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Abstract
Uniqueness of solution is proved for any ptychographic scheme with a random 
mask under a minimum overlap condition and local geometric convergence 
analysis is given for the alternating projection (AP) and Douglas–Rachford 
(DR) algorithms. DR is shown to possess a unique fixed point in the object 
domain and for AP a simple criterion for distinguishing the true solution 
among possibly many fixed points is given.

A minimalist scheme, where the adjacent masks overlap 50% of the area 
and each pixel of the object is illuminated by exactly four illuminations, is 
conveniently parametrized by the number q of shifted masks in each direction. 
The lower bound 1  −  C/q2 is proved for the geometric convergence rate of 
the minimalist scheme, predicting a poor performance with large q which is 
confirmed by numerical experiments. The twin-image ambiguity is shown to 
arise for certain Fresnel masks and degrade the performance of reconstruction.

Extensive numerical experiments are performed to explore the general 
features of a well-performing mask, the optimal value of q and the robustness 
with respect to measurement noise.
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1. Introduction

Optical or x-ray ptychography is a coherent diffractive imaging method that uses multiple 
micro-diffraction patterns obtained through the scan of a localized illumination on the speci-
men. As such ptychography is a synthetic aperture technique and, along with advances in 
detection and computation techniques, has enabled microscopies with enhanced resolution 
and robustness without the need for lenses [3, 6, 20, 27, 28].

Ptychography was initially proposed by Hoppe for transmission electron diffraction 
microscopy [15]. In his pioneering work Hoppe showed that recording diffraction patterns 
at two positions removes the remaining ambiguity between the correct solution and its com-
plex conjugate. Hoppe [16] has considered the extension to non-periodic objects with phase-
shifting plates as well.

However, only after Faulkner and Rodenburg proposed the so called ptychographical 
iterative engine (PIE) [10, 11, 25], the redundant information collected via overlapping illu-
minations was effectively harnessed (see also [12, 21, 23, 28, 29]). A key to success of ptych-
ographic reconstruction is that the adjacent illuminated areas overlap substantially, around 
60–70% in each direction [2, 23].

The first question for any inverse problems, including ptychography, is uniqueness of solu-
tion. This has been resolved in [18] for the ptychographic scheme where all possible shifts of 
a damped and windowed Fourier transform are used, i.e. with the maximum overlap between 
adjacent illuminated areas (see more discussion in section 1.3). However, maximum overlap 
requires overly redundant measurements and hence the uniqueness question remains open for 
practical ptychographic schemes with a significantly less overlap.

To demonstrate that the uniqueness issue is relevant in practice and nontrivial in theory, 
we show that the twin-image ambiguity can be present in a realistic ptychographic setting 
(appendix), resulting in poor numerical performance (figure 2(a)).

Another mathematical question surrounding ptychography is convergence analysis of 
reconstruction algorithms. Few results in the literature offer concrete conditions for verify-
ing convergence to the true solution and give an explicit estimate for the convergence rate  
[14, 18, 30]. In particular, (global or local) geometric convergence to the true ptychographic 
solution has not been established for any ptychographic reconstruction that assumes less than 
the maximum overlap between adjacent illuminated areas.

On the other hand, the dynamic range of x-ray detectors is a key factor limiting both the 
spatial resolution and sensitivity of x-ray ptychography with a zero-order component several 
orders of magnitude more intense than the scattered field. To this end, a beam-stop may be 
introduced to block the zero-order component. Alternatively, a randomly phased mask (a dif-
fuser) can be deployed to reduce the dynamic range of the recorded diffraction patterns by 
more than one order of magnitude [8, 22, 24, 27].

With these motivations, a main purpose of the present work is to establish the uniqueness 
theorem for ptychography with a random mask under a minimum overlap condition and to prove 
local geometric convergence to the true solution for the widely used alternating projections (AP) 
and Douglas–Rachford (DR) algorithms. Moreover, we give an explicit bound for the rate of 
convergence for both algorithms with the minimalist ptychographic scheme introduced below.

First we describe how each constituent diffraction pattern is measured in our ptychographic 
scheme.

1.1. Oversampled diffraction pattern

Let f  0 be a part of the unknown object f restricted to the initial subdomain
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M0 = {n = (n1, n2) ∈ Z2 : 0 � n1, n2 � m}.

Let the Fourier transform of f be written as

F0(w) =
∑

m∈M0

e−i2πm·wf 0(m), w = (w1, w2).

Under the Fraunhofer approximation, the diffraction pattern is proportional to 
∣∣F0 (w)

∣∣2 which 

can be written as

I0(w) =

(m,m)∑
n=−(m,m)

{ ∑
m∈M0

f 0(m + n)f 0(m)

}
e−i2πn·w, w ∈ [0, 1]2. (1)

Here and below the over-line notation means complex conjugacy.
The expression in the parentheses in (1) is the autocorrelation function of f  0 and the  

summation over n takes the form of Fourier transform on the enlarged grid

M̃0 = {(m1, m2) ∈ Z2 : −m � m1 � m,−m � m2 � m}

which suggests sampling I0(w) on the grid

L =
{
(w1, w2) | wj = 0,

1
2m + 1

,
2

2m + 1
, · · · ,

2m
2m + 1

}
. (2)

Let Φ0 : C|M0| → C|M̃0| be the L-sampled discrete Fourier transform (ODFT) defined on 
M0. We can write I0(w) = |Φ0f 0(w)|2 for all w ∈ L.

A randomly coded diffraction pattern measured with a mask is the diffraction pattern for 
the masked object g0(n) = f 0(n)µ0(n) where the mask function µ0 is a finite array of random 
variables. With µ0(n) = |µ0(n)|eiφ(n) we will focus on the effect of random phase φ. For the 
uniqueness theorem we will assume φ(n) to be independent, continuous real-valued random 
variables. In other words, each φ(n) is independently distributed with a probability density 
function on [0, 2π] that may depend on n.

The continuity assumption on φ is a technical one for proving almost sure uniqueness. If 
φ are discrete random variables, then we would have to settle for uniqueness with high prob-
ability. Continuous phase modulation can be experimentally realized with various techniques 
depending on the wavelength. See [17, 19, 22, 30, 33] for recent innovation and development 
of random phase modulation techniques.

We also assume that |µ0(n)| �= 0, ∀n ∈ M (i.e. the mask is transparent). This is necessary 
for unique reconstruction of the object as any opaque pixel of the mask where µ0(n) = 0 
would block the transmission of the information f 0(n). By absorbing |µ0(n)| into the object 
function we can assume, without loss of generality, that |µ0(n)| = 1, ∀n ∈ M0, i.e. µ0 repre-
sents a phase mask.

Now consider the simplest, 2-part ptychographic set-up: the object domain is the union of 
two overlapping square grids, one of which is the translate of the other square grid. Denote 
the two square grids by M0 and Mt which is the shift of M0 by the displacement vector 
t = (t1, t2) ∈ Z2. We shall make the overlap assumption

∣∣M0 ∩Mt ∩ supp( f )
∣∣ � 2, (3)

where |·| denotes the cardinality of a set, i.e. the intersection of the two grids contains at least 
two points from the support of the object.

Let f t be the unknown object restricted to Mt and Φt the ODFT on Mt. We write the 
object function as f = f 0 ∪ f t where f 0(m) = f t(m) for all m ∈ M0 ∩Mt. Let f  0 and f t be 
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respectively illuminated with the mask µ0 and the mask µt on where µt(n) = µ0(n − t), for 
all n ∈ Mt .

For multi-part ptychography, let the object domain be contained in the union of the shifted 
square grids:

supp( f ) ⊆
⋃
t∈T

Mt
 (4)

where T  is a set of shifts. Under (4) we can write

f =
⋃
t∈T

f t. (5)

Analogous to (3) we assume that for every Mt1 ∩ supp( f ) �= ∅, t1 ∈ T , there is another 
Mt2 , t2 ∈ T , t2 �= t1 such that

∣∣Mt1 ∩Mt2 ∩ supp( f )
∣∣ � 2. (6)

In other words, every connected component of the object is contained in the union of at least 
two distinct masks (i.e. ptychographically measured) whose intersection contains at least two 
points of the object support. Since the support of the object is often not known precisely, some 
illuminations may totally miss the object and produce no useful information. These illumina-
tions and the resulting diffraction data are easily recognized and should be discarded.

1.2. A minimalist ptychographic scheme

Although our uniqueness theorem and local convergence analysis are for general ptycho-
graphic measurement schemes satisfying (6), we will consider the following lattice scheme 
for numerical experiments and explicit estimation of convergence rate. We call this lattice 
scheme the minimalist scheme because each object pixel participates exactly in four diffrac-
tion patterns (two in each direction) with 50% overlap between two adjacent mask domains. 
Any less overlap would result in non-uniform coverage of the object.

Suppose the initial mask domain M0 is m × m (m is an even integer) and an adjacent domain 
is obtained by shifting m/2 in either direction. To cover each object pixel exactly four times (two 
in each direction) we assume m  =  2n/q with an integer q. This amounts to q2 diffraction pat-
terns. In other words, we consider the shift Tkl corresponding to the displacement tkl =

m
2 (k, l), 

with k ∈ {0, 1, · · · , q − 1}, l ∈ {0, 1, · · · , q − 1}. When k  =  q  −  1 or l  =  q  −  1 we assume for 
simplicity that the shifted mask is wrapped around into the other end of the object domain (i.e. 
the periodic boundary condition). Four times coverage and four times oversampling in each dif-
fraction pattern together produce the total number q2(2m − 1)2 ≈ 16n2 of data.

We emphasize two features of the minimalist scheme: (i) It has a fixed total oversampling 
ratio (≈16) independent of the total number of shifted masks, q2; (ii) It has the minimum 
(50%) overlap between two adjacent masks while maintaining the same number of coverage 
(i.e. 4) for every pixel of the object. Note that the 50% overlap is lower than the required over-
lap found empirically (i.e. 60%−70%) from previous studies [2, 23].

With this minimalist ptychographic scheme, we study analytically and numerically how q 
and the structure of the mask affect ptychographic reconstruction.

1.3. Main contributions

The first result of the present work is the almost sure uniqueness of ptychographic solution 
with a random mask under the minimum overlap condition (6) (theorem 2.3 and corollary 2.5).  

P Chen and A Fannjiang Inverse Problems 34 (2018) 025003
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To demonstrate how certain symmetry of a deterministic mask can spoil uniqueness of solu-
tion, we show in appendix that the minimalist scheme with a certain Fresnel mask admits both 
the true image and its twin-like image as solutions, resulting in poor numerical performance 
(figure 2(a)).

In this connection, Iwen et  al [18] proved a uniqueness theorem for the ptychographic 
scheme where all possible shifts of a damped and windowed Fourier transform are used, 
i.e. the overlap percentage between two adjacent mask domains is at the maximum. In our 
notation, this amounts to n2 oversampled diffraction patterns totaling (2m − 1)2n2 number 
of data. Their uniqueness theorem also holds with probability 1 −O(ln−2 n ln−3(ln n)) after 
randomly selecting a subset of O(n2 ln2 n ln3(ln n)) data (assuming m is at least poly-log in n).

In section 3, we establish local, geometric convergence (theorem 3.4) for the AP and the 
DR algorithms under the minimum overlap condition (6). We also prove the uniqueness of 
the DR fixed point in the object domain (proposition 3.1) and give an easily verifiable criterion 
for distinguishing the true solution among many AP fixed points (proposition 3.3).

In comparison, Wen et al [30] proposed alternating direction methods (ADM), including 
DR, for ptychographic reconstruction and demonstrated good numerical performance. Hesse 
et al [14] proved global convergence to a critical point for a proximal-regularized alternating 
minimization formulation of blind ptychography. Many critical points, however, may co-exist 
and there is no easy way of distinguishing the true solution from the rest. Neither of these 
papers establishes uniqueness, convergence to the true solution or the geometric sense of 
convergence.

We also give a bound on the convergence rate of AP and DR for the minimalist scheme 
introduced in section 1.2 (proposition 4.1). The bound shows that the convergence rate can 
deteriorate rapidly as q becomes large, indicating that the best performing q are in the small 
and medium ranges. Our numerical experiments in section 5 bear this prediction out nicely, 
focusing on two kinds of masks: (independent or correlated) random masks and the Fresnel 
mask.

We prove that twin image exists in ptychography with the Fresnel mask at certain values 
of the Fresnel number (propositions A.1 and A.2) and causes the reconstruction error to spike 
(figure 2(a)).

Finally, we perform extensive numerical experiments to explore what the general features 
of a well-performing mask, the optimal value of q and the noise stability of the minimalist 
scheme. We summarize our numerical findings in the Conclusion (section 6).

2. Uniqueness of ptychographic solution

First we recall some basic results from nonptychographic phase retrieval where the mask μ 
and the unknown object f have the same dimension.

The z-transform

F(z) =
∑

n

f(n)z−n

of f is a polynomial in z−1 and can be factorized uniquely into the product of irreducible  
polynomials Fk(z) and a monomial in z−1

F(z) = αz−n0

p∏
k=1

Fk(z), (7)

where n0 is a vector of nonnegative integers and α is a complex coefficient.
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Proposition 2.1. [13] Let the z-transform F(z) of a finite complex-valued array { f (n)} be 
given by

F(z) = αz−m
p∏

k=1

Fk(z), m ∈ Nd,α ∈ C (8)

where Fk,k  =  1,...,p are nontrivial irreducible polynomials. Let G(z) be the z-transform of an-
other finite array g(n). Suppose |F(w)| = |G(w)|, ∀w ∈ [0, 1]d . Then G(z) must have the form

G(z) = |α|eiθz−p

(∏
k∈I

Fk(z)

)(∏
k∈Ic

F∗
k(1/z∗)

)
, p ∈ Nd, θ ∈ R

where I is a subset of {1, 2,...,p}.

2.1. Line object

f is a line object if the convex hull of the object support in Rd is a line segment.

Proposition 2.2. [7] Suppose f is not a line object and let the mask μ’s phase be continu-
ously and independently distributed. Then with probability one the only irreducible factor of 
the z-transform of the masked object f̃ (n) = f (n)µ(n) is a monomial of z−1.

The following uniqueness theorem is our first theoretical result.

Theorem 2.3. Suppose that the assumptions of proposition 2.2 hold and that
∣∣M0 ∩Mt ∩ supp( f )

∣∣ � 2.

Then with probability one f is uniquely determined, up to a global phase factor, by the ptycho-
graphic data b = |A∗f |.

Remark 2.4. The assumption of a random mask is probably unnecessary for uniqueness of 
solution. But the counterexample presented in appendix shows that the twin-image ambiguity 
can arise for certain deterministic, Fresnel masks.

Proof. Let g(n) be another array that vanishes outside M0 ∪Mt and produces the same 
masked Fourier magnitude data. By propositions 2.1 and 2.2, g has the following possibilities: 
In M0, g has two alternatives

g(n) =
{

eiθ1 f 0(n + m1)µ
0(n + m1)/µ

0(n)
eiθ1 f̄ 0(N − n + m1)µ̄

0(N − n + m1)/µ
0(n),

∀n ∈ M0

 

(9)

and

g(n) =
{

eiθ2 f t(n + m2)µ
t(n + m2)/µ

t(n)
eiθ2 f̄ t(N − n + m2)µ̄

t(N − n + m2)/µ
t(n),

∀n ∈ Mt

 

(10)

for some m1, m2 ∈ Zd, θ1, θ2 ∈ R.

We now focus on the intersection M0 ∩Mt where (9) and (10) are both defined. We have 
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then four scenarios from the crossover of the alternatives in (9) and (10).
First of all, if, for all n ∈ M0 ∩Mt ,

g(n) = eiθ1 f 0(n + m1)µ
0(n + m1)/µ

0(n)

= eiθ2 f t(n + m2)µ
t(n + m2)/µ

t(n)
 (11)

then

eiθ1 f 0(n + m1)µ
0(n + m1)/µ

0(n) = eiθ2 f t(n + m2)µ
0(n − t + m2)/µ

0(n − t).
 

(12)
Clearly, f (n + m1) and f t(n + m2) must simultaneously be zero or nonzero. When they are 
nonzero, we obtain by taking logarithm on both sides

iθ1 + ln f 0(n + m1) + lnµ0(n + m1) + lnµ0(n − t)

= iθ2 + ln f t(n + m2) + lnµ0(n − t + m2) + lnµ0(n)
 

(13)

which holds up to a multiple of 2π. The four random variables

lnµ0(n + m1), lnµ0(n − t), lnµ0(n − t + m2), lnµ0(n)

can not cancel one another unless either m1 = m2 = 0 or (t = 0 & m1 = m2). When the con-
tinuous random variables do not cancel one another, (13) fails to hold true almost surely.

On the other hand, for m1 = m2 = 0 (since t �= 0), it follows from (11) that

g(n) = eiθ1 f 0(n) = eiθ2 f t(n), n ∈ M0 ∩Mt.

Since f 0(n) = f t(n), we have θ1 = θ2. It follows then from (9)–(10) that g = eiθ1( f 0 ∪ f t).
The other three scenarios can be similarly dealt with. Consider the next scenario where for 

n ∈ M0 ∩Mt

g(n) = eiθ1 f 0(n + m1)µ
0(n + m1)/µ

0(n)

= eiθ2 f̄ t(N − n + m2)µ̄
t(N − n + m2)/µ

t(n).

Taking logarithm and rearranging terms we have

iθ1 + ln f 0(n + m1) + lnµ0(n + m1) + lnµ0(n − t) + lnµ0(N − n − t + m2)

= iθ2 + ln f̄ t(N − n + m2) + lnµ0(n)
 

(14)

The four random variables

lnµ0(n + m1), lnµ0(n − t), lnµ0(N − n − t + m2), lnµ0(n)

can not cancel one another since t �= 0. As a result, (14) holds true with probability zero.
The argument for ruling out the third scenario

g(n) = eiθ1 f̄ 0(N − n + m1)µ̄
0(N − n + m1)/µ

0(n)

= eiθ2 f t(n + m2)µ
t(n + m2)/µ

t(n)

P Chen and A Fannjiang Inverse Problems 34 (2018) 025003
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is the same as for the second scenario.
Now consider the fourth scenario

g(n) = eiθ1 f̄ 0(N − n + m1)µ̄
0(N − n + m1)/µ

0(n)

= eiθ2 f̄ t(N − n + m2)µ̄
t(N − n + m2)/µ

t(n)

which after taking logarithm and rearranging terms becomes

iθ1 + ln f̄ 0(N − n + m1) + lnµ0(N − n − t + m2) + lnµ0(n − t)

= iθ2 + ln f̄ t(N − n + m2) + lnµ0(N − n + m1) + lnµ0(n).
 

(15)

Since t �= 0, the four random variables

lnµ0(N − n − t + m2), lnµ0(n − t), lnµ0(N − n + m1), lnµ0(n)

cancel one another only when

N − n − t + m2 = n
n − t = N − n + m1

or equivalently

m2 = 2n − N + t
m1 = 2n − N − t

which can not hold true simultaneously for more than one n for any given m1, m2. This is 
ruled out by the assumption that M0 ∩Mt ∩ supp( f ) contains at least two points.

In summary, the only possibility is that

g = eiθ( f 0 ∪ f t) = eiθf

for some θ ∈ R, which is what we set out to prove. □ 

The divide-overlap-and-conquer strategy is readily extendable to the multi-part setting.

Corollary 2.5. Consider the multi-part ptychography (4) and (5). Suppose that the assump-
tions of proposition 2.2 hold and that for every Mt1 ∩ supp( f ) �= ∅, t1 ∈ T  there is another 
t2 ∈ T , t2 �= t1, such that

∣∣Mt1 ∩Mt2 ∩ supp( f )
∣∣ � 2. (16)

Then with probability one f is determined uniquely, up to a constant phase factor for each con-
nected component of f, by the ptychographic data

{∣∣Φt(µt � f t)
∣∣ : t ∈ T

}
. (17)

The constant phase factors of individual connected components becomes the same for the 
whole object, if

⋃{
Mt : Mt ∩ f �= ∅, t ∈ T

}
is a connected set. (18)

P Chen and A Fannjiang Inverse Problems 34 (2018) 025003
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Remark 2.6. Clearly the result still holds when some of the shifted masks do not intersect 
with the object. This has a practical relevance as the support of the object is often not precisely 
known and some illuminations can totally miss the object. Of course, these illuminations pro-
duce no useful information and should be discarded.

When the condition (18) fails, the whole ptychographic problem breaks up into a set of 
separate independent subproblems, each with its ptychographic data corresponding to a con-
nected component of 

⋃{
Mt : Mt ∩ f �= ∅, t ∈ T

}
.

Proof. Let t1, t2 ∈ T  be any pair of shifts satisfying the overlapping property (16). Then by 
theorem 2.3, f t1 ∪ f t2  is uniquely determined, up to a constant phase factor, by the data

{∣∣Φtj(µtj � f tj)
∣∣ : j = 1, 2

}

with probability one where � denotes the Hadamard (i.e. componentwise) product. Since f is 
the union of all such pairs f t1 ∪ f t2 , f is uniquely determined, up to a constant phase factor for 
each connected component of f, by the data (17), with probability one.

The constant phase factor for individual connected components may be different since 
some masks may have no intersection with the object. Under (18), however, this ambiguity 
can not take place. □ 

3. Fixed point algorithms

To describe the reconstruction algorithms, it is most convenient to resort to the vector-matrix 
notation where we use CN  (N  =  the total number of pixels in the object  =  n2) as the object 
space and CM  (M  =  the total number of measurement data  =m2) as the the data space before 
taking the modulus of the diffracted field. We use ‖ · ‖ to denote the vector norm as well as the 
Frobenius norm when the object is written as a matrix.

A phase-masked measurement gives rise to an isometric matrix in the non-ptychographic 
setting

(1-pattern nonptychographic matrix) A∗ = cΦ diag{µ}, (19)

where the constant c is chosen to normalize A* such that AA*  =  I. The 2-pattern ptychography 
matrix A* can be written as

(2-pattern ptychography matrix) A∗ = c
[
Φ0 diag{µ0} 0
0 Φt diag{µt}

]
 (20)

where the first and second mask domains overlap due to the nature of a ptychographic scheme.
The propagation matrix A* for multi-part ptychography is constructed analogous to (20) by 

stacking Φt diag{µt}, ∀t ∈ T  in the proper order. For algorithmic analysis, we normalize the 
columns of A* so that A* is isometric.

Let b ≡ |A∗f | ∈ RM . For any y ∈ CM, sgn(y) ∈ CM  is defined as

sgn(y)[ j] =
{

1 if y[ j] = 0
y[ j]/|y[ j]| else.

Ptychography can be formulated as the following feasibility problem in the Fourier domain

Find ŷ ∈ A∗X ∩ Y , Y := {y ∈ CM : |y| = b}. (21)

P Chen and A Fannjiang Inverse Problems 34 (2018) 025003
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Let P1 be the projection onto A∗X  and P2 the projection onto Y :

P1y = A∗Ay, P2y = b � sgn(y). (22)

The following are two of the most widely used iterative algorithms for solving feasibility 
problems.

 Alternating projections 

y(k+1) = P1P2y(k). (23)

 Douglas–Rachford algorithm 

y(k+1) = y(k) + P1(2P2 − I)y(k) − P2y(k). (24)

As the final output of either algorithm, the object estimate is given by x(k) = Ay(k).
Each iteration of DR or AP makes simultaneous use of all the ptychographic data, rep-

resented by P2. In contrast, PIE uses the diffraction patterns one-by-one at each iteration  
[10, 25].

3.1. Fixed point

To accommodate the arbitrariness of the phase of zero components, we call y* a Fourier-
domain DR fixed point if there exists

u ∈ U = {u = (u[i]) ∈ CM : |u[i]| = 1, ∀i}

satisfying

u ∈ U, u[ j] = 1, whenever y∗[ j] �= 0 (25)

such that the DR fixed point equation holds

A∗A (2b � sgn(y∗)� u − y∗) = b � sgn(y∗)� u. (26)

Note that if the sequence of iterates y(k) converges a limit y∞ that has no zero component, then 
the limit y∞ is a Fourier domain DR fixed point with u ≡ 1.

Let x∗ = Ay∗ be the corresponding object-domain fixed point. Define another object 
estimate

x̂ = A (2b � sgn(y∗)� u − y∗) (27)

for some u satisfying (25).
We have from (26)

A∗x̂ = b � sgn(y∗)� u (28)

which implies

|A∗x̂| = |A∗f | (29)

arg(A∗x̂) = arg(sgn(y∗)� u) on supp(b). (30)

Proposition 3.1. Let x∗ be the object-domain fixed point of DR. Under the assumptions of 
corollary 2.5 including (18), x̂ = x∗ = eiθf  for some constant θ ∈ R almost surely.

Proof. By theorem 2.3 and corollary 2.5, (29) implies that x̂ = eiθf  for some constant 
θ ∈ R. To complete the proof, we only need to show eiθf = x∗.
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By (30) and the identity x̂ = eiθf , we have

eiθsgn(A∗f ) = sgn(y∗)� u on supp(b). (31)

Substituting (31) into (27) we obtain

eiθf = A
(
2b � eiθsgn(A∗f )− y∗

)
= 2eiθA (b � sgn(A∗f ))− Ay∗ = 2eiθf − x∗

where the last identity follows from the isometry of A* and the definition of x*. Hence  
eiθf = x∗ as claimed. □ 

Since (23) can be recast in the object domain as
x(k+1) = A(b � sgn(A∗x(k)),

we call x* an AP fixed point if for some u ∈ U

x∗ = A (b � u � sgn(A∗x∗)) , (32)

where u is defined through y* = A*x*. The following result identifies any AP limit point with 
an AP fixed point.

Proposition 3.2. Under the assumptions of corollary 2.5, every limit point of AP iterates 
{x(k)} is an AP fixed point in the sense (32).

The proof of proposition 3.2 can be adapted from [5] verbatim and is omitted.
How do we distinguish the true ptychographic solution from the possibly many AP fixed 

points, as evidenced by numerical stagnation from random initialization? 
Consider the inequality

‖x∗‖ = ‖A (sgn{A∗x∗} � b � u)‖ � ‖sgn{A∗x∗} � b � u‖ = ‖b‖. (33)

Clearly ‖x∗‖ = ‖b‖ holds if and only if the inequality in equation (33) is an equality, which is 
true only when

sgn{A∗x∗} � b � u = A∗z for some z ∈ Cn. (34)

Since AA*  =  I the fixed point equation (32) implies z  =  x* and hence

sgn{A∗x∗} � b � u = A∗x∗.

Thus b = |A∗x∗| implying x* is the ptychographic solution by corollary 2.5. Therefore

Proposition 3.3. Under the assumptions of corollary 2.5 including (18), all AP fixed 
points x* satisfy ‖x∗‖ � ‖b‖ and x*  =  eiθf , for some θ ∈ IR, is the only AP fixed point satisfy-
ing ‖x∗‖ = ‖b‖.

While we do not have the assurance of a unique AP fixed point in comparison with DR,  
AP has a better convergence rate than DR as we discuss next.

3.2. Local convergence

Theorem 3.4. Under the assumptions of corollary 2.5 including (18), let A* be the  
measurement matrix and

B := A diag {sgn(A∗f )} ∈ CN×M . (35)
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Then

γ = max{‖�(B∗u)‖ : u ∈ CN , u ⊥ if , ‖u‖ = 1} < 1. (36)

Moreover, for any given 0 < ε < 1 − γ , if the initial point y(1) is chosen such that

‖α(1)x(1) − f‖ := min
α∈C
|α|=1

‖αx(1) − f‖ is sufficiently small,

then we have the geometric convergence

DR : min
α∈C
|α|=1

‖αx(k) − f‖ � (γ + ε)k−1‖α(1)x(1) − f‖, (37)

AP : min
α∈C
|α|=1

‖αx(k) − f‖ � (γ2 + ε)k−1‖α(1)x(1) − f‖. (38)

For γ < 1, the convergence rate γ2  of AP is better than the convergence rate γ of DR. The 
proof is omitted as can be adapted to the ptychographic setting from the nonptychographic 
setting of [4, 5] without major changes. However, we will elaborate on the meaning of and 
give an estimate for (36) below.

First let us explain the connection between the matrix B in (35) and the subdifferential of 
the iterative map. To this end, we consider the isomorphism CN ∼= R2N via the map

G(x) :=
[
�(x)
�(x)

]
, G(−ix) =

[
�(x)
−�(x)

]

and define the real-valued matrix

B =

[
�(B)
�(B)

]
∈ R2N×M . (39)

Denote the AP map by

FAP = P1P2

and the DR map by

FDR = I + P1(2P2 − I)− P2.

From straightforward but somewhat tedious algebra, we have

G(dFAP( f )ξ) = G(iB�(B∗ξ)), ∀ξ ∈ CN (40)

or equivalently

G(−idFAP( f )ξ) = BB�G(−iξ), ∀ξ ∈ CN (41)

and

dFDR( f )η = diag[sgn(A∗f )]Jdiag[sgn(A∗f )]η (42)

where

Jy = (I − B∗B)�(y) + iB∗B�(y). (43)

Equations (40)–(43) exhibit the central role of B in the subdifferentials dFAP, dFDR at the point 
f. For detailed derivation we refer the reader to [4, 5].

P Chen and A Fannjiang Inverse Problems 34 (2018) 025003



13

Next we explain the meaning of the variational principle (36). Let λ1 � λ2 � . . . � λ2N � 0 
be the singular values of

B� =
[
�(B)� �(B)�

]
∈ RM×2N .

Since the complex matrix B* is isometric, we have λ2
k + λ2

2N+1−k = 1, ∀k = 1, . . . , 2N .
By definition, for any x ∈ CN

B∗x = diag
[
sgn(A∗f )

]
A∗x

and hence

B�G( f ) = �[B∗f ] = |A∗f |. (44)

On the other hand, we have by isometry of A*

B|A∗f | =
[
�(B|A∗f |)
�(B|A∗f |)

]
=

[
�(AA∗f )
�(AA∗f )

]
=

[
�( f )
�( f )

]
= G( f ). (45)

Equations (44) and (45) imply λ1 = 1 and G( f ) is a leading singular vector of B�. We can 
also easily verify

B�G(−if ) = �[B∗f ] = 0 (46)

and hence G(−if ) is a corresponding singular vector to λ2N = 0.
Note again �[B∗u] = B�G(−iu). The orthogonality condition iu ⊥ f  is equivalent to 

G( f ) ⊥ G(−iu). Therefore γ defined in (36) is the second largest singular value λ2 of B� and 
admits the variational principle

γ = max{‖B�u‖ : u ∈ R2N , u ⊥ G( f ), ‖u‖ = 1}. (47)

It is now straightforward to verify that the two variational principles, (36) and (47), are equiva-
lent. We will, however, continue to use (36) which is more convenient than (47).

3.3. Spectral gap

Finally, how do we see that γ < 1? 
From

�(B∗x) = �
(

sgn[A∗f ]� A∗x
)
=

M∑
j=1

�(a∗
j f )�(a∗

j x)−�(a∗
j f )�(a∗j x)

(�2(a∗j f ) + �2(a∗j f ))1/2 (48)

we have by the Cauchy–Schwartz inequality and the isometry of A*

‖�(B∗x)‖2 �
M∑

j=1

�2(a∗j x) + �2(a∗j x) =
M∑

j=1

|a∗j x|2 = ‖A∗x‖2 = ‖x‖2. (49)

In view of (48), the inequality becomes an equality if and only if

�(a∗j x)�(a∗
j f ) + �(a∗

j x)�(a∗j f ) = 0, ∀j = 1, · · ·N, (50)

where aj are the columns of A, or equivalently

sgn{A∗x} = σ � ω0 (51)

where the components of σ are either 1 or -1, i.e. σ[ j] ∈ {1,−1}, ∀j = 1, · · ·N.
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Now we recall from [4] the following uniqueness theorem for the non-ptychographic 
setting.

Proposition 3.5. (Uniqueness of Fourier magnitude retrieval) Suppose f is not a line  
object and let the mask μ’s phase be continuously and independently distributed. If for the 
matrix (19) we have

�A∗x̂ = ±�A∗f (52)

where the  ±  sign may be pixel-dependent, then almost surely x̂ = cf  for some constant c ∈ R.

This result implies that from the Fourier phase data, up to a  ±  sign, with each mask sepa-
rately we can identify the illuminated part of the object, up to a real constant. Now for any 
ptychographic scheme under the minimum overlap condition (16), the constants associated 
with all the masked domains must be the same. Hence (49) is a strict inequality and γ < 1.

4. Convergence rate bound

In this section, we give an estimate of γ and exhibit an explicit dependence of γ on the param-
eter q of the minimalist scheme introduced in section 1.2.

We divide the initial mask domain M0, now denoted as M00, into four equal blocks 

M00 =
⋃1

i,j=0 M00
ij  or in the matrix form

M00 =

[
M00

00 M00
10

M00
01 M00

11

]
, M00

ij ∈ Cm/2×m/2, i, j = 0, 1.

For m  =  2n/q, let Tkl = m
2 (k, l). Denoting the Tkl-shift of M00 by Mkl  we have 

Mkl =
⋃1

j,k=0 Mkl
ij  where Mkl

ij  is the Tkl-shift of M00
ij  The corresponding partition of the ini-

tial mask µ00 and Tkl-shifted mask µkl  can be written as

µ00 =

[
µ00

00 µ00
10

µ00
01 µ00

11

]
, µkl =

[
µkl

00 µkl
10

µkl
01 µkl

11

]
.

For convenience, we consider the periodic boundary condition on the whole object domain, 
i.e.

Mq−1,l
10 = M0l

00, Mq−1,l
11 = M0l

01, (53)

Mk,q−1
01 = Mk0

00, Mk,q−1
11 = Mk0

10, (54)

µq−1,l
10 = µ0l

00, µq−1,l
11 = µ0l

01, (55)

µk,q−1
01 = µk0

00, µk,q−1
11 = µk0

10, (56)

for all j, k  =  1,...,q  −  1.
Accordingly, we divide the object f into q2 non-overlapping blocks

f =




f11 . . . f1q

...
...

...
fq1 . . . fqq


 , fij ∈ Cm/2×m/2. (57)

Let the ODFT Φkl defined on Mkl  be divided into four equal blocks
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Φkl =

[
Φkl

00 Φkl
10

Φkl
01 Φkl

11

]

where each Φkl
ij : Cm/2×m/2 → C2m×2m  is a rank-3 tensor defined on Mkl

ij  and normalized such 
that

Φkl∗
ij Φkl

i′j′ =
δij,i′j′

4
Im/2×m/2, i, j, i′, j′ = 0, 1. (58)

Analogous to (57) the diffracted field h  =  A*f can be partitioned into q × q blocks, [hkl], where

hkl =

1∑
i,j=0

Φk−1,l−1
ij (µk−1,l−1

ij � fi+k,j+l), k, l = 1, . . . , q

where fi+k, j+l is cyclically defined with respect to the subscript.

Proposition 4.1. For the minimalist scheme, γ defined in (36) satisfies

γ > 1 − C/q2 (59)

for some constant C depending on f, but independent of q.

Remark 4.2. The derivation of the bound (59) does not assume a random mask and is valid 
for the minimalist scheme with any mask, so it is a bound for the worst case scenario. How-
ever, our numerical results with deterministic as well as random masks appear to be consistent 
with the prediction of worsening performance with large q, which we believe has to do with 
diminishing diversity of the mask as q becomes large.

Proof. For simplicity, we assume ‖ f‖ = 1. Analogous to (36), we have from (46) the  
variational principle

λ2N−1 = min{‖�(B∗g)‖ : g ∈ Cn×n, g ⊥ f , ‖g‖ = 1} (60)

Denote ω = sgn(A∗f ) and consider the test function for (60)

g =




v1 f11 . . . v1 f1q

...
...

...
vq fq1 . . . vq fqq


 ∈ Cn×n

where

vj = a sin(
2πj
q

− c), j = 1, . . . , q,
 (61)

for some real constants a,c to be selected.
Let fj be the j-th row or column of (57). The orthogonality condition g ⊥ f  leads to

0 =

q∑
i=1

vi

q∑
j=1

‖ fij‖2 =

q∑
i=1

vi‖ fi‖2 = a
q∑

j=1

‖ fj‖2 sin(2πj/q − c) =: p(c).

 (62)

That is, c needs to be a real root of p. Since p(0) = −p(π), the existence of a root c ∈ [0,π] 
follows from the intermediate value theorem. On the other hand, to satisfy ‖g‖ = 1 we need
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1 =

q∑
j=1

v2
j ‖ fj‖2 = a2

q∑
j=1

sin2(2πj/q − c)‖ fj‖2
 (63)

which implies

a2 =




q∑
j=1

sin2(2πj/q − c)‖ fj‖2




−1

. (64)

Write

A∗g =




h11 . . . h1q

...
...

...
hq1 . . . hqq


 ,

where

hkl =

1∑
i,j=0

Φkl
ij (µ

kl
ij � fi+k,j+l)vk+j, k, l = 1, . . . , q.

Likewise, we have

ω = sgn(A∗f ) =



ω11 . . . ω1q

...
...

...
ωq1 . . . ωqq


 , ωkl = sgn



hkl =

1∑
i,j=0

Φkl
ij (µ

kl
ij � fi+k,j+l)



 .

To calculate �(B∗g) = �(ω � A∗g), we introduce

uij = �
[
ωij � (Φij

00µ
ij
00 � fij +Φij

10µ
ij
10 � fi+1,j)

]
∈ R4n/q×4n/q (65)

u′
ij = �

[
ωij � (Φij

01µ
ij
01 � fi,j+1 +Φij

11µ
ij
11 � fi+1,j+1)

]
∈ R4n/q×4n/q. (66)

Note that

uij + u′
ij = �

[
ωij �

1∑
k,l=0

Φij
kl(µ

ij
kl � fi+k,j+l)

]
= �

∣∣∣∣∣
1∑

k,l=0

Φij
kl(µ

ij
kl � fi+k,j+l)

∣∣∣∣∣ = 0

and hence

‖�(ωij � hij)‖2 = ‖uijvi + u′ijvi+1‖2 = ‖uij‖2(vi − vi+1)
2. (67)

Let ckl
ij  be the norm of the mapping fij −→ �(ωij � F∗

kl(µ
ij
kl � fi+k,j+l)). By (58) we have 

ckl
ij ∈ [0, 1/2]. Thus,

q∑
j=1

‖uij‖2 �
q∑

j=1

((c00
ij )

2‖ fij‖2 + (c10
ij )

2‖ fi+1,j‖2) �
1
2
‖ fi‖2. (68)
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Combining (67), (61), (63), (64) and (68) we have the following calculation

λ2
2N−1 � ‖�(ω � (A∗g))‖2

=

q∑
i=1

q∑
j=1

‖�(ωij � hij)‖2

=

q∑
i=1

(vi − vi+1)
2

q∑
j=1

‖uij‖2

�
a2

2

q∑
i=1

‖ fi‖2 |sin(2πi/q − c)− sin(2π(i + 1)/q − c)|2

�

∑q
i=1 ‖ fi‖2 |sin(2πi/q − c)− sin(2π(i + 1)/q − c)|2

2
∑q

j=1 sin
2(2πj/q − c)‖ fj‖2

= 4 sin2(π/q)

∑q
j=1 ‖ fj‖2 cos2(2π( j + 0.5)/q − c)

2
∑q

j=1 ‖ fj‖2 sin2(2πj/q − c)
.

 

(69)

Note that
∑q

j=1 cos
2(2π( j + 0.5)/q − c)‖ fj‖2

2
∑q

j=1 sin
2(2πj/q − c)‖ fj‖2

�
maxj ‖ fj‖2 ∑q

j=1 cos
2(2πj/q − c + π/q)

2minj ‖ fj‖2
∑q

j=1 sin
2(2πj/q − c)

�
maxj ‖ fj‖2

2minj ‖ fj‖2 := c

and hence

λ2
2N−1 � 4c sin2(π/q).

The desired result then follows from the identify λ2
2 + λ2

2N−1 = 1. □ 

5. Numerical experiments

A primary purpose of our numerical experiments is to find out how q affects the numerical 
reconstruction and propose a practical guideline for using the minimalist scheme. We also 
want to see how the complexities of the mask and the object affect numerical performance. 
Finally, we want to test how robust the minimalist scheme is with respect to measurement 
noise.

As pointed out above, DR has the true solution as the unique fixed point in the object domain 
(proposition 3.1) while AP has a better convergence rate than DR (theorem 3.4). A natural way 
to combine their strengths is to use DR as the initialization method for AP. We choose AP 
and DR as the building blocks of our reconstruction algorithm because of the proven fixed 
point and convergence properties and also because of no adjustable parameters to be tuned to 
optim ize the performance as in other algorithms [14, 30]. In other words, DR  +  AP provides a 
reasonable platform for evaluating the minimalist scheme and answering the aforementioned 
questions. For other reasons for choosing DR for ptychographic reconstruction, see [27].

We do not claim that this reconstruction method yields the best performance. Quite the 
contrary, our approach can be easily improved, for example, by initializing AP with the DR 
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iterate of the least residual within a given number of iterations instead of the last iterate (recall 
that the residual is not monotonically decreasing with the DR iteration).

Our test image f is randomly phased phantom (RPP): the phantom (figure 1(a)) with phase at 
each pixel being independent and uniformly distributed over a specific range, referred to as the 
phase range hereafter. RPP is chosen for two reasons: (i) the core image is surrounded by dark 
pixels and the loose support makes RPP more challenging to reconstruct than an image of a tight 
support; (ii) the adjustable phase range is a convenient way for controlling the object complexity.

We use the relative error (RE) and residual (RR) as figures  of merit for the recovered  
image f̂ :

RE(f̂ ) = min
α∈R

‖ f − eiα f̂‖
‖ f‖

,

RR(f̂ ) =
‖ b − |A∗ f̂ | ‖

‖b‖
.

5.1. Random and Fresnel masks

We consider two kinds of random masks eiθ(n) where θ(n) are either independent, identically 
distributed (i.i.d.) or �-correlated uniform random variables on [0, 2π], where � is the correla-
tion length.

The correlated random mask is produced by convolving the i.i.d. mask with the character-
istic function of the set {(k1, k2) ∈ Z2 : |max{|k1|, |k2|}| � �/2} and normalizing pixel-by-
pixel to get a phase mask. The i.i.d. mask corresponds to � = 1.

We also consider the Fresnel mask with

µ0(k1, k2) := exp
{

iπρ((k1 − β1)
2 + (k2 − β2)

2)/m
}

, k1, k2 = 1, · · · , m (= 2n/q)
 

(70)
where ρ,β1,β2 ∈ R are adjustable parameters, as well as the plain mask (ρ = 0). The choice 
of β1,β2 has an insignificant effect on numerical reconstruction. The functional form of the 
Fresnel phase in (70) is dictated by our goal of keeping the angular aperture of the illumina-
tion fixed (with fixed ρ) independent of m as (70) describes a point-source illumination with 
both the aperture (i.e. the linear size of the mask) and the distance to the object proportional 
to the parameter m [1].

If we set the distance from the point source to the object to be mL and the object pixel size 
to be δ × δ, then (70) is the Fresnel kernel with ρ = δ2/(λL) where λ is the wavelength. For 
a different ρ, we imagine varying L while keeping λ and δ fixed. The larger L is, the smaller ρ 
is and hence the slower the mask phase modulation is. With the minimalist scheme described 
in section 1.2 and the Fresnel mask (70) with ρ fixed, the total space-bandwidth product of 
the mask and the total number of measurement data are fixed as q varies. Figures 1(b) and (c) 
shows the real part of the Fresnel mask at two different ρ.

In the same spirit, in the case of random mask, we let the correlation length � be propor-
tional to m as q varies when we turn to the noisy case (figures 5(a) and (d)). Figures 1(d)–(f) 
shows three examples of correlated masks with the same ratio m/� = 4.

5.2. Twin images with the Fresnel mask

As proved in appendix, for integer-valued ρ, g := Qf � Qµ� µ  produces the same ptycho-
graphic data set as f where Q is the conjugate inversion operation. Not surprisingly, the twin-
image ambiguity degrades the quality of reconstruction.
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Figure 2 shows that the error spikes at integer-valued ρ. For q  >  2, the spikes are much 
smaller than those of q  =  2. As q increases from 2 to 6, the order of magnitude of fluctuation 
from peak to valley decreases from more than four orders of magnitude to about two or less. 
To avoid twin-like images, we choose irrational values of ρ.

5.3. Effect of the mask

Figure 3 shows RE versus 100 AP iterations after the DR initialization with the i.i.d. mask 
and two Fresnel masks for RPP of various phase ranges (legend). We see that the i.i.d. mask 
produces the best initialization and the fastest convergence rate and that the Fresnel mask of 
a larger ρ produces a better initialization and a better convergence rate than the Fresnel mask 
of a smaller ρ for all phase ranges.

5.4. Effect of q

Figure 4 shows RE versus 100 AP iterations after the DR initialization with an i.i.d. random 
mask and two Fresnel masks with various q. Interestingly, we observe that a mask of higher 

Figure 1. (a) The modulus of 128 × 128 RPP; (b), (c) The modulus of the real part of 
the respective Fresnel masks; (d)–(f) The phases of various correlated random masks 
in the unit of 2π. (a) Modulus of RPP. (b) ρ = 3

25π ≈ 0.038. (c) ρ = 6
5π ≈ 0.38. (d) 

� = 16, m = 64. (e) � = 8, m = 32. (f) � = 4, m = 16. Reproduced from [26]. CC BY 3.0.
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complexity (random or larger ρ) works better with a smaller value of q. But q is as large as 32, 
the results are always poor.

5.5. Effect of noise

To introduce both phase and magnitude noises to our signal model, we add complex Gaussian 
noise to A*f before taking the modulus as data

b = |A∗f + z|

where z ∈ CN  is an i.i.d. circularly symmetric complex Gaussian random vector. The size of 
the noise is measured in terms of the noise-to-signal ratio (NSR)

NSR =
‖b − |A∗f |‖

‖A∗f‖
. (71)

We also test the effect of increasing the overlap of adjacent masks from 50% to 75%: With the same 
relation m  =  2n/q, 75% overlap between adjacent masks corresponds to 4q2 diffraction patterns.

Figure 5 shows RE versus NSR for various masks and q with (top) 50% and (bottom) 
75% overlap. The correlated masks used are shown in figures 1(d)–(f) with m/� = 4 so that 
the complexity of the mask is independent of q. We see that the performance for the random 

Figure 2. RE and RR on the semi-log scale versus the parameter ρ of the Fresnel mask 
with 200 FDR iterations followed by 100 AP iterations for 60 × 60 RPP of the full 
phase range [0, 2π]. (a) q  =  2. (b) q  =  4. (c) q  =  6. 

Figure 3. RE on the semi-log scale for 60 × 60 RPP of various object phase ranges 
(legend) versus 100 AP iterations with initialization given by 300 DR iterations with 
q  =  4. (a) i.i.d. mask. (b) Fresnel mask with ρ = 6

5π . (c) Fresnel mask with ρ = 3
25π.
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masks is similar to that for the Fresnel mask with ρ = 6
5π  as well as to that for the Fresnel 

mask with ρ = 3
25π and q  =  4,8.

For up to 25% NSR, the RE-NSR curves in figure 5 are roughly straight lines of a slope less 
than 1, with q  =  4 the best performing value across the board. The violent fluctuations in (c) 
for q  =  2 indicates non-convergent behaviors consistent with figure 4(c) with q  =  2.

Figures 5(d)–(f) shows that the four times number of data with 75% overlap predictably 
result in a significantly reduced RE, especially for q  =  2, 4.

Figure 4. RE on the semi-log scale for the 128 × 128 RPP of phase range [0, 2π] versus 
100 AP iterations after initialization given by 300 DR iterations with various q. (a) i.i.d. 
mask (b) Fresnel mask with ρ = 6

5π . (c) Fresnel mask with ρ = 3
25π.

Figure 5. RE versus NSR after 300 FDR iterations followed by 200 AP iterations for 
64 × 64 RPP of phase range [0, 2π] with (a)–(c) 50% and (d)–(f) 75% overlap between 
adjacent masks. The random masks for (a) & (d) have a correlation length � = m/4 
as shown in figures 1(d)–(f). (a) Random with 50% overlap. (b) Fresnel with ρ = 6

5π .  
(c) Fresnel with ρ = 3

25π. (d) Random with 75% overlap. (e) Fresnel with ρ = 6
5π .  

(f) Fresnel with ρ = 3
25π
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6. Conclusion and discussion

In the present work, we have proved the uniqueness theorem (theorem 2.3, corollary 2.5) for 
any ptychographic scheme with an independent random mask under the minimum overlap 
condition (16).

We have also given a local geometric convergence analysis for AP and DR algorithms 
(theorem 3.4). We have shown that DR has a unique fixed point in the object domain (proposi-
tion 3.1) and given a simple criterion for distinguishing the true solution among possibly many 
fixed points of AP (proposition 3.3).

At each iteration of DR or AP, our reconstruction method makes simultaneous use of all the 
ptychographic data, in what is called the global approach [12, 27]. The other approach called the 
sequential approach uses the diffraction patterns one-by-one iteratively for reconstruction. For 
example, the standard ptychographic iterative engine [10, 25] is a sequential version of AP when 
there is no mask estimation (as in the present setting). A comparison of the two approaches in 
the setting of Fourier ptychography can be found in [31, 33]. The sequential approach is usually 
more difficult to analyze. A convergence analysis of the sequential AP given in [5] for conven-
tional phase retrieval (with two coded diffraction patterns) proved that the sequential AP has a 
better convergence rate than the global AP but is less robust when the noise level is high. We do 
not know if the convergence analysis in [5] can be extended to the ptychographic setting.

We have proposed a minimalist lattice scheme parametrized by q  =  2n/m where m is the 
number of mask pixels in each direction and given a lower bound on the geometric rate of 
convergence (proposition 4.1). The bound γ > 1 − C/q2 predicts a poor performance for the 
minimalist scheme with large q which is confirmed by our numerical experiments. We have 
shown that the twin-image ambiguity can arise in ptychography with certain Fresnel illumina-
tions and degrade the numerical reconstruction (appendix).

From our numerical experiments, we have found that (i) the mask of higher complexity 
(e.g. random masks or the Fresnel mask of a larger ρ) produces faster convergence in recon-
struction than the mask of lower complexity (e.g. the Fresnel mask of a smaller ρ); (ii) the 
best-performing value of q for a mask of higher complexity is smaller than that for a mask of 
lower complexity; (iii) ptychographic reconstruction with medium values of q (e.g. q ∈ [4, 8]) 
is robust with respect to measurement noise regardless of the mask used, with the ratio of RE 
to NSR less than unity; (iv) increased overlap between adjacent masks generally reduces the 
reconstruction error as expected.

We have not addressed the important question in ptychography about retrieving the mask 
and the object simultaneously without knowing precisely the mask function (blind ptychogra-
phy). This is much more subtle than one addressed in the present work.

For example, in the notation of appendix, if the (deterministic or random) mask μ used in 
the measurement is unknown and to be recovered simultaneously with the object x, then the 
ptychographic data set can not distinguish the true solution (x,µ) from (x′,µ′) defined by

x′j = xj � ε, µ′
j = µj � ε−1, ∀j = 1, 2, 3, 4

for any non-vanishing ε ∈ Cm/2×m/2. This and other more sophisticated counterexamples 
point to the subtlety of the uniqueness question for blind ptychography, which is often glossed 
over in the literature.

To this end, we have previously proved the simultaneous determination of a roughly known 
mask and the object for the conventional setting of phase retrieval from coded diffraction 
patterns [9]. Based on [9] and the present work, we will turn to blind ptychography in a forth-
coming paper.
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Appendix. Twin image ambiguity with a Fresnel mask

We give a sufficient condition for the existence of twin-like images for the Fresnel masks with 
q = 2, ρ ∈ Z, which we believe explain the spikes in figure 2(a).

Let Qmx be the conjugate inversion of x ∈ Cm×m , i.e. (Qmx)ij = xm+1−i,m+1−j. For an even 
integer m, write

x =

[
x1 x2

x3 x4

]
, xj ∈ Cm/2×m/2, j = 1, 2, 3, 4,

and we have

Qmx =

[
Qm/2x4 Qm/2x3

Qm/2x2 Qm/2x1

]
.

For ease of notation, we will omit writing the subscript in Q.

Proposition A.1. Let ρ ∈ Z and µ ∈ Cm×m be the Fresnel mask with the elements

exp
{

iπρ((k1 − β1)
2 + (k2 − β2)

2)/m
}

, k1, k2 = 1, . . . , m. (A.1)

For an even integer m, the matrix

Qµ� µ :=
(

h1 h2

h3 h4

)
, hj ∈ Cm/2×m/2, j = 1, 2, 3, 4, (A.2)

satisfies the symmetry

h1 = h4 = σh2 = σh3, σ = (−1)ρ(1+m/2). (A.3)

Proof. With

µ =

(
µ1 µ2

µ3 µ4

)
, µj ∈ Cm/2×m/2, j = 1, 2, 3, 4, (A.4)

we have

Qµ� µ =

[
Qµ4 � µ1 Qµ3 � µ2

Qµ2 � µ3 Qµ1 � µ4

]
.

Direct algebra with (A.1) and ρ ∈ Z gives

µ4 � Qµ1 = µ2 � Qµ3 exp{(ρ+ ρm/2)πi} = µ3 � Qµ2 exp{(ρ+ ρm/2)πi} = µ1 � Qµ4

and hence the result in (A.3) if ρ is an integer. □ 
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Let Φ be the oversampled 2-D Fourier transform as before. We have the ambiguity of con-
jugate inversion (twin image):

|Φ(x)| = |Φ(Qx)|, ∀x ∈ Cm×m. (A.5)

Proposition A.2. Let q  =  2 (hence m  =  2n/q  =  n). Let h be the matrix given in (A.2) and 
let y = Qx � h. If the symmetry (A.3) holds, then y and x produce the same ptychographic 
data set with the mask μ.

Proof. We have

y =

[
Qx4 � h1 Qx3 � h2

Qx2 � h3 Qx1 � h4

]

and by direct substitution

|Φ(y � µ)| = |Φ(Q(x � µ))| = |Φ(x � µ)|. (A.6)

Let R1 and R2 be the reflectors defined by

R1x =

[
x2 x1

x4 x3

]
, R2x =

[
x3 x4

x1 x2

]
,

for all x ∈ Cm×m . These reflectors describe the periodic boundary condition in the minimalist 
scheme with q  =  2.

Let

y′ = (QR1x)� R1h,

y′′ = (QR2x)� R2h,

y′′′ = (QR2R1x)� R2R1h.

Analogous to (A.6) we have

|Φ(y′ � µ)| = |Φ(Q(R1x � µ))| = |Φ(R1x � µ)|,
|Φ(y′′ � µ)| = |Φ(Q(R2x � µ))| = |Φ(R2x � µ)|,
|Φ(y′′′ � µ)| = |Φ(Q(R2R1x � µ))| = |Φ(R2R1x � µ)|

The symmetry (A.3) implies

h = σR1h = σR2h = R2R1h = µ� Qµ. (A.7)

Using (A.5) and (A.7) we have

|Φ(x � µ)| = |Φ(Qx � Qµ)| = |Φ(Qx � h � µ)| = |Φ(y � µ)|. (A.8)

Similarly, we have

|Φ(R1x � µ)| = |Φ(QR1x � Qµ)| = |Φ(QR1x � γR1h � µ)| = |Φ(y′ � µ)|,
 (A.9)

|Φ(R2x � µ)| = |Φ(QR2x � Qµ)| = |F(QR2x � γR2h � µ)| = |Φ(y′′ � µ)|,
 

(A.10)
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|Φ(R2R1x � µ)| = |Φ(QR2R1 � Qµ)| = |Φ(QR2R1x � R2R1h � µ)| = |Φ(y′′′ � µ)|.
 (A.11)

The lefthand and righthand sides of equations (A.8)–(A.11) are precisely the ptychographic 
data set for q  =  2 with the mask μ. □ 
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