued image5 of size 256× 256, whose pixel values corres-
pond to the complex transmission coefficients of a collection of gold balls
at nanoscale embedded in a medium (data courtesy of Stefano Marchesini
from Lawrence Berkeley National Laboratory).

We demonstrate the recovery of the image shown in Figure 6.2(a) from
noiseless measurements via PhaseLift, PhaseMax and PhaseLamp. We use
three coded diffraction illuminations, where the entries of the diffraction
matrices are either +1 or −1 with equal probability. We use the TFOCS
based implementation of PhaseLift from Candès et al. (2013a) with re-
weighting. For PhaseMax and PhaseLamp we use the implementations
provided by PhasePack (see Chandra et al. 2017) with the optimal spec-
tral initializer and the default settings. The reconstructions by PhaseLift
and PhaseLamp, shown in Figures 6.2(b) and 6.2(d), are visually indistin-
guishable from the original. The reconstruction computed by PhaseMax,
depicted in Figure 6.2(c), is less accurate in this example.

Despite the ability of convex methods to recover signals from a small num-
ber of phaseless observations, these methods have not yet found practical
use. While there exist fast implementations of PhaseLift, in terms of compu-
tational efficiency it cannot compete with the non-convex methods discussed
in Section 4. The biggest impact PhaseLift has had on phase retrieval is that
on the one hand it triggered a broad and systematic study of numerical
algorithms for phase retrieval, and on the other hand it ignited a sophistic-
ated design of initializations for non-convex solvers. Beyond phase retrieval,
it ignited research in related areas, such as in bilinear compressive sensing
(Ling and Strohmer 2015), including blind deconvolution (Ahmed, Recht
and Romberg 2013, Li, Lee and Bresler 2016, Krahmer and Stöger 2019)
and blind demixing (Ling and Strohmer 2017). Moreover, the techniques
behind PhaseLift and sparse recovery have influenced other areas directly
related to phase retrieval, namely low-rank phase retrieval problems as they
appear for instance in quantum tomography, as well as utilizing sparsity in
phase retrieval. We will discuss these topics in Sections 6.3 and 6.4 below.

5 Since the original image and the reconstruction are complex-valued, we only display
the absolute value of each image.
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(a) original image (b) reconstruction via PhaseLift

(c) reconstruction via PhaseMax (d) reconstruction via PhaseLamp

Figure 6.2. Original image of gold balls (a) and reconstructions via PhaseLift (b),
PhaseMax (c) and PhaseLamp (d), using three coded diffraction illuminations.
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6.3. Low-rank phase retrieval problems

The phase retrieval problem has a natural generalization to recovering low-
rank positive semidefinite matrices. Consider the problem of recovering
an unknown n×n rank-r matrix � 0 from linear functionals of the form
yk = Tr(A∗

kM) for k = 1, . . . ,N , where A is Hermitian. By representing M
in factorized form, M = XX∗,X ∈ C

n×r, we can express this problem as
the attempt to recover X ∈C

n×r from the measurements yk =Tr(A∗
kXX

∗),
which, in light of (6.1), is a natural generalization of the phase retrieval
problem.

A particular instance of interest of this problem arises in quantum state
tomography, where one tries to characterize the complete quantum state of
a particle or particles through a series of measurements in different bases
(Paris and Řeháček 2004, Haah et al. 2017). More precisely, we are con-
cerned with the task of reconstructing a finite-dimensional quantum mech-
anical system which is fully characterized by its density operator ρ – an
n×n positive semidefinite matrix with trace one. Estimating the density
operator of an actual (finite-dimensional) quantum system is an important
task in quantum physics known as quantum state tomography. We are of-
ten interested in performing tomography for quantum systems that have
certain structural properties. One important structural property is purity.
A pure quantum state of n ions can be described by its 2n× 2n rank-one
density matrix. A quantum state is almost pure if it is well approximated
by a matrix of low rank r with r≪ n.

Assuming this structural property, quantum state tomography becomes
a low-rank matrix recovery problem (Gross 2011, Recht, Fazel and Parrilo
2010, Kueng, Rauhut and Terstiege 2017, Davenport and Romberg 2016).
It is obvious that we can recover a general quantum state ρ ∈ C

n×n from
n(n− 1) properly chosen measurements. But if ρ is low-rank, how many
measurements are needed such that we can still recover ρ in a numerically
efficient manner? And what properties does measurement system have to
satisfy? An additional requirement is the fact that the measurement process
has to be ‘experimentally realizable’ and preferably in an efficient manner
(Kueng et al. 2017). Moreover, in a real experiment, the measurements
are noisy, and the true state is only approximately low-rank. Thus, any
algorithm that aims to recover quantum states must be robust to these
sources of error.

Many of the algorithms discussed in the previous sections can be extended
with straightforward modifications to the generalized phase retrieval prob-
lem. For example, Kueng et al. (2017) have shown that the PhaseLift results
can be extended beyond the rank-one case: for Gaussian measurements the
required number of measurements is N ≥ Cnr, which is analogous to the
rank-one case.
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Perhaps more interestingly, and similar in spirit to coded diffraction illu-
minations, there are certain structured measurement systems that are also
realizable from an experimental viewpoint. For example, using the math-
ematically intriguing concept of Clifford orbits, one can reconstruct a rank-
r quantum state exactly in the noiseless case and robustly in the presence of
noise if the measurement matrices are chosen independently and uniformly
at random from the Clifford orbit, assuming the number of measurements
satisfies N ≥ Crn logn; see Kueng, Zhu and Gross (2016). Here, the noise
can include additive noise as well as ‘model noise’ due to the state being not
exactly of rank r. Kueng et al. (2016) showed that a similar result holds if
we replace the measurement system with approximate projective 4-designs
(see Kueng, Rauhut and Terstiege 2017 for a precise definition). This line
of research opens up beautiful connections to group theory, representation
theory and time-frequency analysis.

We will demonstrate that the famous Zauner conjecture can be expressed
as a low-rank phase retrieval problem. At the core of this conjecture is the
problem of finding a family of n2 unit-length vectors {vi}n2

i=1 in C
n such that

|〈vi,v′i〉|2 =
1

n+1
for all i 6= i′ (6.11)

(see Zauner 1999). Such a family constitutes an equiangular tight frame
of maximal cardinality (since no more than n2 lines in C

n can be equi-
angular), also known as a Grassmannian frame (Strohmer and Heath 2003).
Equiangular tight frames play an important role in many applications, ran-
ging from signal processing and communications to compressive sensing.
In quantum physics (Appleby 2005) such a family of vectors is known as a
symmetric informationally complete positive-operator-valued measure (SIC-
POVM) (Scott and Grassl 2010).

Zauner conjectured that for each n= 2,3, . . . , there exists a fiducial vector
v ∈ C

n such that the Weyl–Heisenberg (or Gabor) frame {TjMkv}nj,k=1

satisfies (6.11). Moreover, Zauner conjectured that this fiducial vector v ∈C
n

is an eigenvector of a certain order-3 Clifford unitary Un. We refrain here
from going into details about the Clifford group and refer instead to Zauner
(1999), Appleby (2005) and Fuchs, Hoang and Stacey (2017). Putative
fiducial vectors have been found (to machine precision) via computational
techniques for every dimension n up to 151, and for a handful of higher
dimensions (Fuchs et al. 2017). We also know analytic solutions for a few
values of n; see e.g. Appleby, Bengtsson, Flammia and Goyeneche (2019)
and Fuchs et al. (2017).

Note that

〈TjMkx,Tj′Mk′x〉= e−2πi(j−j′)k′〈Tj−j′Mk−k′x,x〉.
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Hence, Zauner’s conjecture can be expressed as solving the problem

Find x ∈ Un

subject to |〈TjMkx,x〉|2 =





1 if k = j = 0,

1

n+1
else.

(6.12)

This is a phase retrieval problem. Unfortunately, the unknown vector x
appears on both sides of the inner product. Hence, while the measurement
set-up may seem similar to ptychography at first glance, the problem (6.12)
is actually more challenging.

To arrive at the promised low-rank formulation, first note that the prop-
erty x ∈ Un can be expressed as x= Unz, where Un is an n×d matrix and
z ∈ C

d with

d=

⌈
n+1

3

⌉
;

see Scott and Grassl (2010). Hence, for x ∈ Un we obtain

〈TjMkx,x〉= 〈TjMkUnz,Unz〉= 〈Vjk,Z〉HS,

where Z = zz∗ and

Vjk = U∗
nTjMkUn for j,k = 0, . . . ,n−1.

Thus we arrive at our first low-rank phase retrieval version by rewriting
(6.12) as

Find Z

subject to |〈Vjk,Z〉HS|2 =





1 if k = j = 0,

1

n+1
else,

Z � 0

rank(Z) = 1.

(6.13)

In (6.13) we have n2 quadratic equations with about (n/3)2 unknowns. It is
not difficult to devise a simple alternating projection algorithm with random
initialization to solve (6.12) that works quite efficiently for n < 100. How-
ever, for larger n the algorithm seems to get stuck in local minima. Maybe
methods from blind ptychography can guide us to solve (6.12) numerically
for larger n.

We can lift the equations in (6.13) up using tensors to arrive at our second
low-rank scenario. More precisely, defining the tensors Vjk = Vjk⊗Vjk and
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the rank-one tensor Z = Z⊗Z, we can express (6.12) as the problem

Find Z

subject to Tr(ZVjk) =





1 if k = j = 0,

1

n+1
else,

Z � 0

rank(Z) = 1,

(6.14)

with an appropriate interpretation of trace, positive-definiteness, and rank
for tensors. While the equations in (6.14) are now linear, this simplifica-
tion comes at the cost of substantially increasing the number of unknowns
to (n/3)4. Perhaps modifications of recent algorithms for low-rank tensor
recovery (see e.g. Rauhut, Schneider and Stojanac 2017) can be utilized to
solve (6.14).

6.4. Phase retrieval, sparsity and beyond

Support constraints have been popular in phase retrieval for a very long
time as a means to make the problem well-posed or to make algorithms
converge (faster) to the desired solution. When imposing a support con-
straint, we usually assume that we know (an upper bound of) the interval
or region in which the object is non-zero. Such a constraint is easy to enforce
numerically, and it has been discussed in detail in previous sections.

A more general form of support constraint is sparsity. In recent years the
concept of sparsity has been recognized as an enormously useful assumption
in all kinds of inverse problems. When a signal is sparse, this means that
the signal has only relatively few non-zero coefficients in some (known)
basis, but we do not know a priori the indices of these coefficients. For
example, for the standard basis this would mean that we know the signal
is sparsely supported but we do not know the locations of the non-zero
entries. An illustrative example is depicted in Figure 7.2. The simplest
setting is when the basis in which the signal is represented sparsely is known
in advance. When such a basis or dictionary is not given a priori, it may
have to be learned from the measurements themselves (Tillmann, Eldar and
Mairal 2016).

When we assume sparsity we are no longer dealing with a linear subspace
condition, as is the case with ordinary support constraints, but with a non-
linear subspace. Due to this fact, such a ‘non-linear’ sparsity constraint is
much harder to enforce than the case when the support of the signal is
known a priori.

Thanks to the theory of compressive sensing (Candès and Tao 2006,
Donoho 2006, Foucart and Rauhut 2013), we now have a thorough and
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190 A. Fannjiang and T. Strohmer

quite broad theoretical and algorithmic understanding of how to exploit
sparsity to reduce the number of measurements or to improve the quality of
the reconstructed signal. We call a signal x ∈C

n s-sparse if x has at most s
non-zero entries, and write ‖x‖0 = s in this case. The theory of compressive
sensing tells us in a nutshell that under appropriate conditions of the sens-
ing matrix A ∈ C

N×n, an s-sparse signal x ∈ C
n can be recovered from the

linear measurements b=Ax via linear programming (with high probability)
if N & s logn; see Foucart and Rauhut (2013) for precise versions and many
variations.

Classical compressive sensing assumes a linear data acquisition mode,
where measurements are of the form 〈ak,x〉. Obviously, this data acquisition
mode does fit the phase retrieval problem. Nevertheless, the tools and
insights we have gained from compressive sensing can be adapted to some
extent to the setting of quadratic measurements, i.e. for phase retrieval.

The problem we want to address is as follows. Assume x∗ is a sparse
signal. How can we utilize this prior knowledge effectively in the phase
retrieval problem? For example, what are efficient ways to enforce sparsity
in the numerical reconstruction? How much can we reduce the number of
phaseless measurements and still successfully recover x∗ with theoretical
guarantees, and do so in a numerically robust manner?

There exists a plethora of methods to incorporate sparsity in phase re-
trieval. This includes convex approaches (Ohlsson, Yang, Dong and Sastry
2012, Li and Voroninski 2013), thresholding strategies (Wang et al. 2017,
Yuan, Wang and Wang 2019), greedy algorithms (Shechtman, Beck and
Eldar 2014), algebraic methods (Beinert and Plonka 2017) and tools from
deep learning (Hand, Leong and Voroninski 2018, Kim and Chung 2019).
In the following we briefly discuss a few selected techniques in more detail.

Following the paradigm of compressive sensing, it is natural to consider
the following semidefinite program to recover a sparse signal x∗ from phase-
less measurements. We denote ‖X‖1 :=

∑
k,l |Xk,l|, and similar to using the

trace-norm of a matrix X as a convex surrogate of the rank of X, we use
‖X‖1 as a convex surrogate of ‖X‖0. Hence, we are led to the following
semidefinite program (SDP) (Ohlsson et al. 2012, Li and Voroninski 2013):

Minimize ‖X‖1+λTr(X)

subject to A(X) = y

X � 0.

(6.15)

Li and Voroninski (2013) showed that for Gaussian measurement vectors,
N = O(s2 logn) measurements are sufficient to recover an s-sparse input
from phaseless measurements using (6.15). Based on optimal sparse recov-
ery results from compressive sensing using Gaussian matrices, one would
hope that N =O(s logn) should suffice. However, Li and Voroninski (2013)
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showed that the SDP in (6.15) cannot outperform this sub-optimal sample
complexity by direct ℓ1-penalization.

It is conceptually easy to enforce some sparsity of the signal to be re-
constructed in the algorithms based on alternating projections or gradient
descent, described in Section 4. One only needs to incorporate an additional
greedy step or a thresholding step during each iteration. For example, for
gradient descent we modify the update rule (4.18) to

zj+1 = Tτ
(
zj−

µj
‖z0‖22

∇f(zj)
)
,

where Tτ (z) is a threshold operator that keeps the τ largest entries of z
and sets the other entries of z to zero, or, alternatively, Tτ might leave all
values of z above a certain threshold (indicated by τ) unchanged and set all
values of z below this threshold to zero. We can also replace the latter hard
thresholding procedure with some soft thresholding rule. Here it is assumed
that the signal is sparse in the standard basis, otherwise the thresholding
procedure must be applied in a suitable basis that yields a sparse repres-
entation, such as a wavelet basis (at the cost of applying additional forward
and inverse transforms).

While such modifications are easy to carry numerically, providing theor-
etical guarantees is significantly harder. For example, it has been shown
that sparse Wirtinger flow (Yuan et al. 2019) and truncated amplitude flow
(Wang et al. 2017) succeed if the sampling complexity is at least O(s2 logn).
By applying a thresholded Wirtinger flow to a non-convex empirical risk
minimization problem derived from the phase retrieval problem, Cai et al.
(2016) have established optimal convergence rates for noisy sparse phase
retrieval under sub-exponential noise.

Two-stage approaches have been proposed as well, where in the first stage
the support of the signal is identified and in the second stage the signal is
recovered using the information from the first stage (Iwen, Viswanathan
and Wang 2017, Jaganathan, Oymak and Hassibi 2017). For example,
Jaganathan et al. (2017) propose such a two-stage scheme for the one-
dimensional Fourier phase retrieval problem, consisting of (i) identifying
the locations of the non-zero components of the signal using a combinator-
ial algorithm, and (ii) identifying the signal values in the support using
a convex algorithm. This algorithm is shown experimentally to recover
s-sparse signals from O(s2) measurements, but the theoretical guarantees
require higher sample complexity.

Hand et al. (2018) propose an alternative approach to model signals with
a small number of parameters, based on generative models. They suppose
that the signal of interest is in the range of a deep generative neural network
G : Rs →R

n, where the generative model is a d -layer, fully connected, feed-
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forward neural network with random weights. They introduce an empirical
risk formulation and prove, assuming a range of technical conditions holds,
that this optimization problem has favourable global geometry for gradient
methods, as soon as the number of measurements satisfies N =O(sd2 logn).

Given the current intense interest in deep learning, it is not surprising that
numerous other deep-learning-based methods for phase retrieval have been
proposed; see e.g. Metzler, Schniter, Veeraraghavan and Baraniuk (2018),
Rivenson et al. (2018), Gladrow (2019) and Zhang et al. (2018). Many of the
deep-learning-based methods come with little theoretical foundation and
are sometimes difficult to reproduce. Moreover, if one changes the input
parameters just by a small amount, say, by switching to a slightly different
image resolution, a complete retraining of the network is required. As with
most deep learning applications, there is currently almost no theory about
any kind of reconstruction guarantee, convergence rate, stability analysis
and other basic questions one might pose to a numerical algorithm. On the
other hand, there is anecdotal evidence that deep learning has tieve cohe
potential to achnvincing results in phase retrieval.

Instead of designing an end-to-end deep-learning-based phase retrieval
algorithm (and thereby ignoring the underlying physical model), a more
promising direction seems to be to utilize all the information available to
model the inverse problem and bring to bear the power of deep learning
as a data-driven regularizer. Li, Schwab, Antholzer and Haltmeier (2018)
and Arridge, Maass, Öktem and Schönlieb (2019) have advocated such an
approach for general inverse problems. It will interesting to adapt these
techniques to the setting of phase retrieval.

Schniter and Rangan (2015) proposed an approximate message passing
(AMP) approach for phase retrieval of sparse signals. AMP-based methods
were originally developed for compressed sensing problems of estimating
sparse vectors from underdetermined linear measurements (Donoho, Maleki
and Montanari 2010). They have now been extended to a wide range of
estimation and learning problems including matrix completion, dictionary
learning and phase retrieval. The first AMP algorithm designed for phase
retrieval for sparse signals using techniques from compressive sensing can be
found in Schniter and Rangan (2014). Various extensions and improvements
have been developed (Drémeau and Krzakala 2015, Metzler, Maleki and
Baraniuk 2016, Metzler et al. 2017).

As pointed out by Metzler et al. (2017), one downside is that AMP al-
gorithms are heuristic algorithms and at best offer only asymptotic guar-
antees. In the case of the phase retrieval problem, most AMP algorithms
offer no guarantees at all. Despite this shortcoming, they often perform
well in practice, and a key appealing feature of AMP is its computational
scalability. See Metzler et al. (2017) for a more detailed discussion of AMP
algorithms for phase retrieval.
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In another line of research, the randomized Kaczmarz method has been
adapted to phase retrieval; see Wei (2015). Competitive theoretical con-
vergence results can be found in Tan and Vershynin (2019) and Jeong and
Güntürk (2017), where it has been shown that the convergence is exponen-
tial and comparable to the linear setting (Strohmer and Vershynin 2009).

7. Blind ptychography

An important development in ptychography since the work of Thibault et al.
(2009) is the potential of simultaneous recovery of the object and the illu-
mination. This is referred to as blind ptychography. There are two ambi-
guities inherent to any blind ptychography.

The first is the affine phase ambiguity. Consider the mask and object
estimates

ν0(n) = µ0(n)exp(−ia− iw ·n), n ∈M0, (7.1)

x(n) = x∗(n)exp(ib+iw ·n), n ∈ Z
2
n, (7.2)

for any a,b ∈ R and w ∈ R
2. For any t, we have the calculation

νt(n) = ν0(n− t)

= µ0(n− t)exp(−iw · (n− t))exp(−ia)

= µt(n)exp(−iw · (n− t))exp(−ia),

and hence for all n ∈Mt,t ∈ T

νt(n)xt(n) = µt(n)xt∗(n)exp(i(b−a))exp(iw · t). (7.3)

Clearly (7.3) implies that g and ν0 produce the same ptychographic data as
f and µ0, since for each t, νt⊙xt is a constant phase factor times µt⊙xt∗
where ⊙ is the entry-wise (Hadamard) product. It is also clear that the
above statement holds true regardless of the set T of shifts and the type of
mask.

In addition to the affine phase ambiguity (7.1)–(7.2), a scaling factor
(x = cx∗, ν0 = c−1µ0, c > 0) is inherent to any blind ptychography. Note
that when the mask is exactly known (i.e. ν0 = µ0), neither ambiguity can
occur.

7.0.1. Local rigidity

Motivated by (7.3), we seek sufficient conditions for results such as

νk⊙xk = eiθkµk⊙xk∗, k = 0, . . . ,Q−1, (7.4)

for some constants θk ∈ R. We call (7.4) the property of local rigidity.
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|arg[ν0(n)/µ0(n)]| < π/2

Figure 7.1. ν0 satisfies MPC if ν0(n) and µ
0(n) form an acute angle for all n.

A main assumption needed here is the mask phase constraint (MPC):

The mask estimate ν0 has the property Re(ν0⊙µ0) > 0 at every pixel (where ⊙
denotes the component-wise product and the bar denotes the complex conjugate).

Figure 7.1 illustrates MPC geometrically. Another ingredient in the meas-
urement scheme is that at least for one block (say Mt) the corresponding
object part f t has a tight support in Mt, that is,

Box[supp(f t)] =Mt,

where Box[E] stands for the box hull, the smallest rectangle containing E
with sides parallel to e1 = (1,0) or e2 = (0,1). We call such an object part
an anchor. Informally speaking, an object part f t is an anchor if its support
touches four sides of Mt (Figure 7.2).

In the case supp(x) =M, every object part is an anchor. For an extremely
sparse object such as that shown in Figure 7.2, the anchoring assumption
can pose a challenge.

Both the anchoring assumption and MPC are nearly necessary condi-
tions for local rigidity (7.4) to hold, as demonstrated by counterexamples
constructed in Fannjiang and Chen (2020).

Theorem 7.1 (Fannjiang and Chen 2020). Suppose that {xk∗} has an
anchor and is s-connected with respect to the ptychographic scheme.

Suppose that an object estimate x=
∨
k x

k, where xk are defined on Mk,
and a mask estimate ν0 produce the same ptychographic data as x∗ and µ0.
Suppose that the mask estimate ν0 satisfies MPC. Then local rigidity (7.4)
holds with probability exponentially (in s) close to 1.

7.0.2. Raster scan ambiguities

Before describing the global rigidity result, let us review the other ambi-
guities associated with the raster scan (2.7) other than the inherent am-
biguities of the scaling factor and the affine phase ambiguity (7.1)–(7.2).
These ambiguities include the arithmetically progressing phase factor in-
herited from the block phases and the raster grid pathology which has a
τ -periodic structure of τ × τ degrees of freedom.
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Figure 7.2. Sparse objects such as this image of maize grains, where the dark area
represents zero pixel values, can be challenging for ptychographic measurements.
The two red-framed blocks are not connected even though they overlap. The object
part in the lower-right block is not an anchor since the object support does not
touch the four sides of the block, whereas the object part in the upper-left block is
an anchor. Indeed, the two grains at the lower-left and upper-right corners of the
latter block suffice to create a tight support.

Let T ′ be any cyclic subgroup of T generated by v, that is,

T ′ := {tj = jv : j = 0, . . . ,s−1},

of order s, i.e. sv = 0 mod n. For ease of notation, let µk, xk∗, ν
k, xk and

Mk denote the respective tk-shifted quantities.

Theorem 7.2 (Fannjiang 2019). Suppose that

νk⊙xk = eiθkµk⊙xk∗, k = 0, . . . ,s−1,

where µk and νk vanish nowhere in Mk. If, for all k = 0, . . . ,s−1,

Mk ∩Mk+1∩ supp(x∗)∩ (supp(x∗)+v) 6= ∅, (7.5)

then the sequence {θ0,θ1, . . . ,θs−1} is an arithmetic progression where ∆θ =
θk−θk−1 is an integer multiple of 2π/s.
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For the full raster scan T , the block phases have the profile

θkl = θ00+r · (k,l), k,l = 0, . . . ,q−1, (7.6)

for some θ00 ∈ R and r = (r1,r2) where r1 and r2 are integer multiples of
2π/q.

Note that if x∗ has a full support, i.e. supp(x∗) = Z
2
n, then (7.5) holds for

any step size τ < m (i.e. positive overlap).
The next example shows an ambiguity resulting from the arithmetically

progressing block phases (7.6) which make positive and negative imprints
on the object and phase estimates, respectively.

Example 7.3. For q = 3,τ =m/2, let

x∗ =



f00 f10 f20
f01 f11 f21
f02 f12 f22


, x=




f00 ei2π/3f10 ei4π/3f20
ei2π/3f01 ei4π/3f11 f21
ei4π/3f02 f12 ei2π/3f22




be the object and its reconstruction, respectively, where fij ∈C
n/3×n/3. Let

µkl =

[
µkl00 µkl10
µkl01 µkl11

]
, νkl =

[
µkl00 e−i2π/3µkl10

e−i2π/3µkl01 e−i4π/3µkl11

]
,

for k,l = 0,1,2, be the (k,l)th shift of the mask and estimate, respectively,
where µklij ∈ C

n/3×n/3.

Let xij∗ and xij be the part of the object and estimate illuminated by µij

and νij , respectively. For example, we have

x00∗ =

[
f00 f10
f01 f11

]
, x10∗ =

[
f10 f20
f11 f21

]
, x20∗ =

[
f20 f00
f21 f01

]
,

and likewise for other xij∗ and xij . It is easily seen that

νij⊙xij = ei(i+j)2π/3µij⊙xij∗ .

Example 7.3 illustrates the non-periodic ambiguity inherited from the
affine block phase profile. The non-periodic arithmetically progressing am-
biguity is different from the affine phase ambiguity (7.1)–(7.2) as they mani-
fest on different scales: the former is constant in each τ × τ block (indexed
by k,l) while the latter varies from pixel to pixel.

The next example illustrates the periodic artifact called raster grid patho-
logy.

Example 7.4. For q = 3,τ =m/2 and any ψ ∈ C
n/3×n/3, let

x∗ =



f00 f10 f20
f01 f11 f21
f02 f12 f22


, x=



e−iψ⊙f00 e−iψ⊙f10 e−iψ⊙f20
e−iψ⊙f01 e−iψ⊙f11 e−iψ⊙f21
e−iψ⊙f02 e−iψ⊙f12 e−iψ⊙f22


 (7.7)
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be the object and its reconstruction, respectively, where fij ∈C
n/3×n/3. Let

µkl =

[
µkl00 µkl10
µkl01 µkl11

]
, νkl =

[
eiψ⊙µkl00 eiψ⊙µkl10
eiψ⊙µkl01 eiψ⊙µkl11

]
, (7.8)

for k,l = 0,1,2, be the (k,l)th shift of the mask and estimate, respectively,
where µklij ∈ C

n/3×n/3.

Let xij∗ and xij be the part of the object and estimate illuminated by µij

and νij , respectively (as in Example 7.3). It is verified easily that νij⊙xij =
µij⊙xij∗ .

Since ψ in Example 7.4 is any complex τ × τ matrix, (7.7) and (7.8)
represent the maximum degrees of ambiguity over the respective initial sub-
blocks. This ambiguity is transmitted to other sub-blocks, forming periodic
artifacts called the raster grid pathology.

For a complete analysis of ambiguities associated with raster scan, we
refer the reader to Fannjiang (2019).

7.0.3. Global rigidity

In view of Theorem 7.1, we make simple observations and transform (7.4)
into the ambiguity equation that will be key to subsequent development.

Let

α(n)exp[iφ(n)] = ν0(n)/µ0(n), α(n)> 0 for all n ∈M0

and

h(n)≡ lnx(n)− lnx∗(n) for all n ∈M,

where x∗ and x are assumed to be non-vanishing.
Suppose that

νk⊙xk = eiθkµk⊙xk∗ for all k,

where θk are constants. Then

h(n+ tk) = iθk− lnα(n)− iφ(n) mod i2π for all n ∈M0, (7.9)

and for all n ∈Mk ∩Ml

α(n− tl) = α(n− tk)

θk−φ(n− tk) = θl−φ(n− tl) mod 2π.

The ambiguity equation (7.9) is a manifestation of local uniqueness (7.4)
and has the immediate consequence

h(n+ tk)−h(n+ tl) = iθk− iθl mod i2π for all n ∈M0 and k,l (7.10)

or equivalently

h(n+ tk− tl)−h(n) = iθk− iθl mod i2π for all n ∈Ml (7.11)
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(a) perturbed scan (7.13) (b) perturbed scan (7.12)

Figure 7.3. Perturbed raster scan patterns.

by shifting the argument in h.
We refer to (7.10) or (7.11) as the phase drift equation, which determ-

ines the ambiguity (represented by h) at different locations connected by
ptychographic shifts.

We seek sufficient conditions for guaranteeing the following global rigidity
properties:

h(n) = h(0)+ in · (r1,r2) mod i2π,

φ(n) = θ0− Im[h(0)]−n · (r1,r2) mod 2π,

α= e−Re [h(0)],

θt = θ0+ t · (r1,r2) mod 2π for all t ∈ T ,

for some r1,r2 ∈ R and all n ∈ Z
2
n.

Fannjiang and Chen (2020) introduce a class of ptychographically com-
plete schemes. A ptychographic scheme is complete if global rigidity holds
under the minimum prior constraint MPC defined in Figure 7.1. A simple
example of ptychographically complete schemes is the perturbed scan (Fig-
ure 7.3(b))

tkl = τ(k,l)+(δ1kl,δ
2
kl), k,l = 0, . . . ,q−1, (7.12)

where τ = n/q needs to be only slightly greater than m/2 (i.e. overlap ratio
slightly greater than 50%) and δ1kl,δ

2
kl are small integers with some generic

non-degeneracy conditions (Fannjiang and Chen 2020). In particular, if we
set

δ1kl = δ1k, δ2kl = δ2l for all k,l = 0, . . . ,q−1, (7.13)
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Figure 7.4. Perturbed scan with q = 2. The arcs indicate the extent of the two
blocks M00 and M10. The dotted lines mark the mid-lines of the two blocks. The
grey area represents the object, with the light grey areas being R00 and R10 and
the dark grey areas being the overlap of the two blocks. The white area inside M10

folds into the other end inside M00 by the periodic boundary condition.

then we obtain the scan pattern shown in Figure 7.3(a).

7.0.4. Minimum overlap ratio

In this subsection we show that 50% overlap is roughly the minimum overlap
ratio required by uniqueness among the perturbed raster scans defined by
(7.12)–(7.13).

Let us consider the perturbed scheme (7.13) with q = 2 and

tkl = (τk,τl), k,l = 0,1,2,

where τ0 = 0,τ2 = n and

3m/2< n <m+ τ1. (7.14)

The condition (7.14) is to ensure that the overlap ratio (2−n/m) between
two adjacent blocks is less than (but can be made arbitrarily close to)
50%. To avoid the raster scan (which has many undesirable ambiguities
(Fannjiang 2019)), we assume that τ1 6= n/2 and hence τ2 6= 2τ1. Note that
the periodic boundary condition implies that M00 = M20 = M02 = M22.
Figure 7.4 illustrates the relative positions of M00 and M10.

First let us focus on the horizontal shifts {tk0 : k = 0,1,2}. As shown in
Figure 7.4, two subsets of M= Z

2
n,

R00 = Jm+ τ1−n,τ1−1K×Zm, R10 = Jm,n−1K×Zm,

are covered only once by M00 and M10 respectively, due to (7.14).
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Now consider the intersections

R̃10 :=R10∩ (t10+R00) =R10∩ Jm+2τ1−n,2τ1−1K×Zm,

R̃00 := (R10− t10)∩R00 = Jm− τ1,n− τ1−1K×Zm∩R00,

which correspond to the same region of the mask in M10 and M00 respect-
ively, and let h1 be any function defined on M such that h1(n) = 0 for any
n 6= R̃10∪ R̃00 and h1(n+ t10) = h1(n) for any n ∈ R̃00.

Consider the object estimate x(n) = eh1(n)x∗(n) and the mask estimate
νk0(n) := e−h1(n)µk0(n), which is well-defined because R̃10 = t10+ R̃00, and
both correspond to the same region of the mask.

By the same token, we can construct a similar ambiguity function h2
for the vertical shifts. With both horizontal and vertical shifts, we define
the ambiguity function h = h1h2 and the associated pair of mask–object
estimates νkl(n) := e−h(n)µkl(n) and x(n) = eh(n)x∗(n).

Clearly the mask–object pair (ν,x) produces the same set of diffraction
patterns as (µ,x∗). Therefore this ptychographic scheme has at least (2τ1−
m)2 or (2n− 2τ1 −m)2 degrees of ambiguity dimension depending on
whether 2τ1 < n or 2τ1 > n.

7.1. Algorithms for blind ptychography

Let F(ν,x) be the bilinear transformation representing the totality of the
Fourier (magnitude and phase) data for any mask ν and object x. From
F(ν0,x) we can define two measurement matrices. First, for a given ν0 ∈
C
m2

, let Aν be defined via the relation Aνx := F(ν0,x) for all x ∈ C
n2

.

Second, for a given x ∈ C
n2

, let Bx be defined via Bxν = F(ν0,x) for all

ν0 ∈ C
m2

.
More specifically, let Φ denote the oversampled Fourier matrix. The

measurement matrix Aν is a concatenation of {Φdiag(νt) : t ∈ T } (Fig-
ure 2.4(a)). Likewise, Bx is {Φdiag(xt) : t ∈ T } stacked on top of each
other (Figure 2.4(b)). Since Φ has orthogonal columns, both Aν and Bx
have orthogonal columns. We simplify the notation by setting A= Aµ and
B =Bx∗ .

Let ν0 and x = ∨tx
t be any pair of the mask and object estimates pro-

ducing the same ptychography data as µ0 and x∗, that is, the diffraction
pattern of νt ⊙ xt is identical to that of µt ⊙ xt∗, where ν

t is the t-shift
of ν0 and xt is the restriction of x to Mt. We refer to the pair (ν0,x)
as a blind-ptychographic solution and (µ0,x∗) as the true solution (in the
mask–object domain).

We can write the total measurement data as b = |F(µ0,x∗)|, where F
is the concatenated oversampled Fourier transform acting on {µt⊙xt∗ : t ∈
T } (see Figure 2.4), i.e. a bilinear transformation in the direct product of
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the mask space and the object space. By definition, a blind-ptychographic
solution (ν0,x) satisfies |F(ν0,x)|= b.

According to the global rigidity theorem, we use relative error (RE) and
relative residual (RR) as the merit metrics for the recovered image xk and
mask µk at the kth epoch:

RE(k) = min
α∈C,r∈R2

√∑
n
|x∗(n)−αe−i2πn·r/nxk(n)|2

‖f‖ , (7.15)

RR(k) =
‖b−|Akxk|‖

‖b‖ . (7.16)

Note that in (7.15) both the affine phase and the scaling factors are waived.

7.1.1. Initial mask estimate
For non-convex iterative optimization, a good initial guess or some regu-
larization is usually crucial for convergence (Thibault and Guizar-Sicairos
2012, Bian et al. 2016). This is even more so for blind ptychography, which
is doubly non-convex because, in addition to the phase retrieval step, ex-
tracting the mask and the object from their product is also non-convex.

We say that a mask estimate ν0 satisfies MPC (δ) if

∡(ν0(n),µ0(n))< δπ for all n,

where δ ∈ (0,1/2] is the uncertainty parameter. The weakest condition

necessary for uniqueness is δ= 0.5, equivalent to Re(ν0⊙µ0)> 0. Non-blind
ptychography gives rise to infinitesimally small δ.

We use MPC (δ) as a measure of the initial mask estimate for blind-
ptychographic reconstruction and randomly choose ν0 from the set MPC (δ).
Specifically, we use the following mask initialization:

µ1(n) = µ0(n) exp

[
i2π

k ·n
n

]
exp[iφ(n)], n ∈M0,

where φ(n) are independently and uniformly distributed on (−πδ,πδ).
Under MPC, however, the initial mask may be significantly far away from

the true mask in norm. Even if |ν0(n)| = |µ0(n)| = const., the mask guess
with uniformly distributed φ in (−π/2,π/2] has relative error close to

√
1

π

∫ π/2

−π/2
|eiφ−1|2dφ=

√
2

(
1− 2

π

)
≈ 0.8525

with high probability.

7.1.2. Ptychographic iterative engine (PIE)
The ptychographic iterative engines, namely PIE (Faulkner and Rodenburg
2004, Faulkner and Rodenburg 2005, Rodenburg and Faulkner 2004), ePIE
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(Maiden and Rodenburg 2009) and rPIE (Maiden, Johnson and Li 2017),
are related to the mini-batch gradient method.

In PIE and ePIE, the exit wave estimate is given by

ψ̃k =Φ∗[bk⊙ sgn(Φ(νk⊙xk))] (7.17)

analogous to AP, where the kth object part xk is updated by a gradient
descent

xk− 1

2maxn |νk(n)|2
∇ν‖νk⊙xk− ψ̃k‖2.

This choice of step size resembles the Lipschitz constant of the gradient of
the loss function 1

2‖νk⊙xk− ψ̃k‖2. The process continues in random order
until each of the diffraction patterns has been used to update the object and
mask estimates, at which point a single PIE iteration has been completed.
The mask update proceeds in a similar manner.

The update process can be done in parallel as in Thibault et al.
(2008, 2009). First the exit wave estimates are updated in parallel by the
AAR algorithm instead of (7.17), that is,

ψ̃j+1 =
1

2
ψ̃j+RYRX ψ̃j,

where ψ̃j = [ψ̃kj ] is the j th iterate of the exit wave estimate. Second, the
object and the mask are updated by solving iteratively the Euler–Lagrange
equations

xj(n) =

∑
k[µ

k
j ⊙ ψ̃kj ](n)∑

k |µkj (n)|2

of the bilinear loss function

1

2

∑

k

‖µkj ⊙xkj − ψ̃kj ‖2 =
1

2

∑

k

‖Φ[µkj ⊙xkj ]−Φψ̃kj ‖2

=
1

2

∑

k

‖F(µkj ,x
k
j )−Φψ̃kj ‖2

for given ψ̃j (recall the isometric property of Φ).

7.1.3. Noise-aware method
As a first step of the noise-aware ADMM method for blind ptychography,
we may consider the augmented Lagrangian

L(ν,x,z,λ) = 1

2
‖b−|z|‖2+λ∗(z−F(ν,x))+

β

2
‖z−F(ν,x)‖2
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and the scheme

µk+1 = argminL(ν,xk,zk,λk),
xk+1 = argminL(µk+1,x,zk,λk),

zk+1 = argminL(µk+1,xk+1,z,λk),

λk+1 = λk+β(zk+1−F(µk+1,xk+1)).

Chang, Enfedaque and Marchesini (2019) have employed a more elaborate
version of the above scheme to enhance convergence.

7.1.4. Extended Gaussian-DRS
As an extension of Gaussian-DRS (4.29), consider the augmented Lag-
rangian

L(y,z,x,ν,λ) = 1

2
‖|z|− b‖2+λ∗(z−y)+ ρ

2
‖z−y‖2+ IF (y), (7.18)

where IF is the indicator function of the set

{y ∈ C
N : y = F(ν,x) for some ν,x}.

Define the ADMM scheme for (7.18) as

(zk+1,µk+1) = argmin
z

L(yk,z,xk,ν,λk),
(yk+1,xk+1) = argmin

y
L(y,zk+1,x,µk+1,λk),

λk+1 = λk+ρ(zk+1−yk+1),

which is carried out explicitly by

zk+1 =
1

ρ+1
PY (yk−λk/ρ)+

ρ

ρ+1
(yk−λk/ρ), (7.19)

µk+1 =B+
k yk, (7.20)

yk+1 =Ak+1A
+
k+1(zk+1+λk/ρ), (7.21)

xk+1 =A+
k+1yk+1, (7.22)

λk+1/ρ= λk/ρ+ zk+1−yk+1. (7.23)

We can simplify the above scheme further in terms of the new variable

uk = zk+λk−1/ρ.

Rewrite (7.21) as

yk+1 =Ak+1A
+
k+1uk+1 (7.24)

and hence (7.23) as

λk+1/ρ= uk+1−yk+1 = uk+1−Ak+1A
+
k+1uk+1. (7.25)
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(a) 50% overlap, δ = 9/20 (b) 66% overlap, δ = 2/5 (c) 75% overlap, δ = 1/2

Figure 7.5. Relative errors versus iteration of blind ptychography by eGaussian-
DRS with ρ= 1/3 for the original object CiB. Scheme (7.13) is used with different
overlap ratios and initializations, as indicated in each plot.

Combining (7.24) and (7.25), we obtain

zk+1 =

(
1

ρ+1
PY +

ρ

ρ+1

)
(2AkA

+
k − I)uk.

On the other hand,

uk+1

=
1

ρ+1
PY (2AkA

+
k uk−uk)+

ρ

ρ+1
(2AkA

+
k uk−uk)+uk−AkA+

k uk

=
uk
ρ+1

+
ρ−1

ρ+1
AkA

+
k uk+

1

ρ+1
PY (2AkA

+
k uk−uk) (7.26)

with the mask and object updated by

µk+1 =B+
k AkA

+
k uk, (7.27)

xk+1 =A+
k+1uk+1. (7.28)

Equations (7.26)–(7.28) constitute the extended version of Gaussian-DRS
(eGaussian-DRS) for blind ptychography.

Figure 7.5 shows the relative errors (for object and mask) and the residual
of eGaussian-DRS, with ρ= 1/3 and various overlap ratios in the perturbed
scan, as well as different initial mask phase uncertainties δ. Clearly, increas-
ing the overlap ratio or decreasing the initial mask phase uncertainty speed
up convergence. The straight line feature of the semi-log plots indicates
geometric convergence, and vice versa.

7.1.5. Noise-agnostic methods
As an extension of the augmented Lagrangian (4.4), consider

L(z,ν,x,λ) = IY (z)+λ
∗(z−F(ν,x))+

1

2
‖z−F(ν,x)‖2
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and the ADMM scheme

zk+1 = argmin
z

L(z,µk,xk,λk) = PY [F(µk,xk)−λk], (7.29)

(µk+1,xk+1) = argmin
ν

L(zk+1,ν,x,λk) (7.30)

λk+1 = λk+ zk+1−F(µk+1,xk+1). (7.31)

If, instead of the bilinear optimization step (7.30), we simplify it by one step
as alternating minimization

µk+1 = argmin
ν

L(zk+1,ν,xk,λk) =B+
k (zk+1+λk),

xk+1 = argmin
g

L(zk+1,µk+1,x,λk) =A+
k+1(zk+1+λk)

with Bk := Bxk and Ak+1 = Aµk+1
, then we obtain the DM algorithm for

blind ptychography (Thibault et al. 2008, Thibault et al. 2009), one of the
earliest methods for blind ptychography.

7.1.6. Extended RAAR
To extend RAAR to blind ptychography, let us consider the augmented
Lagrangian

L(y,z,ν,x,λ) = IY (z)+
1

2
‖y−F(ν,x)‖2+λ∗(z−y)+ γ

2
‖z−y‖2

and the ADMM scheme

(yk+1,xk+1) = argmin
y

L(y,zk,x,µk,λk), (7.32)

(zk+1,µk+1) = argmin
z

L(yk+1,z,xk+1,ν,λk), (7.33)

λk+1 = λk+γ(zk+1−yk+1). (7.34)

In the case of a known mask µk = µ for all k, the procedure (7.32)–(7.34) is
equivalent to RAAR. We refer to the above scheme as the extended RAAR
(eRAAR). Note that eRAAR has a non-standard loss function as the term
‖y−F(ν,x)‖2 is not separable. A similar scheme is implemented in Marches-
ini et al. (2016) in the domain of the masked object (see the discussion in
Section 4.5).

With β given in (4.40) the minimizer for (7.32) can be expressed explicitly
as

yk+1 = (I+P⊥
k /γ)

−1(zk+λk/γ) = (I−βP⊥
k )(zk+λk/γ), (7.35)

xk+1 =A+
k yk+1 =A+

k (zk+λk/γ), (7.36)

where Ak =Aµk and Pk =AkA
+
k . On the other hand, equation (7.33) can
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be solved exactly by

zk+1 = PY [yk+1−λk/γ], (7.37)

µk+1 =B+
k+1yk+1, (7.38)

where Bk+1 =Bxk+1
.

Let

uk+1 := yk+1−λk/γ (7.39)

and hence

uk+1 = (I−βP⊥
k )(PY uk+λk/γ)−λk/γ.

On the other hand, we can rewrite (7.34) as

λk/γ = zk−uk = PY uk−uk (7.40)

and hence

uk+1 = (I−βP⊥
k )PY uk−βP⊥

k λk/γ,

= (I−βP⊥
k )PY uk+βP

⊥
k (I−PY )uk,

= βuk+(1−2β)PY uk+βPkRY uk, (7.41)

where RY = 2PY − I. This is the RAAR map with the mask estimate µk
updated by (7.38) and (7.36).

More explicitly, by (7.40) and (7.39),

yk+1 = uk+1+PY uk−uk
and hence

xk+1 =A+
k (uk+1+PY uk−uk), (7.42)

µk+1 =B+
k+1(uk+1+PY uk−uk). (7.43)

Equation (7.42) can be further simplified as

xk+1 =A+
k RY uk (7.44)

by applying A+
k to (7.41) to get A+

k uk+1 =A+
k PY uk.

Equations (7.41), (7.44) and (7.43) constitute a simple, self-contained
iterative system called extended RAAR (eRAAR).

Figure 7.6 shows the relative errors (for object and mask) and residual of
eRAAR with β = 0.8 corresponding to ρ= 1/3 according to (4.46). The rest
of the set-up is the same as for Figure 7.5. Comparing Figures 7.5 and 7.6
we see that eGaussian-DRS converges significantly faster than eRAAR, con-
sistent with the results in Figure 4.3.
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Figure 7.6. Relative errors versus iteration of blind ptychography for CiB by
eRAAR with β = 0.8.

7.2. Further extensions of blind ptychography algorithms

7.2.1. One-loop version
Let Tk denote the kth RAAR map (7.41) or Gaussian-DRS map (7.26).
Starting with the initial guess u1, let

uk+1 = T ℓk(uk) for sufficiently large ℓ (7.45)

for k ≥ 1. The termination rule can be based on a predetermined number of
iterations, the residual, or a combination of the two. See Algorithm 1.

Let

xk+1 =A+
k RY uk, (7.46)

µk+1 =B+
k+1(uk+1+PY uk−uk) (7.47)

in the case of RAAR (7.41), and

µk+1 =B+
k AkA

+
k uk, (7.48)

xk+1 =A+
k+1uk+1 (7.49)

in the case of Gaussian-DRS (7.26).

Algorithm 1 One-loop method.

1: Input: initial mask guess ν1 using MPC and random object guess x1.
2: Update the object estimate: xk+1 is given by (7.45) with (7.46) for

RAAR or with (7.49) for Gaussian/Poisson-DRS.
3: Update the mask estimate: µk+1 is given by (7.47) for RAAR or (7.48)

for Gaussian/Poisson-DRS.
4: Terminate if ‖|Bk+1µk+1|−b‖ stagnates or is less than tolerance; other-

wise, go back to step 2 with k→ k+1.

In a sense, eGaussian-DRS/eRAAR is the one-step version of one-loop
Gaussian-DRS/RAAR.
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208 A. Fannjiang and T. Strohmer

7.2.2. Two-loop version
Two-loop methods have two inner loops: the first is the object loop (7.45)–
(7.46) and the second is the mask loop defined as follows. The two-loop
version is an example of alternating minimization (AM). See Algorithm 2.

Let Qk =BkB
+
k and let Sk be the associated RAAR map

Sk(v) := βv+(1−2β)PY v+βQkRY v

or the associated Gaussian-DRS map

Sk(v) =
v

ρ+1
+
ρ−1

ρ+1
Q+
k v+

1

ρ+1
PY (2Q

+
k v−v).

Starting with the initial guess v1, let

vk+1 = Sℓk(vk) for sufficiently large ℓ (7.50)

for k ≥ 1.
Let

µk+1 =B+
k RY vk (7.51)

in the case of RAAR in analogy to (7.46), and

µk+1 =B+
k+1vk+1 (7.52)

in the case of Gaussian-DRS in analogy to (7.49).

Algorithm 2 Two-loop method.

1: Input: initial mask guess ν1 using MPC and random object guess x1.
2: Update the object estimate: xk+1 is given by (7.45) with (7.46) for

RAAR or with (7.49) for Gaussian/Poisson-DRS.
3: Update the mask estimate: µk+1 is given by (7.50) with (7.51) for RAAR

or with (7.52) for Gaussian/Poisson-DRS.
4: Terminate if ‖|Bk+1µk+1|−b‖ stagnates or is less than tolerance; other-

wise, go back to step 2 with k→ k+1.

7.2.3. Two-loop experiments
Following Fannjiang and Zhang (2020), we refer to the two-loop version
with Gaussian-DRS or Poisson-DRS as DRSAM, which is tested next. We
demonstrate that even with the parameter ρ= 1 far from the optimal value
(near 0.3), DRSAM converges geometrically under the minimum conditions
required by uniqueness, i.e. with overlap ratio slightly above 50% and initial
mask phase uncertainty δ = 1/2. We let δ1k and δ2l in the rank-one scheme
(7.13) and δ1kl and δ

2
kl in the full-rank scheme (7.12) be i.i.d. uniform random

variables over J−4,4K.
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(a) RE versus epoch (b) RE versus NSR

Figure 7.7. (a) Geometric convergence to CiB in the noiseless case at various
rates for four combinations of loss functions and scanning schemes with i.i.d.
mask (rank-one Poisson, rate = 0.8236; rank-one Gaussian, rate = 0.8258; full-rank
Poisson, rate = 0.7205; full-rank Gaussian, rate = 0.7373). (b) RE versus NSR for
reconstruction of CiB with Poisson noise.

The inner loops of Gaussian-DRSAM become

ul+1
k =

1

2
ulk+

1

2
b⊙ sgn(Rku

l
k),

vl+1
k =

1

2
vlk+

1

2
b⊙ sgn(Skv

l
k),

and the inner loops of Poisson-DRSAM become

ul+1
k =

1

2
ulk−

1

3
Rku

l
k+

1

6
sgn(Rku

l
k)⊙

√
|Rkulk|2+24b2,

vl+1
k =

1

2
vlk−

1

3
Skv

l
k+

1

6
sgn(Skv

l
k)⊙

√
|Skvlk|2+24b2.

Here Rk = 2Pk − I is the reflector corresponding to the projector Pk :=
AkA

+
k and Sk is the reflector corresponding to the projector Qk := BkB

+
k .

We set u1k = u∞k−1, where u
∞
k−1 is the terminal value at epoch k− 1, and

v1k = v∞k−1, where v
∞
k−1 is the terminal value at epoch k−1.

Figure 7.7(a) compares the performance of four combinations of loss func-
tions (Poisson or Gaussian) and scanning schemes (rank-one or full-rank)
with a 60× 60 random mask for the test object CiB in the noiseless case.
Full-rank perturbation (7.12) results in a faster convergence rate than the
rank-one scheme (7.13). The convergence rate of Poisson-DRSAM is slightly
better than Gaussian-DRSAM with noiseless data.

With data corrupted by Poisson noise, Figure 7.7(b) shows RE versus
NSR (5.11) for CiB by Poisson-DRS and Gaussian-DRS with i.i.d. mask and
the full-rank scheme. The maximum number of epochs in DRSAM is limited
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to 100. The RR stabilizes usually after 30 epochs. The (blue) reference
straight line has slope = 1. We see that Gaussian-DRS outperforms Poisson-
DRS, especially when the Poisson RE becomes unstable for NSR ≥ 35%.
As noted by Maiden et al. (2017), Zuo, Sun and Chen (2016) and Chen
et al. (2018), fast convergence (with the Poisson log-likelihood function)
may introduce noisy artifacts and reduce reconstruction quality.

8. Holographic coherent diffraction imaging

Holography is a lensless imaging technique that enables complex-valued im-
age reconstruction by virtue of placing a coherent point source at an appro-
priate distance from the object and having the object field interfere with the
reference wave produced by this point source at the (far-field) detector plane
(Goodman 2005). For example, adding a pinhole (corresponding to adding
a delta distribution in the mathematical model) at an appropriate posi-
tion to the sample creates an additional wave in the far field, with a tilted
phase, caused by the displacement between the pinhole and the sample. The
far-field detector now records the intensity of the Fourier transform of the
sample and the reference signal (e.g. the pinhole).

The invention of holography goes back to Dennis Gabor,6 who in 1947
was working on improving the resolution of the recently invented electron
microscope (Gabor 1947, Gabor 1948, Gabor et al. 1965). In 1971 he was
awarded the Nobel Prize in Physics for his invention. In the original scheme
proposed by Gabor, called in-line holography, the reference and object waves
are parallel to one another. In off-axis holography, the two waves are sep-
arated by a non-zero angle. In classical holography, a photographic plate is
used to record the spatial intensity distribution. In state-of-the-art digital
holography systems a digital acquisition device captures the spatial intensity
distribution (Seelamantula, Pavillon, Depeursinge and Unser 2011).

We recommend Latychevskaia (2019) for a recent survey of iterative al-
gorithms in holography. While holography leads to relatively simple al-
gorithms for solving the phase retrieval problems, it does pose numerous
challenges in the experimental practice. For a detailed discussion of various
practical issues with holography, such as resolution limitations, see Duadi
et al. (2011), Latychevskaia and Fink (2015), Shechtman et al. (2015), Saliba
et al. (2016) and Latychevskaia (2019).

A compelling direction in holographic phase retrieval is to combine holo-
graphy with CDI (Latychevskaia et al. 2012, Saliba, Latychevskaia, Long-

6 Gabor devoted a lot of his time and energy to overcoming the initial scepticism of the
community to the concept of holography, and proudly noted in a letter to Bragg: ‘I have
also perfected the experimental arrangement considerably, and now I can produce really
pretty reproductions of the original from apparently hopelessly muddled diffraction
diagrams’ (see Johnston 2005, p. 32).
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Figure 8.1. Holographic CDI set-up. Image courtesy of Saliba et al. (2012).

champ and Fink 2012, Raz et al. 2014); see Figure 8.1 for a set-up depict-
ing holographic CDI. This hybrid technique ‘inherits the benefits of both
techniques, namely the straightforward unambiguous recovery of the phase
distribution and the visualization of a non-crystalline object at the highest
possible resolution’ (Latychevskaia et al. 2012). Recently, researchers have
successfully used holographic CDI to image proteins at the single molecule
level (Longchamp et al. 2017).

While holographic techniques have been around for a long time, these
investigations have been mainly empirical. A notable exception is the re-
cent work of Barmherzig et al. (2019a, 2019b), which contains a rigorous
mathematical treatment of holographic CDI that sheds light on the refer-
ence design from an optimization viewpoint and provides a detailed error
analysis. We will discuss some aspects of this work below.

From a mathematical viewpoint, the key point of holographic CDI is that
the introduction of a reference signal simplifies the phase retrieval prob-
lem considerably, since the computational problem of recovering the desired
signal can now be expressed as a linear deconvolution problem (Kikuta,
Aoki, Kosaki and Kohra 1972, Guizar-Sicairos and Fienup 2007, Barmherzig
et al. 2019b). We discuss this insight below.

Here, we assume that our function of interest x∗ is an n×n image. We
denote the convolution of two functions x,z by x∗z and define the involution
(also known as the twin image) x̌ of x as x̌(t1,t2) = x(−t1,− t2). The cross-
correlation C[x,z] between the two functions x,z is given by

C[x,z] := x∗ ž, (8.1)

where we use Neumann boundary conditions, i.e. zero-padding, outside
the valid index range. We have already encountered the special case x = z
(although without stipulating specific boundary conditions), in the form of
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the autocorrelation

Ax = x∗ x̌, (8.2)

which is at the core of the phase retrieval problem via the relation7

F (x∗ x̌) = |F (x)|2.
While extracting a function from its autocorrelation is a difficult quad-

ratic problem (as exemplified by the phase retrieval problem), extracting a
function from a cross-correlation is a linear problem if the other function is
known, and is thus much easier. This observation is the key point of holo-
graphic CDI. We will take full advantage of this fact by adding a reference
area (in digital form represented by the signal r) to the specimen x∗. For
concreteness, we assume that the reference r is placed on the right side of
x∗, and subject the so-enlarged signal [x∗,r] to the measurement process,
as illustrated in Figure 8.1.

For (s1,s2) ∈ {−(n−1), . . . ,0}×{−(n−1), . . . ,0}, we have

C[x∗,r](s1,s2) = (x∗ ∗ ř)(s1,s2)
= ([x∗,r]∗ [x∗,r]

∧

)(s1,n−s2)
= A[x,r](s1,−n+s2). (8.3)

Equation (8.3) allows us to establish a linear relationship between C[x∗,r]

and the measurements given by the squared entries of F (A[x∗,r]). Most
approaches in holography are based on utilizing this relationship in some
way; see e.g. Seelamantula et al. (2011).

Here, we take a signal processing approach and recall that the convolution
of two two-dimensional signals with Neumann boundary conditions can be
described as matrix–vector multiplication, where the matrix is given by a
lower-triangular block Toeplitz matrix with lower-triangular Toeplitz blocks
(Gray 2006). The lower-triangular property stems from the fact that the
zero-padding combined with the particular index range we are considering
is equivalent to applying a two-dimensional causal filter (Gray 2006).

Let r(k) be the kth column of the reference r and let the lower-triangular
block-Toeplitz–Toeplitz block matrix T (r) be given by

T (r) =




T0 0 . . . 0

T1 T1 0
...

...
. . .

Tn−1 . . . T1


,

7 Arthur Lindo Patterson once asked Norbert Wiener: ‘What do you know about a
function, when you know only the amplitudes of its Fourier coefficients?’ Wiener
responded: ‘You know the Faltung [convolution]’ (Glusker 1984).
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where the first column of the lower-triangular Toeplitz matrix Tk is given
by ř(n−k−1) for k = 0, . . . ,n− 1. We also define y := F−1(|F ([x∗,r])|2) and
note that

y = F−1(|F ([x∗,r])|2) = F−1(F (A[x∗,r])) = A[x∗,r].

Hence, with a slight abuse of notation (by considering x∗ also as column
vector of length n2 by stacking its columns) we arrive at the following linear
system of equations:

T (r)x∗ = y. (8.4)

The n2×n2 matrix T (r) is invertible if and only if its diagonal entries are
non-zero, that is, if and only if rn−1,n−1 6= 0. As noted by Barmherzig et al.
(2019b), this condition is equivalent to the well-known holographic separa-
tion condition (Guizar-Sicairos and Fienup 2007), which dictates when an
image is recoverable by using the reference r. In signal processing jargon,
this separation condition prevents the occurrence of aliasing.

Let us consider the very special case of the pinhole reference. In this case
r ∈ C

n×n is given by

rk,l =

{
1 if k = l = n−1,

0 else.

Thus r acts as a delta distribution with respect to the given digital resolution
(which may be very difficult to realize in practice, and thus this is still one
limiting factor in the achievable image resolution). In this particular case
its diagonal entries are [T (r)]k,k = rn−1,n−1 = 1 for all k = 0, . . . ,n2 − 1,
and all off-diagonal entries of T (r) are zero; thus T (r) is simply the n2×n2
identity matrix.

Other popular choices are the block reference defined by rk,l = 1 for all
k,l = 0, . . . ,n−1, and the slit reference defined by

rk,l =

{
1 if l = n−1,

0 else.

In both cases the resulting matrix T (r) as well as its inverse [T (r)]−1 take
a very simple form, as the interested reader may easily convince herself.

In the noiseless case, the only difference between these references from a
theoretical viewpoint is the computational complexity in solving the system
(8.4), which is obviously minimal for the pinhole reference. However, in the
presence of noise, different references have different advantages and draw-
backs. We refer to Barmherzig et al. (2019b) for a thorough error analysis
when the measurements are corrupted by Poisson shot noise.

We describe some numerical experiments illustrating the effectiveness of
the referenced deconvolution algorithm. The description of these simula-
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tions and associated images are courtesy of Barmherzig et al. (2019b), who
also provide a number of other simulations.

In this experiment, the specimen x∗ is the mimivirus image (Ghigo
et al. 2008), and its spectrum mostly concentrates on very low frequencies,
as shown in Figure 8.2(b). The image size is 64× 64, and the pixel values
are normalized to [0,1]. For the referenced set-up, a reference r of size
64× 64 is placed next to x∗, forming a composite specimen [x∗,r] of size
64× 128. Three references are considered, i.e. the pinhole, slit and block
references. Note that the zero-padding introduced as the boundary condi-
tion in the cross-correlation function (8.1) and the autocorrelation function
(8.2) corresponds to an oversampling of the associated Fourier transform.
In this experiment, the oversampled Fourier transform is taken to be of size
1024×1024, and the collected noisy data are subject to Poisson shot noise.
We note that since the oversampling condition in the detector plane corres-
ponds to zero-padding in the object plane, this requires the specimen to be
surrounded by a support with known transmission properties. For instance,
when imaging a biological molecule, it must ideally be either levitating or
resting on a homogeneous transparent film such as graphene (Latychevskaia
et al. 2012). Thus, that which is trivial from a mathematical viewpoint may
be rather challenging to realize in practice.

We run the referenced deconvolution algorithm and compare it to the
HIO algorithm, the latter with and without enforcing the known reference
for comparison. The results are presented in Figure 8.2. It is evident that
referenced deconvolution clearly outperforms HIO. An inspection of the er-
rors stated in the corresponding figure captions shows that for the referenced
deconvolution schemes, the expected and empirical relative recovery errors
are close for each reference, as predicted by the error analysis of Barmherzig
et al. (2019b).

In the example depicted in Figure 8.2, the block reference gives the smal-
lest recovery error among the tested reference schemes. However, this is not
the case in general. As illustrated in Barmherzig et al. (2019b), depending
on the spectral decay behaviour of the image under consideration, differ-
ent reference schemes have different limitations. To overcome the specific
limitations of each reference, a dual-reference approach has been proposed
in Barmherzig et al. (2019a), in which the reference consists of two refer-
ence portions: a pinhole portion rp and a block portion rb. In this case the
illuminated image takes the form

[
x∗ rp
rb 0

]
.

The theoretical and empirical error analysis in Barmherzig et al. (2019a)
show that this dual-reference scheme achieves a smaller recovery error than
the leading single-reference schemes.
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(a) ground truth image (b) Fourier magnitude of
the ground truth

(c) HIO (no ref.) ε = 93.794,
E(ε) NA

(d) HIO with block ref.
ε = 42.813, E(ε) NA

(e) HIO with slit ref.
ε = 102.28, E(ε) NA

(f) HIO with pinhole ref.
ε = 168.18, E(ε) NA

(g) RD with block ref.
ε = 3.703, E(ε) = 3.795

(h) RD with slit ref.
ε = 5.720, E(ε) = 5.147

(i) RD with pinhole ref.
ε = 46.97, E(ε) = 63.84

Figure 8.2. Recovery result of the mimivirus image using various recovery schemes,
and the corresponding relative recovery errors (all errors should be rescaled by
10−4). Referenced deconvolution (RD) clearly outperforms HIO, both with and
without the reference information enforced. Experimental and theoretical relative
errors for referenced deconvolution match closely, as predicted by the theory derived
by Barmherzig et al. (2019b).
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9. Conclusion and outlook

In this survey we have tried to capture the state of the art of the clas-
sical but rapidly evolving field of numerical algorithms for phase retrieval.
The past decade has witnessed extensive activity in the systematic study of
numerical algorithms for phase retrieval. Advances in convex and non-
convex optimization have led to a better understanding of the benefits and
limitations of various phase retrieval algorithms. The insights gained in the
study of these algorithms has in turn advanced new measurement protocols,
such as random illuminations.

Some of the most challenging problems related to phase retrieval arise in
blind ptychography, in imaging proteins at the single molecule level (Long-
champ et al. 2017), and in non-crystallographic ‘single-shot’ X-ray imaging
(Chapman et al. 2007, Loh et al. 2010). In the latter problem, in addi-
tion to the phase retrieval problem, we face the major task of tomographic
three-dimensional reconstruction of the object from diffraction images with
unknown rotation angles – a challenge that we also encounter in cryo-EM
(Singer 2019). The review article by Shechtman et al. (2015) contains a de-
tailed discussion of current bottlenecks and future challenges, such as taking
the CDI techniques to the regime of attosecond science. This topic remains
one of the current challenges in phase retrieval.

Mathematicians sometimes develop theoretical and algorithmic frame-
works under assumptions that do not conform to current practice. It is then
important to find out if these assumptions are fundamentally unrealistic,
or if they actually point to new ideas that are (perhaps with considerable
effort) implementable in practice and advance the field.

It is clear that much more work needs to be done, and a closer dialogue
between practitioners and theorists is highly desirable to create the kind
of feedback loop where theory and practice drive each other forward with
little temporal delay. Careful systematic numerical analysis is an essential
ingredient in strengthening the bond between theory and practice.
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K. Gröchenig (2001), Foundations of Time-Frequency Analysis, Birkhäuser.
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S. Kaczmarz (1937), ‘Angenäherte Auflösung von Systemen linearer Gleichungen’,
Bull. Internat. Acad. Pol. Sci. Lett. Ser. A 35, 355–357.

S. Kikuta, S. Aoki, S. Kosaki and K. Kohra (1972), ‘X-ray holography of lensless
Fourier-transform type’, Optics Commun. 5, 86–89.

K.-S. Kim and S.-Y. Chung (2019), ‘Fourier phase retrieval with extended support
estimation via deep neural network’, IEEE Signal Process. Lett. 26, 1506–
1510.

M. Klibanov, P. Sacks and A. Tikhonravov (1995), ‘The phase retrieval problem’,
Inverse Problems 11, 1–28.

A. Konijnenberg, W. Coene and H. Urbach (2018), ‘Model-independent noise-
robust extension of ptychography’, Optics Express 26, 5857–5874.
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H. Rauhut, R. Schneider and Ž. Stojanac (2017), ‘Low rank tensor recovery via
iterative hard thresholding’, Linear Algebra Appl. 523, 220–262.

O. Raz, B. Leshem, J. Miao, B. Nadler, D. Oron and N. Dudovich (2014), ‘Direct
phase retrieval in double blind Fourier holography’,Optics Express 22, 24935–
24950.

B. Recht, M. Fazel and P. A. Parrilo (2010), ‘Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization’, SIAM Rev. 52,
471–501.

H. Reichenbach (1944), Philosophic Foundations of Quantum Mechanics, Univer-
sity of California Press.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492920000069
Downloaded from https://www.cambridge.org/core. UC Davis, on 01 Dec 2020 at 19:44:38, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492920000069
https://www.cambridge.org/core


226 A. Fannjiang and T. Strohmer

Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng and A. Ozcan (2018), ‘Phase re-
covery and holographic image reconstruction using deep learning in neural
networks’, Light Sci. Appl. 7, 17141–17141.

J. M. Rodenburg (2008), ‘Ptychography and related diffractive imaging methods’,
Adv. Imaging Electron Phys. 150, 87–184.

J. M. Rodenburg and H. M. Faulkner (2004), ‘A phase retrieval algorithm for
shifting illumination’, Appl. Phys. Lett. 85, 4795–4797.

M. Saliba, J. Bosgra, A. Parsons, U. Wagner, C. Rau and P. Thibault (2016), ‘Novel
methods for hard X-ray holographic lensless imaging’, Microsc. Microanal.
22, 110–111.

M. Saliba, T. Latychevskaia, J. Longchamp and H. Fink (2012), ‘Fourier trans-
form holography: A lensless non-destructive imaging technique’, Microsc. Mi-
croanal. 18, 564–565.

J. Sanz (1985), ‘Mathematical considerations for the problem of Fourier transform
phase retrieval from magnitude’, SIAM J. Appl. Math. 45, 651–664.

G. Scapin (2006), ‘Structural biology and drug discovery’, Current Pharmaceut.
Design 12, 2087–2097.

P. Schniter and S. Rangan (2014), ‘Compressive phase retrieval via generalized
approximate message passing’, IEEE Trans. Signal Process. 63, 1043–1055.

P. Schniter and S. Rangan (2015), A message-passing approach to phase retrieval
of sparse signals. In Excursions in Harmonic Analysis 4 (R. Balan et al., eds),
Applied and Numerical Harmonic Analysis, Springer, pp. 177–204.
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