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Abstract
We analyse rigorously the time reversal of a multiple-input-multiple-output
system in a strongly fluctuating disordered medium described by the stochastic
Schrödinger equation with a random potential under the sub-Gaussian
assumption. We prove that in a broadband limit the conditions for stable
super-resolution are the packing condition such that the spacing among the
N transmitters and M receivers be more than the coherence length �c and
the consecutive symbols in the datum streams are separated by more than the
inverse of the bandwidth B−1 and the multiplexing (or stability) condition such
that the number of the degrees of freedom per unit time at the transmitters
(∼ NB) be much larger than the number of the degrees of freedom (∼ MC)
per unit time in the ensemble of intended messages. Here C is the number of
symbols per unit time in the datum streams intended for each receiver. When
the two conditions are met, all receivers simultaneously receive streams of
statistically stable, sharply focused signals intended for them, free of fading and
interference. We show that an O(P/ν) information rate P/ν can be achieved
with statistical stability under the condition N � M � P/(νB) where P is the
average total power constraint and ν the noise power per unit bandwidth. The
packing condition then implies that γ −dβ−d

c � P/(νB) in the optimal transfer
regime where γ is the Fresnel number, βc the coherence bandwidth and d

the transverse dimension. Our results should be valid for diffusive waves with
βc = Thouless frequency. Therefore, under the ideal packing and multiplexing
conditions time reversal communications result in a high signal-to-interference
ratio and low probability of intercept and is an effective means for achieving
the information capacity of disordered media in the presence of multiple users.
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Figure 1. MIMO-TRA broadcast channel.

1. Introduction

Time reversal (TR) of waves is the process of recording the signal from a remote source
and then retransmitting the signal in a time-reversed fashion to refocus on the source
(see [4, 19, 20] and the references therein). The performance of TR depends on, among
other factors, the reciprocity (or time symmetry) of the propagation channel. One of the
most striking features of time reversal operation in a strongly scattering medium is super-
resolution, the counterintuitive effect of scattering-enhancement of time reversal resolution
[3,7,17]. It highlights the great potential of time reversal in technological applications such as
communications where the ability of steering and pinpointing signals is essential for realizing
the information carrying capacity of a multipath channel as well as achieving low probability of
intercept [8, 27].

In order to take full advantage of the super-resolution effect in a random medium, one has
to first achieve statistical stability which can be measured by the signal-to-interference ratio
(SIR) and the signal-to-sidelobe ratio (SSR). Statistical stability and resolution are two closely
related issues that should be analysed side-by-side; together, they are the basic measure of TR
performance which depends on, but is not guaranteed by, the reciprocity (or time symmetry)
of the propagation channel. It has been demonstrated experimentally that there are at least two
routes to achieving statistical stability [7, 9]. One route is to use a time-reversal array (TRA)
of sufficiently large aperture; the other is to use a broadband signal (even with one-element
TRA of essentially zero aperture). There have been many advances in analytical understanding
of the former situation (see [1, 12, 13] and references therein) which are, however, often too
restrictive for TR applications. Compared with the case of a large aperture, the analytical
understanding of the broadband case has been so far much less complete with the exception
of a randomly layered medium [3].

In this paper we present the time reversal analysis for the broadband, multiple-input-
multiple-output (MIMO) broadcast channel (see figure 1) whose k-component is described by
the nondimensionalized stochastic Schrödinger equation

i
∂�z

∂z
+

γ

2k
�x�z +

k

γ
χz ◦ �z = 0, x ∈ R

d , (1)

in the so called paraxial (or parabolic) Markovian approximation. Here the refractive index
fluctuation χz(·) is a δ-correlated-in-z stationary random field with a power spectral density
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(p) such that E
[
χz(x)χz′(x′)

] = δ(z − z′)
∫


(p)eip·(x−x′)dp with E standing for the
ensemble average; k is the (dimensionless) relative wavenumber to the centre wavenumber
k0; the Fresnel number γ = Lz/(k0L

2
x) is a dimensionless number consisting of the centre

wavenumber k0 and the reference scales Lz and Lx in the longitudinal and transverse
dimensions, respectively. The notation ◦ in equation (1) means the Stratonovich product
(versus the Itô product). We have chosen the time scale such that the speed of propagation is
unity (thus k= relative frequency ω). For simplicity of presentation we will assume isotropy,
i.e. 
(k) = 
(|k|), ∀k ∈ R

d and smoothness of 
.
The stochastic parabolic wave equation (1) is a fundamental equation for wave propagation

in a randomly inhomogeneous continuum as an approximation to the linear reduced wave
equation with continuously varying random coefficients in a suitable scaling limit. Equation (1)
arises in, e.g. modelling long-distance propagation of monochromatic light in turbulent
atmosphere [24, 37]. In such a context, the δ-function in the z-correlation results from
the large ratio between the propagation distance and the correlation length, both in the z-
direction, and equation (1) is obtained via the scaling limit by holding the Fresnel number
γ fixed [15]. Indeed, we shall consider the regime of small Fresnel number for which we
can obtain precise error estimate. Equation (1) also models the cross-phase-modulation in
nonlinear optical fibres in the wavelength-division-multiplexing scheme [25]. It has a certain
degree of universality and encapsulates the transverse aspect of wave physics as the primary
focus of the present work is on the multipath and multi-user effects. In this connection, we
should mention the work [27] which is a numerical study of time-reversal in a stochastic
wave-guide.

Our goal is to show that for the channel described by equation (1) the stability and super-
resolution can be achieved simultaneously when there is sufficiently high number of degrees of
freedom at the TRA. In order to concisely describe the degrees of freedom at TRA we assume
the packing condition, namely that the spacing of the M receivers and N elements of the TRA
is much more than the coherence length of the channel, and that the consecutive symbols in
the M simultaneous datum streams are separated by more than B−1, the inverse of the non-
dimensionalized bandwidth B(= frequency bandwidth×L2

x/Lz). Our main theorem says that
in the saturated-fluctuation regime (defined by (2) below) under the broadband limit (defined
by (4) below) and multiplexing condition (NB � MC where C is the number of symbols
per unit time in each datum stream) the MIMO-TRA broadcast system achieves stable super-
resolution in the sense that both the SIR and SSR tend to infinity and that the signal received
by each receiver is focused to within a circle of the coherence length �c. Super-resolution
refers to the fact that �c is essentially independent of the aperture of TRA in the saturated-
fluctuation regime. Under the stability (packing and multiplexing) condition the streams of
time-reversed signals from the multiple distributed transmitters refocus back to the multiple
distributed receivers independently of the medium realization.

In the above result MC is the number of the degrees of freedom per unit time in the
ensemble of input messages while NB is the total number of the degrees of freedom per unit
time at the TRA. The multiplexing condition says that the number of degrees of freedom in
the message ensemble must be smaller than the number of degrees of freedom available in the
channel.

The main technical ingredient of our approach is the exact, universal low Fresnel number
asymptotic obtained for the two-frequency mutual coherence function. The nearly exact
calculation indicates that the multiplexing condition is sharp. The main assumption is the 4th
order sub-Gaussianity property (13). The Gaussian-like behaviour for 4th order correlations
is widely believed to occur in the saturated-fluctuation regime originally defined as σ∗/�c � 1
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which follows from the stronger condition

α2
∗ = D2L � 1, σ 2

∗ = D2L
3 � 1 (2)

used in the present work [2]. Here L is the (longitudinal) distance between the TRA and the
receivers and

D2 = 1

d

∫
|p|2
(p)dp

is the angular diffusion coefficient (hence α∗ = √
D2L is the tangent of the angular spread).

In the saturated-fluctuation regime [17], γ −1α∗ is the spread in the so called spatial frequency,
σ∗ =

√
D2L3 the spatial spread and their product γ −1D2L

2 the spatial-spread-bandwidth
product (SSB) which, as we will see, is exactly γ −1β−1

c , where βc is the coherence bandwidth.
By the duality principle for the saturated-fluctuation regime, proved in [17], the effective

aperture is 2π times the spatial spread σ∗ (independent of the numerical aperture of TRA and
hence super-resolution), and its dual quantity �c = γL/(ωσ∗) = γ /(ωα∗) is the coherence
length (as well as the time reversal resolution) which is small for γ 	 1 and α∗ � 1. Thus,
the aperture of TRA is O(N1/d�c) and may be also small compared with the O(1) (transverse)
correlation length of the medium fluctuation and yet sufficient for statistical stability in the
usual TR refocusing experiments with M = 1 and C = 1 (the stability condition becomes
BN � 1). Thus, our stability condition unifies and extends the previously observed condition
of either large aperture or large bandwidth.

In what follows, we first formulate the problem and develop the essential tool for analyzing
TR, the one- and two-frequency mutual coherence functions and then carry out the stability
and resolution analysis for the single-input-single-output (SISO), multiple-output-single-
output (MISO), single-input-multiple-output (SIMO) and the MIMO cases. Both MISO- and
SIMO-TRA systems have been demonstrated experimentally to be feasible for ocean acoustic
communication [11,26,32] and the MIMO-TRA system with N > M has been shown to work
well for ultrasound [8]. We then discuss the implications of our results on the channel capacity
in section 5. Except in the discussion of information rate, we have by and large neglected the
effect of noise in our analysis, assuming a high signal-to-noise ratio (SNR) as is the case for
the experiments reported in [8, 11]. The robustness of TR in the presence of noises has been
well documented (see, e.g. [33]).

2. TR MIMO-broadcast channel

We extend the time-reversal communication scheme [8] to the MIMO-broadcast channel.
Let the M receivers located at (L, rj ), j = 1, . . . , M first send a pilot signal∫

ei(ωt/γ )g(ω) dωδ(rj − ai ) to the N -element TRA located at (0, ai ), i = 1, . . . , N which
then use the time-reversed version of the received signals

∫
ei(ωt/γ )g(ω)GL(rj , ai; ω)dω to

modulate streams of symbols and send them back to the receivers. Here GL is the Green
function of equation (1) and g2(ω) is the power density at ω. As shown in [3, 6], when the
TRA has an infinite time-window (see the conclusion in section 6 for the case of a finite
time-window), the signal arriving at the receiver plane with delay L + t is given by

S(r, t) =
T∑

l=1

N∑
i=1

M∑
j=1

mj(τl)

∫
e−i(ω/γ )(t−τl )g(ω)

× GL(r, ai; ω)G∗
L(rj , ai; ω)dω, (3)

where mj(τl), l = 1, . . . , T � ∞ are a stream of T symbols intended for the j -th receiver
transmitted at times τ1 < τ2 < . . . < τT . We assume for simplicity that |mj(τl)| = 1, ∀j, l.
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We assume that g is a smooth and rapidly decaying function with effective support of size
Bγ . For simplicity we take g2(ω) = exp (−(|ω − 1|2)/(2B2γ 2)). The broadband limit may
be formulated as the double limit

γ → 0, B → ∞ lim Bγ = 0 (4)

so that in the limit g2(ω) becomes narrowly focused around ω = 1. The idea underlying
the definition is to view the broadband limit as a sequence of narrow-bands with indefinitely
growing centre frequency and bandwidth. This is particularly well suited to the framework
of parabolic approximation described by (1). Under the condition (4), the duality relation
between the spatial spread and the time reversal resolution (or the coherence length) can be
extended from the monochromatic case [17] to the broadband case.

The apparent narrow-banding of (4) is deceptive: the delay-spread-bandwidth product
(DSB) turns out to be Bβ−1

c and is doubly divergent as B → ∞ (the broadband limit) and
βc → 0 (the saturated-fluctuation regime). Note that since ω is the relative frequency, the
product Bγ should always be uniformly bounded between zero and unity, independent of
γ > 0 (see the conclusion).

Packing condition. We assume that the spacing within the N TRA-elements and the M

receivers be much larger than the coherence length �c and that the separation of the successive
symbols be much larger than (2B)−1. Though there is no technical limitation on M, N, T , it
suffices to consider the case where all the N TRA-elements and all the M receivers are located
within one circle of diameter σ∗ (implying M, N 	 γ −dβ−d

c ), and all the T -datum streams
are within one interval of the delay spread ∼ β−1

c (implying T 	 Bβ−1
c ) since the signals

separated by much more than one spatial spread σ∗ or one delay spread δ∗ are essentially
uncorrelated.

For simplicity, we have assumed that all the receivers lie on the plane parallel to the TRA.
When this is not the case, then the above spacing of antennas refers to the transverse separation
parallel to the TRA.

Signal-to-interference-or-sidelobe ratio (SISR). Anticipating a singular limit we employ the
coupling with smooth, compactly supported test functions. Denote the mean by E(r, t) =
γ −d

∫
θ∗((x − r)/�c)ES(x, t)dx where the coupling with the test function θ can be viewed as

the averaging induced by measurement. Denote the variance by

V (r, t) = γ −2d
E

[∫
θ∗((x − r)/�c)S(x, t)dx

]2

− E2(r, t).

We have made the test function θ act on the scale of the coherence length �c, the smallest
spatial scale of interest (the speckle size) in the present context. Different choices of scale
would not affect the conclusion of our analysis.

The primary object of our analysis is

ρ(r, t) = E2(rj , τl)

V (r, t)
, j = 1, . . . , M, l = 1, . . . , T , (5)

which is the SIR if r = rj , t = τl and the SSR if |r − rj | � �c, ∀j (spatial sidelobes) or
|t − τl| � B−1, ∀l (temporal sidelobes) (as V (r, τ ) ≈ E2(r, τ ) as we will see below). We
shall refer to it as the signal-to-interference-or-sidelobe ratio ( SISR). In the special case of
r = rj and |t − τl| � B−1,∀l, ρ−1 is a measure of intersymbol interference. To show stability
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and resolution, we shall find the precise conditions under which ρ → ∞ and ES(r, t) is
asymptotically

∑T
l=1

∑M
j=1 mj(τl)Sjl(r, t), where

Sjl(r, t) ≈
N∑

i=1

∫
e−i(ω(t−τl )/γ )g(ω)E

[
GL(r, ai; ω)G∗

L(rj , ai; ω)
]

dω (6)

is a sum of δ-like functions around rj and τl = 0, ∀l. In other words, we employ the TRA as
a multiplexer to transmit the M scrambled datum streams to the receivers and we would like
to turn the medium into a demultiplexer by employing the broadband time reversal technique
(see the precise statement on page 2432).

3. Mutual coherence functions

A quantity repeatedly appearing in the subsequent analysis is the mutual coherence function
�z between the Green functions at two different frequencies ω1 = ω − γβ/2, ω2 = ω + γβ/2

�z

(
x + r

2
,

x − r
γ

; ω, β

)
= E

[
Gz(x, a; ω − γβ/2)G∗

z(r, a′; ω + γβ/2)
]
.

We shall omit writing ω, β, a, a′ when no confusion arises. Here we have chosen x, r to be the
pair of variables of concern and left out a, a′ as parameters. By the reciprocity of the Green
function, we can choose one variable from {x, a} and the other from {r, a′} as the variables of
�z and leave the others as parameters.

One-frequency version. When β = 0, �z satisfies

∂

∂z
�z − i

ω
∇x · ∇y�z +

ω2

γ 2
D(γ y)�z = 0, (7)

where the structure function of the medium fluctuation D(x) is given by

D(x) =
∫


(k)[1 − eik·x] dk � 0, ∀x ∈ R
d .

Equation (7) is exactly solvable by the Fourier transform in x. For a sufficiently small Fresnel
number such that

α∗, σ∗ 	 γ −1

we can use the approximation

ω2γ −2
∫ L

0
D (γ y − pzγ /ω) dz ≈

∫ L

0
D2|ωy − pz|2 dz

to obtain

�L(x, y; ω, 0) ≈
∫

eip·x�̂0(p, y − Lp
ω

; ω, 0)e− ∫ L

0 D2|ωy+pz|2dzdp (8)

=
∫

eip·x�̂0(p, y − Lp
ω

; ω, 0)e− ∫ 1
0 |ỹ+p̃z|2dzdp

where ỹ = yωα∗ and p̃ = pσ∗. It is clear from (8) that �L has a Gaussian-tail in y (the difference
coordinates) and, by rescaling, an effective support ∼ α−1

∗ and hence �c = γ /(ωα∗) (recall
that y is the coordinate on the scale γ −1).
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Two-frequency version. The two-frequency mutual coherence function is not exactly solvable
except for some special cases. Fortunately the asymptotic for γ 	 1 has a universal form and
can be calculated exactly. Without loss of generality we assume β > 0 in what follows.

Using the so called two-frequency Wigner distributions we have proved in [14] that in the
limit γ → 0, �z satisfies the universal equation

∂�z

∂z
− i

ω
∇y · ∇x�z = − D2| − ωy +

β

2
x|2�z − β2

2
D0�z, (9)

where D0 = ∫

(k)dk. The key to understanding equation (9) is the rescaling:

x̃ = x/σ∗, ỹ = γ y/�c, z̃ = z/L, β̃ = β/βc (10)

with βc = D−1
2 L−2 which transforms equation (9) into the form

∂�̃z̃

∂z̃
− i∇ỹ · ∇x̃�̃z̃ = − ∣∣ỹ +

β̃

2
x̃
∣∣2

�̃z̃ − β̃2D0�̃z̃

2σ 2∗
. (11)

By another change in variables equation (11) is then transformed into that of the quantum
harmonic oscillator and solved exactly, see appendix A. The solution is given by

�L(x, y; 1, β) =
(σ∗
α∗

)d

�̃1(x̃, ỹ; β̃) (12)

with

�̃1(x̃, ỹ; β̃) = (1 + i)d/2β̃d/4

(2π)d sind/2 [
β̃1/2(1 + i)

]e−(β̃2D0/2σ 2
∗ )

×
∫

dx′dy′ei(|ỹ−y′|2/2β̃)ei((ỹ−y′)·(x̃−x′)/2)ei(β̃|x̃−x′|2/8)

× e((1−i)/2
√

β̃) cot (
√

β̃(1+i))|ỹ−β̃x̃/2−(y′−β̃x′/2/cos (
√

β̃(1+i)))|2

× e−((1−i)/2
√

β̃)|y′−β̃x′/2|2 tan (
√

β̃(1+i))�0

(
σ∗x′,

y′

ωα∗

)
.

The prescaled version of (13) has been obtained in [14, 18].
Several remarks are in order: (i) the Green function for �L is of the Gaussian form in

x, y; (ii) in the vanishing fluctuation limit D0, D2 → 0 the free-space two-frequency mutual
coherence function is recovered; (iii) the apparent singular nature of the limit β → 0 in (12) is
deceptive. Indeed, the small β limit is regular and yields the result obtained from equation (9)
with β = 0; (iv) in the saturated-fluctuation regime (2), D0 is typically much smaller than
D2

2L
3 � 1 so the factor exp

( − β̃2D0/(2σ 2
∗ )

)
is negligible in the saturated-fluctuation regime.

On the other hand, the rapidly decaying factor sin−d/2 (
β̃1/2(1 + i)

)
is crucial for the stability

argument below; (v) �L(x, y; ω, β) is slowly varying in x on the scale σ∗ for β ∼ βc and more
rapidly varying in x for β � βc; (vi) the coherence bandwidth βc vanishes in the regime of
saturated-fluctuation.

Fourth-order sub-Gaussianity. The saturated-fluctuation regime (2) can result from either
long-distance propagation and/or large medium fluctuation. It is widely accepted that, in this
regime, the statistics of the wave fields (for at least lower moments) become Gaussian-like
resulting in the exponential distribution for the intensity [22, 23, 34, 35, 37, 38]. The Gaussian
statistics follow heuristically from central-limit-theorem as the number of uncorrelated sub-
channels (paths) per transverse dimension in the cross section of diameter σ∗ increases linearly
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with the spatial-spread-bandwidth product, as explained in the introduction. This is consistent
with the experimental finding of the saturation of intensity fluctuation with the scintillation
index approaching unity [24].

In what follows we shall make the 4th order sub-Gaussianity hypothesis, namely that the
fourth moments of the Green function at different frequencies {GL(ω)} can be estimated by
those of the Gaussian process of the same covariance. More specifically, we assume that

|E[GL(ω1) ⊗ G∗
L(ω1) ⊗ GL(ω2) ⊗ G∗

L(ω2)]

−E[GL(ω1) ⊗ G∗
L(ω1)] ⊗ E[GL(ω2) ⊗ G∗

L(ω2)]|
� K|E[GL(ω1) ⊗ GL(ω2)] ⊗ E[G∗

L(ω1) ⊗ G∗
L(ω2)]|

+K|E[GL(ω1) ⊗ G∗
L(ω2)] ⊗ E[G∗

L(ω1) ⊗ GL(ω2)]| (13)

for some constant K independent of γ → 0, |ω1 − 1| = O(Bγ ), |ω2 − 1| = O(Bγ ) and
all the variables. For a jointly Gaussian process, the constant K = 1. Note that in view of
the scaling in the two-frequency mutual coherence the first term on the RHS of (13) is much
smaller than the second term due to the frequency difference as GL(ω) = G∗

L(−ω).
The sub-Gaussianity assumption will be used to estimate the 4th order correlations of

Green functions appearing in the calculation for the variance V by the two-frequency mutual
coherence function in the saturated-fluctuation regime.

4. SISO to MIMO

Our first application of the mutual coherence functions is the estimate for the delay spread.
Consider the band-limited impulse response u(x, t) = ∫

g(ω)e(iω(L−t)/γ )GL(x, 0; ω)dω. It
follows easily using the preceding results that the mean delay is L and the asymptotic for the
delay spread δ∗, when B � βc, is given by

δ∗ =
√∫

(t − L)2E|u(x, t)|2dt/

∫
E|u(x, t)|2dt

≈
√

− d2

dβ2

∣∣∣
β=0

�L(x, 0; 1, β)/�L(x, 0; 1, 0) ∼ β−1
c , (14)

which is slowly varying in x on the scale σ∗. As commented before it suffices to consider the
case with a finite T such that |τ1 − τT | ∼ β−1

c , implying the number of symbols in each datum
stream T 	 Bβ−1

c , the DSB. In what follows, due to βc 	 1 the temporal component of
the signals is essentially decoupled from the spatial component and determined by the power
distribution g2.

SISO. This case corresponds to N = 1, M = 1. Let a1 = 0. In the calculation of E(x, t),
the expression

〈θ, �L〉 (r) ≡
∫

θ∗(
r1 − r

�c

+
yγ
�c

)�L(r1 +
yγ
2

, y; ω, 0)dy

arises and involves only the one-frequency mutual coherence. Using (8) with �0(x, y) =
δ(x + (γ y/2))δ(x − (γ y/2)) and making the necessary rescaling of variables we obtain the
following asymptotic

〈θ, �L〉 (r) ≈ C0(r, r1)β
d
c , (15)

C0 =
∫

dpθ∗(p +
r1 − r

�c

)e−(ip·r1/σ∗)e−|p|2/3. (16)
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To derive (15) we have used the condition (2). Note that the transfer function in (16) is Gaussian
in p and that C0(r, r1) has a Gaussian-tail in |r − r1|/�c and C0(r1, r1) is bounded away from
zero and slowly varying in r1 on the scale σ∗. That is, after proper normalization C0(r, r1)

behaves like a δ-function centred at r1. By (15) and (16) we obtain the mean field asymptotic
E(r, t) ≈ 0 for |r − r1| � �c (spatial sidelobes) or |t − τl| � B−1, ∀l (temporal sidelobes)
and E(r1, τl) ≈ √

4πC0(r1, r1)β
d
c Bγ.

The calculation for the variance V involves the four-point correlation of the Green
functions at different frequencies. Under the sub-Gaussianity condition (13) the calculation
reduces to that of two-frequency mutual coherence functions.

Using (12) with �0(x, y) = γ dδ(x + (γ y/2))δ(x − (γ y/2)) we obtain the asymptotic for
the dominant term in the calculation for the variance V (x, τ ) prior to the ω-integration

�L(r1, 0; ω, β)

∫
�L

(
x1 + x2

2
,

x1 − x2

γ
; ω, β

)
×θ∗(

x1 − r
�c

)θ(
x2 − r

�c

)d
x1

γ
d

x2

γ
≈ Cβ̃β2d

c (17)

with the constant Cβ̃ given by

Cβ̃ = (2π)−2d(1 + i)d β̃d/2sin−d (

√
β̃(1 + i))e−(β̃2D0/σ

2
∗ )

× e((1−i)/2
√

β̃) cot(
√

β̃(1+i))(β̃2|r1|2/4σ 2
∗ )ei(β̃/8σ 2

∗ )(|r1|2+|r|2)

×
∫

θ∗(ỹ +
ỹ′

2
)θ(ỹ − ỹ′

2
)e(i/2β̃|ỹ′|2 ei(ỹ′ ·r/2σ∗)

× e
((1−i)/2

√
β̃) cot

(√
β̃(1+i)

)∣∣−(β̃/2σ∗)r+ỹ′∣∣2

dỹdỹ′
. (18)

Note that Cβ̃ depends only slowly on r, r1 for σ∗ � 1. Due to the rapidly decaying factor

sin−d
(√

β̃(1 + i)
)

the β̃-integration of Cβ̃ is convergent as B → ∞. As βc 	 1, the ω1 and ω2

integrals essentially decouple after the change in variables: (ω1, ω2) = (ω−βγ/2, ω+βγ/2).
We conclude that V (x, t)�2

√
2πKγ 2β2d+1

c BT
∫

Cβ̃dβ̃. Note that the variance increases
linearly with the number T of symbols in each datum stream.

The asymptotic SISR for the SISO-TRA is given by ρ = O(Bβ−1
c T −1). Note that the

SISR is slowly varying in the test point r and the receiver location r1 on the scale of σ∗.
SIMO. Let us turn to the SIMO case with N = 1 element TRA located at a1 = 0.
The mean field calculation is analogous to the SISO case. Namely, E(rj , τl) ≈√

4πC0(rj , rj )β
d
c Bγ and zero in the temporal or spatial sidelobe.

In view of the remark following (13) the variance of S is dominated by the contribution
from the diagonal terms in the summation over receivers given by

T∑
l,l′=1

∫
e−(ω(τl−τl′ )/γ )g2(ω)dω

M∑
j=1

∫
θ∗

(
x1 − r

�c

)
θ

(
x2 − r

�c

)

×
∫

dβ�L(rj , 0; ω, β)�L

(
x1 + x2

2
,

x1 − x2

γ
; ω, β

)
d

x1

γ
d

x2

γ

≈
√

2πBγ 2T M

∫
Cβ̃dβ̃β2d

c ,

because |ri − rj | � �c regardless of whether the test point is near or away from any receiver.
Therefore, we have the estimate: ρ = O(Bβ−1

c M−1T −1).
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MISO. The case corresponds to M = 1. Each term in the summation over the N

TRA-elements has the same asymptotic as that of the SISO case. Hence, E(rj , τl) ≈√
4πNC0(rj , rj )β

d
c Bγ and zero in the spatial or temporal sidelobes.

For the variance calculation, let us first note that the correlations of two Green functions
starting with two TRA-elements located at ai , aj satisfy equation (9) in the variables (ai , aj ),
by the reciprocity of the time-invariant channel and hence vanish as |ai − aj | � �c. The
variance of the signal at r (whether at r1 or away from it) before performing the ω-integration
is then dominated by the following diagonal terms in the summation over receivers
N∑

j=1

E
[
G∗

L(r1, aj ; ω1)GL(r1, aj ; ω2)
] ∫

θ∗(
x1 − r

�c

)

×θ

(
x2 − r

�c

)
E[GL(x1, aj ; ω1)G

∗
L(x2, aj ; ω2)]d

x1

γ
d

x2

γ

≈ NCβ̃β2d
c .

The ω-integration induces the additional factor of
√

2πBγ 2T . Hence

V (r, t) � 2
√

2πKγ 2β2d+1
c BT

∫
Cβ̃dβ̃

since |r − rj | 	 σ∗, ∀j . We conclude that ρ = O(NBβ−1
c T −1).

MIMO. The analysis for the MIMO case combines all the previous cases. The mean
signal has the same asymptotic as that of the MISO case, i.e. linearly proportional to BN . The
variance of the signal prior to performing the ω-integration is dominated by
M,N∑
i,j=1

E
[
G∗

L(ri , aj ; ω1)GL(ri , aj ; ω2)
] ∫

θ∗(
x1 − r

�c

)

×θ

(
x2 − r

�c

)
E

[
GL(x1, aj ; ω1)G

∗
L(x2, aj ; ω2)

]
d

x1

γ
d

x2

γ

≈ NMCβ̃β2d
c

and therefore V � T MN2Kγ 2Bβ2d+1
c

∫
Cβ̃dβ̃. We conclude that ρ = O(NBβ−1

c T −1M−1).
Although we have omitted the details of preceding calculations, they can be fully justified.

We summarize the results in the following.

Theorem 1. Let the N -element TRA, M receivers and the number of symbols T satisfy the
packing condition. Assume the 4th order sub-Gaussianity condition (13) in the saturated-
fluctuation regime (2) and let 1 	 α∗ 	 γ −1, 1 	 σ∗ 	 γ −1.

Then in the broadband limit (4) the asymptotic SISR ∼ NM−1T −1Bβ−1
c is

valid uniformly for all rj , j = 1, . . . , M , with the constant of proportionality
2−1(2π)−1/2K−1(

∫
Cβ̃dβ̃)−1|C0|2 where C0 and Cβ̃ are given by (16) and (18), respectively.

The asymptotic signal at the receiver plane within the distance much less than σ∗ from the
receivers is

∑T
l=1

∑M
j mj (τl)Sjl(x, t) where Sjl(x, t) is given by (6).

Note here that Tβc ∼ C is roughly the number of symbols per unit time in each datum stream
since T symbols are packed within a delay spread δ∗ ∼ β−1

c .

5. Information rate

In this section, following [16], we derive the information rate for a memoryless channel which is
constructed out of the time-invariant channel model analysed above. The temporal dependence
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is introduced by drawing an independent realization from the medium ensemble after each use
of the medium realization. This is a widely used model in communications literature for
time-varying channels with the coherence time much longer than one delay spread of the
realization [21, 39]. We assume as in standard practice that in addition to the random channel
fluctuations additive-white-Gaussian-noise (AWGN) is present at each receiver, that the input
signal vector is multivariate Gaussian and that the channel, the noise and the input signal are
mutually independent. We further assume the probability distribution of the wave field to be
exactly Gaussian (instead of being just 4th-order sub-Gaussian) to simplify our discussion.

Prior to adding noise, each frequency component of the time reversed signal

M∑
i=1

N∑
n=1

mi(τl)g(ω)GL(rj , an; ω)G∗
L(ri , an; ω)

=

N -degree central χ2 r.v.︷ ︸︸ ︷
N∑

n=1

mi(τl)g(ω)GL(rj , an; ω)G∗
L(rj , an; ω)

+
∑
i �=j

N∑
n=1

mi(τl)g(ω)GL(rj , an; ω)G∗
L(ri , an; ω)

︸ ︷︷ ︸
N(M − 1) i.i.d. zero-mean r.v.s

is a sum of a central χ2 random variable with N degrees of freedom and N(M − 1) i.i.d.
mean-zero random variables. This is due to the Gaussianity assumption which implies that
uncorrelated entries are statistically independent. Therefore, for N � 1 the interference
statistic is approximately Gaussian, by the central limit theorem. More generally, after
synthesizing all the available frequencies, the interference statistic becomes approximately
Gaussian if NBβ−1

c � 1 which is always the case for broadband signals. In a broadband
channel NBβ−1

c is the number of independent subchannels from TRA to each receiver.
For the discussion of power constraint below let us normalize the Green function GL as∑N

n=1 E

∣∣∣GL(rj , an; ω)

∣∣∣2
≈ 1, ∀j . As a consequence, each frequency component has the mean

E

[ M∑
i=1

N∑
n=1

mi(τl)g(ω)GL(rj , an; ω)G∗
L(ri , an; ω)

]
≈ g(ω)mj (τl), (19)

which exhibits the simple input–output relation: the ω-component of the input signal for
the j th receiver is mjg(ω) and the received signal component is mjg(ω) corrupted by the
noise and interference which for N � 1 is approximately Gaussian. Since the M receivers
operate independently of one another, the total time-reversal broadcast channel consists of M

independent subchannels in parallel each of which has the above input–output relation. Thus,
the total information rate is the sum of those of the M subchannels from TRA to individual
receivers. And, in view of the simple input–output relation, each subchannel can be viewed
as a SISO linear filter channel corrupted by (approximately) Gaussian noise/interference for
which Shannon’s theorem is applicable.

According to Shannon’s theorem [5] the ergodic capacity (in nats per unit time and
bandwidth) of a SISO linear filter channel is ln (1 + SINR) where SINR, the signal-to-
interference-and-noise ratio at each receiver, is given by the harmonic sum of the SIR, the
SIR and SNR, the SNR, i.e. SINR = (SIR−1 + SNR−1)−1. For the extension of Shannon’s
result to the MIMO setting, see [21, 39].
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We set the symbol rate to be 2B. Hence SIR(ω) ∼ N/M , independent of ω. Let ν be
the noise level, per unit bandwidth, at each receiver. Suppose the average transmission power
is constrained to P and all the transmit and receive antennas are identical. In view of (19),
SNR(ω) = µ2/ν where µ = |mj | can be related to the average total power P as µ2M ∼ P/B

since the average input power per unit bandwidth is

N∑
n=1

M∑
i=1

|mi(τl)|2|g|2(ω)E
∣∣GL(xi , an; ω)

∣∣2 ∼ Mµ2.

Thus, SNR(ω) ∼ P/(νBM). Therefore the total channel capacity (in nats per unit time) is
roughly given by

BM ln
[
1 +

1

M

( 1

N
+

νB

P

)−1]
. (20)

What is the maximal rate at which a TRA, with fixed number of elements N , fixed average
total power P and fixed noise level (per unit bandwidth) ν, can transfer information if there is no
limitation to the number of receiversM and the bandwidthB? Expression (20) can be optimized
at the low SNR limit M � P/(νB) to yield the optimal information rate of P/ν which is the
power-to-noise ratio. We see that the simplest strategy for optimizing the information rate of
a given TRA under the power and noise constraints is to enlarge the bandwidth B as much
as possible. And if we can satisfy N � M � P/(νB) then we can achieve stability as well
as the optimal information rate. An O(P/ν) information rate is consistent with the classical
result of minimum energy kBT requirement for transmitting one nat information where kB is
the Boltzmann constant and T the temperature [28, 31].

Since the number of receivers (and TRA-elements) in the area of one spatial spread
cannot exceed σd

∗ /�d
c = γ −dβ−d

c the regime with the optimal information rate thus requires
γ −dβ−d

c � P/(νB) which can be satisfied with γ 	 1 (high frequency) and/or βc 	 1
(saturated-fluctuation).

It may be worthwhile to compare the information rate of the MIMO-TR channel with
that of the reciprocal, non-TR channel in which there are M transmitters, without channel
knowledge, and N receivers, with channel knowledge. The information rate for the non-TR
channel with narrowband signals has been extensively studied in the literature [21,29,36,39]
and scales like BM ln SNR for M � N at high SNR ∼ P/(νBM) � 1 (thus M 	 P/(νB)).
According to (20), the information rate of the TR channel also scales the same way provided
that N � P/(νB). We know, however, from the above discussion that the optimal rate cannot
be achieved in this regime.

6. Conclusion

The saturated-fluctuation regime (2) constitutes the so called space-frequency-selective
multipath fading channels in wireless communications [30]. In such a channel, TR has
the super-resolution given by �c = γ /

√
D2L. We have established firmly the packing and

multiplexing conditions for stable super-resolution for the MIMO-TRA communication system
under the 4th order sub-Gaussianity assumption. The stability in the case M = 1 has been
experimentally demonstrated in [7, 8] and analysed in [32, 40]. We show that an O(P/ν)

information rate can be achieved by broadband time-reversal, resulting in statistically stable,
sharply focused signals at the receiver end. Our results should be valid for other multiply
scattered waves such as diffusive waves for which βc is the Thouless frequency and �c is on
the scale of the wavelength.
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Let us point out several possible extensions of our results. First, the case of even broader
bandwidth of 0 < lim Bγ � 1 can easily be treated by partitioning the full bandwidth into
many sub-bands with their own B and γ satisfying (4). Since the self-averaging takes place
in each sub-band and the whole process is linear, stable super-resolution is valid in the full
passband. Second, in the case of a finite time-window, the out-put signals, unlike (3), involve a
coupling of neighbouring wavenumbers [18]. If the time window is sufficiently large (� β−1

c )
then the coupling takes place only between wavenumbers of separation much smaller than βc

and our result carries over without major adjustment. Finally, our results may also be extended
to time-varying channels, prevalent in mobile wireless communications, with a low spread
factor T −1

c δ∗ 	 1 where Tc is the coherence time of the time-varying channels [30].

Appendix A. Derivation of (12)

In terms of the variables y1 = ỹ + β̃x̃/2, y2 = ỹ − β̃x̃/2 equation (9) can be written as

∂

∂z̃
�̃z̃ = iβ̃

2

(∇2
1 − ∇2

2

)
�̃z̃ − |y2|2�̃z̃ − β̃2D0

2σ 2∗
�̃z̃, (A.1)

where ∇1, ∇2 are the gradients with respect to y1, y2, respectively. Consider the function

W(z̃, p1, y2) = e(β̃2D0/2σ 2
∗ )z̃e−i(z̃β̃/2)|p1|2 1

(2π)d

∫
�̃z̃(

y1 − y2

2β̃
,

y1 + y2

2
)e−iy1·p1 dy1

which satisfies the equation

∂

∂z̃
W = − iβ̃

2
∇2

2W − |y2|2W. (A.2)

Equation (A.2) is just the Schrödinger equation with an imaginary, quadratic potential and can
be solved by separation of variables. Consider the one-dimensional version of the equation:

∂

∂z̃
Wj = − iβ̃

2

∂2

∂y2
j

Wj − y2
j Wj , j = 1, 2, . . . , d, (A.3)

and forming tensor product
∏d

j=1 Wj(yj ).
We begin by searching for solutions of the Gaussian form

Wj = e−A(z̃)−B(z̃)|yj −C(z̃)|2 , (A.4)

where A, B, C are complex-valued functions of z̃, parametrized by p1. Substituting (A.4) into
equation (A.2) and comparing the coefficients we obtain the ODEs governing A, B, C:

B ′ = 1 + i2β̃B2, (A.5)

C ′ = − C

B
, (A.6)

A′ = C2 − iβ̃B, (A.7)

which can be solved in the order of B, C, A and yield

B(z̃) = 1

(1 − i)
√

β̃

Ke2(1−i)z̃
√

β̃ + 1

Ke2(1−i)z̃
√

β̃ − 1
,

C(z̃) = C(0) exp

[
−

∫ z̃

0
B(s)−1ds

]
, (A.8)
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where the constant K is given by

K =
2B(0)

√
β̃ + 1 + i

2B(0)

√
β̃ − 1 − i

.

We set K = 1 corresponding to B(0) = +∞, j = 1, 2, . . . , d and write

A(z̃) = −iβ̃
∫ z̃

1
B(s)ds +

∫ z̃

0
C2(s)ds, z̃ > 0

with

B(z̃) = 1

(1 − i)
√

β̃

e2(1−i)z̃
√

β̃ + 1

e2(1−i)z̃
√

β̃ − 1

= −1

(1 + i)
√

β̃

cot

[
(1 + i)z̃

√
β̃

]
.

Then a straightforward calculation leads to the Green function

G�̃(z̃, y1, y2, y′
1, y′

2) ∼ e−(β̃2D0/2σ 2
∗ )z̃eidβ̃

∫ z̃

1 B(s)ds−∫ z̃

∞ |C|2(s)dse−B(z̃)|y2−C(z̃)|2

×
∫

e−iβ̃|p1|2 z̃/2eip1·(y1−y′
1)dp1

∼ e−(β̃2D0/2σ 2
∗ )z̃(1 + i)d/2z̃d/2β̃d/4(2π)d z̃d β̃d sind/2 [

(1 + i)z̃
√

β̃
]

×ei(|y1−y′
1|2/2β̃z̃)e−(|y′

2|2/(1+i)
√

β̃) tan
(
(1+i)z̃

√
β̃

)
×e

(1/(1+i)
√

β̃) cot
(
(1+i)z̃

√
β̃
)∣∣∣y2−

(
y′

2/cos
(
(1+i)z̃

√
β̃
))∣∣∣2

,

where C(z) = (Cj (z̃)) is given by the formula (A.8) with the initial data C(0) = y′
2.
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