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Abstract
This paper studies the problem of exact localization of multiple objects with
noisy data. The crux of the proposed approach consists of random illumination.
Two recovery methods are analyzed: the Lasso and the one-step thresholding
(OST). For independent random probes, it is shown that both recovery methods
can localize exactly s = O(m), up to a logarithmic factor, objects where
m is the number of data. Moreover, when the number of random probes is
large the Lasso with random illumination has a performance guarantee for
superresolution, beating the Rayleigh resolution limit. Numerical evidence
confirms the predictions and indicates that the performance of the Lasso is
superior to that of the OST for the proposed setup with random illumination.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Two-point resolution is a standard criterion for evaluation of imaging systems, i.e. the ability
of the imaging system to distinguish two closely located point objects. The smallest resolvable
distance � between two objects, called the (two-point) resolution length, is then defined as a
metric of the resolving power of the imaging system. Let A be the aperture of the imaging
system, z0 the distance to the objects and λ the wavelength. The classical Rayleigh resolution
criterion then states

A�

z0λ
= O(1) (1)

where there is some arbitrariness in the constant depending on the precise definition of the
minimum resolvable length �.

For noisy data, such a criterion is more difficult to apply as determination of � becomes
a statistical problem. One option would be to formulate the two-point resolution problem as
a statistical-hypothesis-testing problem (one versus two objects), see [23, 33] and references
therein. However, it is cumbersome to generalize this approach to multiple point objects.
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In this paper, we first study the resolution issue from the perspective of exact, simultaneous
localization of multiple point objects. We evaluate an imaging method by saying that it
can exactly localize s (sparsity) randomly distributed point objects mutually separated by a
minimum distance � with high probability. In addition to reconsidering the issue of resolution,
we seek an approach that can recover a high number s = O(m) of objects where m is the
number of data, with resolution � far below what is dictated by the Rayleigh resolution limit
(1) (see remark 3). This latter effect is called superresolution.

Consider the noisy data model:

Y = �X + E, ‖E‖2 � ε, (2)

where X ∈ C
N is the object to be recovered, Y ∈ C

m is the data vector and E ∈ C
N represents

noise. We assume that � has unit-norm columns. This can always be realized by redefining
the object vector X.

Sparse object reconstruction for this model can be broken into two steps: localization
(i.e. support recovery) and strength estimation. For underdetermined systems, the former,
being combinatorial in nature, is by far more difficult than the latter which is a straightforward
inversion if the former is exact. The former step is called model selection in linear regression
and machine learning theory [3, 5, 6, 10, 12, 26, 28, 35, 41] from which one of the
reconstruction methods studied in the present paper originates.

Exact localization with noisy data is challenging. Many reconstruction methods guarantee
stability (i.e. the reconstruction error bounded by a constant multiple of the noise level) but
not necessarily exact localization. Orthogonal matching pursuit (OMP) is a simple greedy
algorithm with proven guarantee of exact localization for sufficiently small noise and worst-
case coherence.

A basic quantity for stability analysis in compressed sensing is the notion of coherence.
Let the worst-case coherence μ(�) be defined as

μ(�) = max
i �=j

∣∣∣�∗
j�i

∣∣∣
‖�j‖2‖�i‖2

. (3)

A standard result is as follows [18].

Proposition 1. Consider the signal model (2). Suppose the sparsity s of the real-valued
object vector X ∈ R

N satisfies

s <
1

2

(
1 +

1

μ

)
− ε

μXmin
, Xmin = min

i∈S
|Xi |.

Denote by X̂ε the output of OMP which stops as soon as the residual error (in �2-norm) is no
greater than ε. Then

(i) X̂ε has the correct support, i.e.

supp(X̂ε) = supp(X);
(ii) X̂ε approximates the true object vector

‖X̂ε − X‖2
2 � ε2

1 − μ(s − 1)
.

The general lower bound [17, 40]√
N − m

m(N − 1)
� μ

2
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for the mutual coherence of any m × N matrix � implies that the sparsity s allowed by
proposition 1 is O(

√
m) for N � m.

A main purpose of the paper is to explore the utility of two other methods from compressed
sensing theory, the one-step thresholding (OST) [3] and the Lasso [15, 35], that have the
potential for exact localization of a much higher number O(m) of objects.

The OST, proposed in [3], involves just one matrix multiplication plus thresholding.
Compute Z = �∗Y and determine the set of points

Ŝ = {i ∈ {1, . . . , N} : |Zi | > τ∗}
for some threshold τ∗. In other words, the OST is the linear processor of matched field
processing (MFP) plus a thresholding step [2]. On the other hand, the linear processor of MFP
is the same as the first iterate of OMP. Consequently, OST has even lower complexity than
OMP which is its main appeal.

For the OST’s performance guarantee, we need the notion of average coherence defined
as [3]

ν(�) = 1

N − 1
max

j ′

∣∣∣∣∣∣
∑
j �=j ′

�∗
j ′�j

∣∣∣∣∣∣
in addition to the worst-case coherence.

The following is the performance guarantee for OST [3].

Proposition 2. Consider the signal model (2). Assume that X ∈ R
N is drawn from the

generic s-sparse ensemble of real-valued objects. Assume E to be distributed as CN(0, σ 2I),
the complex Gaussian random vectors with the covariance matrix σ 2I.

Suppose

μ(�) � c1√
m

� 1√
10 log N

(4)

for some c1 > 0 (which may depend on log N ) and

ν(�) � 12μ(�)√
m

. (5)

Assume ‖X‖2 = 1. Define the threshold

τ∗ = 4
√

log N max{σ, 12μ
√

2}. (6)

Suppose the number of objects obeying

s � m

2 log N
(7)

and that

Xmin = min
i∈S

|Xi | > 2τ∗. (8)

Then, the OST with threshold τ∗ satisfies P
(
Ŝ �= S

)
� 9/N .

In other words, for sufficiently small worst-case coherence (4) and average coherence
(5) and noise (8), OST can exactly localize O(m) objects, up to a logarithmic factor with
high probability. Once the support is exactly recovered, an estimate X̂ can be obtained by
pseudo-inversion on the object support S.

3
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The other method studied in this paper is the Lasso [35]. The Lasso estimate X̂ is defined
as the solution to

min
Z

1

2
‖Y − �Z‖2

2 + γ σ‖Z‖1, γ > 0, (9)

where γ is a regularization parameter.
The following sufficient condition for exact localization by the Lasso is given by [12].

Proposition 3. Consider the signal model (2). Assume that X ∈ R
N is drawn from the

generic s-sparse ensemble of real-valued objects. Assume E to be distributed as CN(0, σ 2I).
Suppose that � obeys the coherence property

μ(�) � a0

log N
(10)

with some positive constant a0. Suppose

s � c0N

‖�‖2
2 log N

(11)

for some positive constant c0. Let S be the support of X and suppose

Xmin > 8σ
√

2 log N. (12)

Then the Lasso estimate X̂ with γ = 2
√

2 log N obeys

supp(X̂) = supp(X) (13)

sign(X̂) = sign(X) (14)

with probability at least 1 − 2N−1((2π log N)−1/2 + sN−1) − O(N−2 log 2)).

Some comparison between propositions 3 and 2 is in order. Both deal with randomly
distributed objects. Both (4) and (10) are sufficiently weak assumptions for most imaging
problems. Also (12) and (8) are similar when μ = O(σ ). The lower bounds for the success
probabilities are comparable up to a logarithmic factor. The main technical assumption of
proposition 3 is (11), while for proposition 2 it is (5). When the operator norm ‖�‖2 obeys
the bound ‖�‖2 = O(N/m) condition (11) is comparable to (7).

A drawback to proposition 2 is that the thresholding rule (6) requires the precise knowledge
of μ which can only be calculated numerically. As we will see, the Lasso-based method also
has a better numerical performance than the OST does (cf figures 5 and 7).

To realize the potential of the two above results in imaging, we consider the idea of
random illumination (RI) for point scatterers (figure 1). We show that a suitable condition of
RI enables us to (i) obtain a guaranteed exact localization of s = O(m), up to a logarithmic
factor, objects and to (ii) harness the superresolution capability (i.e. breaking the Rayleigh
resolution limit (1)).

Previously we have studied the problems of imaging point scatterers [21, 24] using
coherence and operator-norm bounds. We demonstrate that the imaging performance can be
significantly improved by RI. In particular, suitable RI leads to superresolution.

However, both propositions 2 and 3 share the following common drawbacks: (i) they are
restricted to random objects; (ii) they do not address the reconstruction error when the error
level is above threshold and exact localization is unattainable; (iii) they are limited to the i.i.d.
Gaussian noise model. Issue (i) is pertinent particularly to imaging extended objects whose
supports are clearly not random. Issue (ii) is related to robustness with respect to a wider range
of error. Issue (iii) arises in optics where the Poisson or shot noise model is more appropriate.

4
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random phase modulator

image planelens
plane wave

object plane

Figure 1. The imaging geometry for point objects.

random phase modulator

image planelens
plane wave

object plane

Figure 2. The imaging geometry for extended objects.

The standard compressed sensing method that is without any of the above limitations is
the basis pursuit denoising (BPDN)

min
Z

‖Z‖1, s.t. ‖Y − �Z‖2 � ε (15)

[15]. BPDN, of course, is equivalent to the Lasso (55) for an appropriately chosen γ .
The performance guarantee for BPDN is typically given in terms of the restricted isometry

property (RIP) due to Candès and Tao [13]. Precisely, let the sparsity s of a vector Z ∈ C
N

be the number of nonzero components of Z and define the restricted isometry constant (RIC)
δs ∈ [0, 1] to be the smallest nonnegative number such that the inequality

(1 − δs)‖Z‖2
2 � ‖�Z‖2

2 � (1 + δs)‖Z‖2
2 (16)

holds for all Z ∈ C
N of sparsity at most s. BPDN has the following performance guarantee

[11].

Proposition 4. Suppose the RIC satisfies the bound

δ2s <
√

2 − 1. (17)

5
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Then, the BPDN minimizer X̂ is unique and satisfies the error bound

‖X̂ − X‖2 � C1s
−1/2‖X − X(s)‖1 + C2ε

where X(s) is the best s-sparse approximation of X and C1, C2 are absolute constants depending
on δ2s only.

In proposition 4, BPDN does not guarantee the exact recovery of the discrete support X,
which is less important for extended objects, but also does not have any of the limitations
mentioned above for propositions 2 and 3.

The plan for the rest of the paper is as follows. In section 2, we review the forward
scattering problem and the paraxial approximation. We describe the setup of RI in the paraxial
regime. In section 3 we state and prove the main results. In section 4, we analyze the
performance of BPDN with RI for extended objects and discuss the issue of resolution in
imaging extended objects. In section 5 we give the worst-case coherence bounds. In section 6,
we give the average coherence bound. In section 7, we give an operator norm bound of
O(N/m) required to guarantee a nearly optimal performance for the Lasso. In section 8, we
present numerical simulations to verify the predictions and show the superiority of the Lasso
over the OST for the setup of RI. We also present numerical results for extended objects. We
conclude in section 9.

2. Point scatterers and paraxial approximations

Let L be a finite square lattice of spacing � in the object plane {z = 0} ⊂ R
3:

L = {rl : l = 1, . . . , N} = {(i�, j�) : i, j = 1, . . . ,
√

N}, l = (i − 1)
√

N + j, (18)

and suppose that s point scatterers are located at grid points of L. The total number of grid
points N is a perfect square.

Let τj ∈ C, l = 1, . . . , N, be the reflectivity of the scatterers. The scattered field us obeys

us(r) =
N∑

j=1

τjG(r, rj )(u
i(rj ) + us(rj )) (19)

for any r �∈ {rk : τk �= 0} where ui is the incident field and

G(r, r′) = eıω|r−r′ |

4π |r − r′| , ∀r �= r′ ∈ R
3, (20)

is the Green function of the operator −(
 + ω2).
In the Born scattering approximation, us on the right-hand side of (19) is neglected,

resulting in

us(r) =
N∑

j=1

τjG(r, rj )u
i(rj ). (21)

Let aj , j = 1, . . . , n, be the locations of the sensors in the sensor plane {z = z0} ⊂ R
3 and

write aj = (ξj , ηj , z0) where ξj and ηj are chosen independently and uniformly from the
discrete subset of [0, A] :

D =
{

qA√
N

: q = 1, . . . ,
√

N

}
(22)

where A is the aperture of the sensor array.

6
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In the Fresnel approximation under the condition

(A + �
√

N)4

λz3
0

� 1 (23)

the Green function G can be approximated by

Gpar(r, a) = eıωz0

4πz0
eıω|x−ξ |2/(2z0)eıω|y−η|2/(2z0), r = (x, y, 0), a = (ξ, η, z0), (24)

called the paraxial Green function.
In the subsequent analysis we assume both the Born and paraxial approximations in the

scattering model.
A main ingredient of the proposed approach is RI which has recently been used extensively

for wavefront reconstruction and imaging [1, 19, 30]. Here, we consider random phase
modulation (RPM) which is a random perturbation of the phase of a wavefront while
maintaining the amplitude of the near-field beam almost constant. The advantage of phase
modulation, compared to amplitude modulation, is the lossless energy transmission of an
incident wavefront through the modulator. In optics, RPM can be created by random phase
plates, digital holograms or liquid crystal panels [8, 34].

3. Main results for point objects

We assume that as a result of p independent realizations of random phase modulators the
incident field at the grid points can be represented as eıθkj , k = 1, . . . , p, j = 1, . . . , N, where
θkj are i.i.d. uniform random variables in [0, 2π ] (i.e. circularly symmetric). The information
about θkj is incorporated in the sensing matrix (figure 1).

Let the scattered field us
k be measured and collected by n sensors located at al , l = 1, . . . , n.

Let X = (τj )
N
1 ∈ C

N be the object vector and Y = (Yi) = (
us

k(aj )
) ∈ C

np, i =
(k − 1)n + j, j = 1, . . . , n, the data vector.

After proper normalization, the data vector Y can be written as (2) with the sensing matrix
� being the column-normalized version of

[
Gpar(al , rj )u

i
k(rj )

]
, i.e.

φij = 1√
np

eıω|xj −ξl |2/(2z0) eıω|yj −ηl |2/(2z0) eıθkj , i = (k − 1)n + l. (25)

Here m = np is the number of data.
Our first result is a performance guarantee for the OST with RI in the diffraction-limited

case satisfying the Rayleigh resolution criterion.

Theorem 1. Let

N2 � δ

2
eK2/2, δ,K > 0. (26)

Suppose

np � 40K4 log N (27)

and
A�

λz0
= 1. (28)

Then with a probability of at least

1 − 2δ − 4t

√
2

π
− 4√

p
− 4√

n
− 8Ne

−12t2
√

N−1
np , ∀t > 0, (29)

OST with the threshold (6) can localize exactly s objects satisfying (7)–(8).

7
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Remark 1. The constants δ and K in (26) are controlling parameters. δ can be adjusted to
control the lower bound (29) for success probability and then K can be adjusted to control the
number of grid points in the computation domain and the number of data.

For example, suppose δ = 1% is acceptable. Then, (26) with K = 10 implies a
computation domain of up to 0.1e25/

√
2 grid points.

Proof. The proof of theorem 1 relies on proposition 2 and the following three lemmas.

Lemma 1. Under (26), the worst-case coherence satisfies

P

{
μ(�) � aK

√
2√

p
+

2K2

√
np

}
� 1 − 2δ (30)

where a is given by (35).
In particular, if (28) holds, then a = 0 and (30) becomes

P{μ(�) � 2K2/
√

np} � 1 − 2δ. (31)

The proof of lemma 1 is given in section 5. The utility of estimate (30) lies in the situation
where both the aperture and the sensor number are limited but the number of probe waves is
exceedingly large (see remark 3). For the proof of theorem 1 we need estimate (31).

Lemma 2. Under the assumption (28),

P

[
μ(�) � 2t1t2√

np

]
�
(

1 − 2t1

√
2

π
− 4√

p

)(
1 − 2t2

√
2

π
− 4√

n

)
. (32)

Lemma 2 is an easy consequence of the Berry–Esseen theorem and its proof is given in
section 5.2.

Lemma 3. Let (28) hold true. Then for any c > 0,

P

{
ν(�) � c

np

}
� 1 − 8N e

− c
2

√
N−1
np . (33)

The proof of lemma 3 is given in section 6.
First of all, by the upper bound (30) for the worst-case coherence and setting c1 = 2K2 in

(4), the first inequality of (4) holds with a probability of at least 1 − 2δ. The second inequality
of (4) follows from (26) and (27) and holds with a probability of at least 1 − 2δ.

Second, the lower bound (32) for the worst case coherence, with t1 = t2 = t , and the upper
bound (33), with c = 24t2, for the average coherence imply that (5) holds with a probability
of at least

1 − 4t

√
2

π
− 4√

p
− 4√

n
− 8Ne

−12t2
√

N−1
np .

This completes the proof of theorem 1. �

Our second result is a performance guarantee for the Lasso with RI.

Theorem 2. Let (26) hold and suppose

aK
√

2√
p

+
2K2

√
np

� a0

log N
(34)

where

a = max
j �=j ′

|E(eıξlω(xj ′−xj )/z0)E(eıηlω(yj ′−yj )/z0)|. (35)

8
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Assume that the s objects are real valued and satisfy (12) and

s � c0np

2 log N
. (36)

Then the Lasso estimate X̂ with γ = 2
√

2 log N has the same support as X with a probability
of at least

1 − 2δ − ρn(n − 1)
π

2

√
np − 1

N
− 2n2p(p − 1) e

− N

(np−1)2

− 2N−1((2π log N)−1/2 + sN−1) − O(N−2 log 2)). (37)

Remark 2. While it requires that N � np for the bound (29) to approach unity, it demands a
much stronger assumption N � max{pn5, p2n2} for the bound (37) to behave the same way.
Numerical evidence indicates the latter to be a pessimistic estimate.

For the special case of a single sensor n = 1, the probability lower bound (37) is
substantially improved and requires N � p2 to approach unity. On the other hand, for (29)
to approach unity, it is necessary that n → ∞ (hence n = 1 is not an option).

Remark 3. The superresolution effect can occur when the number p of random probes is
large. Consider, for example, the case of n = 1 and hence the aperture A is essentially zero.
Since a � 1, the conditions

K
√

2 + 2K2

√
p

� a0

log N

and

s � c0p

2 log N

impliy that the Lasso with γ = 2
√

2 log N recovers exactly the support of s objects with a
probability of at least that given by (37).

This superresolution effect should be compared to that with deterministic near-field
illumination [20].

Proof. The proof of theorem 2 uses proposition 3, lemma 1 and the following operator-norm
bound.

Lemma 4. We have

P

{
‖�‖2

2 <
2N

np

}
� 1 − ρn(n − 1)

π
√

np − 1

2
√

N
− 2n2p(p − 1) e

− N

(np−1)2 . (38)

On one hand, lemma 1 and (34) imply that (10) holds with a probability of at least 1 − 2δ.
On the other hand, lemma 4 and (36) imply that (11) holds with a probability of at least

that given by the right-hand side of (38).
Combining the two and using proposition 3 we obtain the desired statement of

theorem 2. �

To further demonstrate the advantage of RI, let us consider the imaging setup of multistatic
responses (MR) which consists of an array of n fixed transceivers which are both sources and
sensors (i.e. transceivers). One by one, each transceiver of the array emits an impulse and
the entire array of transceivers records the echo. Each transmitter–receiver pair gives rise to
a datum and there are altogether n2 data forming a data matrix called the MR matrix. By the

9
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reciprocity of the wave equation, the MR matrix is symmetric and hence has at most n(n+1)/2
degrees of freedom.

Recalling the coherence and operator norm bounds established in [24] and using
proposition 3 as in the proof of theorem 2 (below), we have the following result [24] analogous
to theorem 2.

Proposition 5. Let the locations of the n transceivers be i.i.d. uniform random variables in
[0, A]2. Let (27) and (28) hold true.

Suppose

n � K2 log N

a0

and that the s real-valued objects satisfy (12) and

s � c0n(n + 1)

4 log N
. (39)

Then, the Lasso estimate X̂ with γ = 2
√

2 log N has the same support as X with a probability
of at least

1 − 2
√

2δ − ρn5/2(n + 1)5/2

π25/2N1/2
− 2N−1((2π log N)−1/2 + sN−1) − O(N−2 log 2)). (40)

Remark 4. The main drawback of the lower bound (40) lies in the third term which requires
N � n10 to diminish.

More generally, one can consider the case of p transmitters and n receivers, all randomly
and independently distributed in [0, A]2. Then an extension of the bound (40), which is
omitted here, requires N � n5p5 (cf [21]).

A fair comparison of proposition 5 and theorem 2 would be to set p = (n + 1)/2
and match their degrees of freedom, i.e. n(n + 1)/2. However, proposition 5 does not
guarantee superresolution when (28) is violated preventing the worst-case coherence from
being sufficiently small due to the deterministic nature of the illumination. Also, the probability
lower bound (40) has a less favorable scaling behavior (N � n10) than (37) for p = (n + 1)/2
(N � n6, cf remark 2). Indeed, the numerical simulations show that the recovery with RI has
a higher success rate than the MR recovery (figures 3 and 4).

4. Sparse extended objects

We extend the above results to the case of sparse extended objects here (figure 3).
We pixelate the sparse extended object with N pixels �j , j = 1, . . . , N, of size � to create

a piecewise constant approximation of the object. The centers of the pixels are identified as L
given in (18). Let O(r) be a the original object and O� its �-discretization, i.e.

O� =
N∑

j=1

I�j
O(rj )

where I�j
is the indicator function of the pixel �j . We reconstruct the discrete approximation

O� by determining the object function restricted to L, denoted still by X = (O(rj )), by
compressed sensing techniques.

Under the RI ui
k , pixel �j now produces a signal at the sensor al of the form

O(rj )

∫
�j

Gpar(r, al ) e−ıωx2/(2z0) e−ıωy2/(2z0)ui
k(x, y) dx dy

10
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where the quadratic phase factors are due to the presence of a parabolic lens immediately after
the object plane (figure 2). This lens is introduced here to simplify our analysis. In practice,
the lens is not needed and should have a negligible effect on performance.

As for the case of point objects we assume that as a result of the RPM ui
k takes a constant

value eıθkj in the pixel �j and that θkj are i.i.d. random variables in [0, 2π ] as a result of RPM.
The total signal produced by O� and detected at the sensor al is∑

j

O(rj ) eıθkj

∫
�j

Gpar(r, al ) e−ıωx2/(2z0) e−ıωy2/(2z0) dx dy

=
∑

j

O(rj ) eıθkj eıωξ 2
l /(2z0) eıωη2

l /(2z0) e−ıωξlxj /z0 e−ıωηlyj /z0

∫
�

e−ıωξlx/z0 e−ıωηly/z0 dx dy,

plus an error term Ekl which includes the discretization error and external noise where �
denotes the square of size � centered at the origin. Since∫

�
e−ıωξlx/z0 e−ıωηly/z0 dx dy = 2z0

ωξl�
sin

(
ωξl�

2z0

)
2z0

ωηl�
sin

(
ωηl�

2z0

)
≡ g(al ) (41)

independent of the pixel index, we can normalize the data by dividing the signal at sensor l by
this number as long as

ξl�

λz0
,

ηl�

λz0
< 1, ∀l = 1, . . . , n. (42)

Dividing the data further by the phase factors eıωξ 2
l /(2z0) eıωη2

l /(2z0) and
√

np, we write the signal
model as (2) with the sensing matrix element

φij = 1√
np

eıθkj e−ıωξlxj /z0 e−ıωηlyj /z0 , i = (k − 1)n + l. (43)

The difference between the signals produced by O and its discretization O� is the discretization
error Edisc. How small must � be in order for the �2-norm of the discretization error Edisc to be
less than, say, ε after rewriting the signal model as (2)? This can be estimated as follows.

First, by the inequality ‖Edisc‖2 � ‖Edisc‖∞
√

np it suffices to show ‖Edisc‖∞ � ε/
√

np.
Since

ui
k(r) =

N∑
j=1

eıθkj I�j
(r)

is the illumination field, the uncontaminated signal detected by the sensor al in the absence of
external noise in the signal model (2) is

(FO)i = 1

g(al )

N∑
j=1

eıθkj

∫
�j

O(x, y) e−ıωξlxj /z0 e−ıωηlyj /z0 dx dy, (44)

for i = (k − 1)n + l. On the other hand, we have

(FO�)i = 1

g(al)

N∑
j=1

eıθkj O(ξj , yj )

∫
�j

e−ıωξlxj /z0 e−ıωηlyj /z0 dx dy

for i = (k − 1)n + l. By definition

Edisc = FO − FO� ∈ C
pn

and hence

‖Edisc‖∞ � ‖O − O�‖L1

minl |g(al )| (45)

11
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where ‖ · ‖L1 denotes

‖f ‖L1 =
∫

|f (x, y)| dx dy,

i.e. the norm of the function space L1. Therefore, we have the following statement.

Lemma 5. If

‖O − O�‖L1 � ε√
np

min
l

|g(al )|, (46)

then

‖Edisc‖2 � ε.

Remark 5. The presence of the factor (np)−1/2 in (46) is due to the transition from L1

function space norm to the discrete �2-norm.

Since the sensing matrix (25) for the point objects can be written as

D1�D2

where � is as (43) and

D1 = diag(eıωξ 2
l /(2z0) eıωη2

l /(2z0))

D2 = diag(eıωx2
j /(2z0) eıωy2

j /(2z0))

are diagonal, unitary matrices, all the preceding results, including theorems 1 and 2, can be
proved for the sensing matrix (43) by minor modification of the previous arguments.

However, the object vector X = (O(rj )) of an extended object generally does not fall into
the category of random point objects assumed in either proposition 2 or 3 since by definition
the discrete approximation of an extended object must cluster in aggregates and its amplitude
typically changes continuously. So we take an alternative approach below by resorting to the
minimization principle (15) of BPDN.

The RIC for a structured sensing matrix such as (43) is difficult to estimate directly except
for the case of single shot (p = 1) and the case of one sensor (n = 1). For the one-sensor
case, (43) with (ξl, ηl) = (0, 0) is the complex-value version of the random i.i.d. Bernoulii
matrix:

φkj = 1√
p

eıθkj , (47)

whose RIC can easily be estimated by the same argument given in [4]. The single-sensor
imaging setup resembles that of Rice’s single-pixel camera [19] which employs a discrete
random screen instead of a random phase modulator.

For the single-shot case, the sensing matrix (43) is equivalent to the random partial Fourier
matrix, modulo an unitary diagonal matrix, and the standard RIP estimate [29] requires the
Rayleigh criterion (28) to be met which guarantees (42) with probability 1. However, a small
probability of al = (ξl, ηl) exists falling near the boundary of the aperture and hence a small
value of |g(al )|. Normalizing the data by |g(al)| then carries a small risk of magnifying the
errors.

For the general setup with multiple shots and sensors, we use the mutual coherence to
bound the RIC trivially as follows.

Proposition 6. For any s ∈ N we have

δs � μ(�)(s − 1).

12
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Combining lemma 1, propositions 4 and 6 we obtain the following result.

Theorem 3. Under (26), the RIC bound (17) holds true with a probability of at least 1 − 2δ

for the sensing matrix (43) and sparsity up to

s <
1

2
+

(
1√
2

− 1

2

)(
aK

√
2√

p
+

2K2

√
np

)−1

(48)

where

a = max
j �=j ′

|E(eıξlω(xj ′−xj )/z0)E(eıηlω(yj ′−yj )/z0)|
cf (35).

Furthermore, suppose the total error in the data is E = Edisc + Eext where Edisc and Eext

are, respectively, the discretization error and the external noise. Then, the reconstruction X̂

by BPDN satisfies the error bound

‖X̂ − X‖2 � C1s
−1/2‖X − X(s)‖1 + C2 (‖Edisc‖2 + ‖Eext‖2) (49)

for all s satisfying (48).

Remark 6. Since BPDN does not guarantee exact localization, an appropriate metric for
resolution can be formulated in terms of the smallest pixel size �min and largest sparsity s
such that (49) holds true with both the discretization error Edisc and s−1/2‖X − X(s)‖1 being
reasonably small.

The right definition of ‘small errors’, however, is problem specific. The discrete norms
(�1- or �2-norm) tend to go up simply because the effective sparsity increases. Hence, the
right metric of reconstruction error should be properly normalized by the size of the object.
For example, consider the special case when X is s-sparse. Then, we can rewrite (49) as

s−1/2‖X̂ − X‖2 � C2‖Eext‖2s
−1/2 + C2‖Edisc‖2s

−1/2 (50)

whose left-hand side is a measure of the reconstruction error per pixel of size �.
Below the diffraction limit A�/(λz0) < 1 (a �= 0), one can reduce the discretization error

by reducing the pixel size according to lemma 5. On the other hand, the sparsity s increases
in proportion to �−2 for a two-dimensional extended object. To satisfy (48) the smallest
admissible pixel size �min is bounded from below roughly by

�min
>∼ a1/2p−1/4 (51)

meaning that the minimum super-resolved scale decreases at least as fast as the negative quarter
power of the number of RI.

For the diffraction-limited case a = 0, we have instead

�min
>∼ n−1/4p−1/4

which is more favorable than (51) for n � 1. However, the discretization error bound
(lemma 5) is less useful in this case.

5. Worst-case coherence bound

5.1. Proof of lemma 1: upper bound

Proof. Summing over al , l = 1, . . . , n, we obtain
p∑

k=1

n∑
l=1

φ∗
ij ′φij = eıω(x2

j +y2
j −x2

j ′ −y2
j ′ )/(2z0) 1

np

p∑
k=1

eı(θkj −θkj ′ )
n∑

l=1

eıξlω(xj ′−xj )/z0 eıηlω(yj ′−yj )/z0 .

(52)

We estimate the two summations separately.

13
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First, consider the summation over RI k = 1, . . . , p. Define the random variables
Al, Bl, l = 1, . . . , n, as

Al = cos [θkj − θkj ′] (53)

Bl = sin [θkj − θkj ′] (54)

and let

Sp =
p∑

l=1

(Al + iBl). (55)

To estimate Sp, we recall the Hoeffding inequality [27].

Proposition 7. Let A1 + iB1, . . . , Ap + iBp be independent random variables. Assume that
Al, Bl ∈ [al, bl], l = 1, . . . , p, almost surely. Then, we have

P[
∣∣Sp − ESp

∣∣ � pt] � 4 exp

[
− p2t2∑p

l=1(bl − al)2

]
(56)

for all positive values of t.

We apply the Hoeffding inequality to Sp with al = −1, bl = 1, l = 1, . . . , p, and

t = K

√
2

p
, K > 0,

to obtain

P

[
p−1

∣∣∣∣∣
p∑

k=1

eı(θkj −θkj ′ )

∣∣∣∣∣ � K

√
2

p

]
� 4 e−K2/2. (57)

Note the dependence of Sp on θkj − θkj ′ and the symmetry: |Sp(θkj ′ − θkj )| = |Sp(θkj ′ − θkj )|.
As a consequence, there may be N(N − 1)/2 different values of Sp. By union bound with
(57), we obtain

P

[
p−1 max

j �=j ′

∣∣∣∣∣
p∑

k=1

eı(θkj −θkj ′ )

∣∣∣∣∣ � K

√
2

p

]
� 2N(N − 1) e−K2/2 � δ (58)

by (26).
Next, consider the summation, denoted by Tn, over the sensor locations l = 1, . . . , n in

(52):

Tn =
n∑

l=1

eıξlω(xj ′−xj )/z0 eıηlω(yj ′−yj )/z0 .

By the same argument we obtain

P

[
max
j ′ �=j

n−1 |Tn − ETn| � K

√
2

n

]
� 2N(N − 1) e−K2/2

and hence

P

[
max
j ′ �=j

1

n
|Tn| � a + K

√
2

n

]
� δ, a = max

j �=j ′

1

n
|ETn| (59)

by (26).
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By the mutual independence of ξl and ηl we have

a = max
j �=j ′

1

n
|ETn| = max

j �=j ′

1

n

∣∣∣∣∣
n∑

l=1

E
(
eıξlω(xj ′−xj )/z0

)
E
(
eıηlω(yj ′−yj )/z0

)∣∣∣∣∣
= max

j �=j ′
|E(eıξlω(xj ′−xj )/z0)E(eıηlω(yj ′−yj )/z0)|

since ξl, ηl, l = 1, . . . , n, are independently identically distributed.
Combining (59) and (58) and noting the independence of these two events, we obtain

μ(�) � aK
√

2√
p

+
2K2

√
np

with a probability of at least 1 − 2δ.
Simple calculation with the uniform distribution on the set D given in (22) yields

|E(eıξlω(xj ′−xj )/z0)E(eıηlω(yj ′−yj )/z0)| = 0, j ′ �= j, (60)

if (28) holds. In this case,

μ(�) � 2K2/
√

np

with probability 1 − 2δ.

5.2. Proof of lemma 2: lower bound

Proof. The Berry–Esseen theorem [25] states that the distribution of the sum of m independent
and identically distributed zero-mean random variables normalized by its standard deviation
differs from the unit Gaussian distribution by at most Cρ/(σ 2√m), where σ 2 and ρ are
respectively the variance and the absolute third moment of the parent distribution, and C is a
distribution-independent absolute constant which is not greater than 0.7655 [32].

We apply the Berry–Esseen theorem to the two summations, denoted by Sp and Tn

respectively, on the right-hand side of (52).
The complex-valued random variables involved can be treated as R

2-valued random
variables. Under (28) the variance of these random variables is 1/2 and the absolute third
moment is 4/(3π).

Let F1, F2 be the cumulative distributions of the real and imaginary parts of p−1/2Sp and
G1,G2 the cumulative distributions of the real and imaginary parts of n−1/2Tn. Let � be the
cumulative distribution of the standard normal random variable. We have by the Berry–Esseen
theorem

sup
t

|Fi(t) − �(t)| � C8
√

2

3π
√

p
, i = 1, 2, (61)

sup
t

|Gi(t) − �(t)| � C8
√

2

3π
√

n
, i = 1, 2. (62)

Since C � 0.7655, we can replace the right-hand side of (61) and (62) by p−1/2 and n−1/2

respectively for the sake of notational simplicity. Hence

|Fi(t) − Fi(−t)| � |�(t) − �(−t)| +
2√
p

|Gi(t) − Gi(−t)| � |�(t) − �(−t)| +
2√
n
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∀t . For small t > 0 we can bound the above expressions by

|Fi(t) − Fi(−t)| � t

√
2

π
+

2√
p

|Gi(t) − Gi(−t)| � t

√
2

π
+

2√
n

which imply

P[p−1/2|Sp| � t
√

2] � 2t

√
2

π
+

4√
p

P[n−1/2|Tn| � t
√

2] � 2t

√
2

π
+

4√
n

and consequently

P

[ |SpTn|
np

� 2t1t2√
np

]
�
(

1 − 2t1

√
2

π
− 4√

p

)(
1 − 2t2

√
2

π
− 4√

n

)
(63)

which is what we want to prove. �

6. Average coherence bound: proof of lemma 3

Proof. Write

ν(�) = 1

N − 1
max

j ′

∣∣∣∣∣∣
n∑

l=1

p∑
k=1

∑
j �=j ′

φ∗
ij ′φij

∣∣∣∣∣∣ , i = (k − 1)n + l,

and consider the sums over k and j simultaneously with a fixed j ′ and fixed n sensor locations.
This is a summation of p · N independent random variables φij ′φij each bounded by n−1p−1

in absolute value. Note that

Eξ,η

[
φ∗

ij ′φij

] = 0, ∀j, j ′, i, (64)

since θkj are uniformly distributed in [0, 2π ]. Applying Hoeffding inequality with

t = c1

(N − 1)1/2p3/2n
, c > 0,

we have

Pξ,η

⎡
⎣ 1

N − 1

∣∣∣∣∣∣
p∑

k=1

∑
j �=j ′

φij ′φij

∣∣∣∣∣∣ �
c1

(N − 1)1/2p1/2n

⎤
⎦ � 4 e−c2

1 (65)

where Pξ,η is the probability conditioned on fixed ξ = (ξj ), η = (ηj ) ∈ R
n. In analyzing the

sum over l = 1, . . . , n we restrict to the event

A =
⎧⎨
⎩� = [θkj ] :

1

N − 1

∣∣∣∣∣∣
p∑

k=1

∑
j �=j ′

φij ′φij

∣∣∣∣∣∣
<

c1

np1/2(N − 1)1/2
for almost all sensor locations

}
.

Since there are at most N possible sensor locations, by (65)

P(Ac) � 4N e−c2
1 (66)

where Ac denotes the complement of A.

16



Inverse Problems 27 (2011) 065012 A C Fannjiang

Let

Zj ′l = 1

N − 1

p∑
k=1

∑
j �=j ′

φ∗
ij ′φij

and EA is the expectation conditioned on the event A.
We proceed with the following estimate:

P

[
max

j ′

∣∣∣∣∣
n∑

l=1

(
Zj ′l − EAZj ′l

)∣∣∣∣∣ � c2√
np(N − 1)

]

= PA

[
max

j ′

∣∣∣∣∣
n∑

l=1

(
Zj ′l − EAZj ′l

)∣∣∣∣∣ � c2√
np(N − 1)

]
P(A)

+ PAc

[
max

j ′

∣∣∣∣∣
n∑

l=1

(Zj ′l − EAZj ′l )

∣∣∣∣∣ � c2√
np(N − 1)

]
P(Ac)

� PA

[
max

j ′

∣∣∣∣∣
n∑

l=1

(Zj ′l − EAZj ′l )

∣∣∣∣∣ � c2√
np(N − 1)

]
+ 4Ne−c2

1 , c1, c2 > 0 (67)

by (66) where PA and PAc are respectively the probabilities conditioned on the events A and
Ac.

Applying Hoeffding’s inequality with

t = c2

p1/2(N − 1)1/2n3/2

to estimate the first term on the right-hand side of (67), we obtain

PA

[∣∣∣∣∣
n∑

l=1

(Zj ′l − EAZj ′l)

∣∣∣∣∣ � c2√
np(N − 1)

]
� 4 e−c2

2/(2c1)
2
.

Maximizing over j ′ = 1, . . . , m and using the union bound we then arrive at

PA

[
max

j ′

∣∣∣∣∣
n∑

l=1

(Zj ′l − EAZj ′l)

∣∣∣∣∣ � c2√
np(N − 1)

]
� 4N e−c2

2/(2c1)
2
. (68)

Using (67) and (68) with

c2 = c

√
N − 1

np
, c2 = 2c2

1, c > 0,

we have

P

[
max

j ′

∣∣∣∣∣
n∑

l=1

(Zj ′l − EAZj ′l )

∣∣∣∣∣ � c

np

]
� 8N e

− c
2

√
N−1
np , c > 0,

which is what we set out to prove.
Note that

E�Zj ′l = 1

n
E(eıξlω(xj ′−xj )/z0)E(eıηlω(yj ′−yj )/z0), ∀j ′ = 1, . . . , m, l = 1, . . . , n, j ′ �= j,

where E� is the expectation conditioned on � = (θkj ) ∈ C
p×n. If

1

ρ
= A�

λz0
∈ N,
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then

E�Zj ′l = 0, ∀j ′ = 1, . . . , m, l = 1, . . . , n,

and hence

EAZj ′l = 0, ∀j ′ = 1, . . . , m, l = 1, . . . , n. �

7. Operator norm bound: proof of lemma 4

Proof. It suffices to show that the matrix � satisfies∥∥∥np

N
��∗ − Inp

∥∥∥
2

< 1 (69)

where Inp is the np × np identity matrix with the corresponding probability bound. Since the
diagonal elements of np

N
��∗ are unity, (69) would in turn follow from

μ(�∗) <
1

np − 1
(70)

by the Gershgorin circle theorem.
The pairwise coherence has the form

np

N

N∑
j=1

φijφ
∗
i ′j = 1

N
eıω(ξ 2

l +η2
l +ξ 2

i −ξ 2
l′ −η2

l′ )/(2z0)

N∑
j=1

eıωxj (ξl′−ξl )/z0 eıωyj (ηl′−ηl)/z0 eı(θkj −θk′j ).

There are two cases: (i) k �= k′, (ii) k = k′, l �= l′.
For case (i), θkj − θk′j are independent random variables for j = 1, . . . , N . Applying

Hoeffding’s inequality to

ZN ≡
N∑

j=1

eıωxj (ξl′−ξl )/z0 eıωyj (ηl′−ηl)/z0 eı(θkj −θk′j )

we obtain

P

[
1

N
|ZN | � t

]
� 4 e−Nt2

. (71)

Setting t = α/
√

N , we have

P

⎡
⎣
∣∣∣∣∣∣
np

N

N∑
j=1

φijφ
∗
i ′j

∣∣∣∣∣∣ �
α√
N

⎤
⎦ � 4 e−α2

and thus

P

⎡
⎣sup

k �=k′
∀l,l′

∣∣∣∣∣∣
np

N

N∑
j=1

φijφ
∗
i ′j

∣∣∣∣∣∣ �
α√
N

⎤
⎦ � 2n2p(p − 1) e−α2

(72)

by the union bound.
For case (ii), θkj − θk′j = 0 and ZN becomes a geometric series

ZN = eıω(ξl′−ξl )(x1+
√

N�)/z0 − eıω(ξl′−ξl )x1/z0

1 − eıω(ξl′−ξl )�/z0
× eıω(ηl′−ηl)(y1+

√
N�)/z0 − eıω(ηl′−ηl)y1/z0

1 − eıω(ηl′−ηl)�/z0
.

18



Inverse Problems 27 (2011) 065012 A C Fannjiang

Figure 3. The Subspace Pursuit performance comparison between RI with n = 11, p = 6 and
MR with n = 11. The vertical axis is for the success probability and the horizontal axis is for the
number of objects. The success probability is estimated from 1000 independent trials.

Thus,

np

N

∣∣∣∣∣∣
N∑

j=1

φijφ
∗
i ′j

∣∣∣∣∣∣ �
1

N

∣∣∣∣∣∣
sin ω�

√
N(ξl′−ξl )

2z0

sin ω�(ξl′−ξl )

2z0

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
sin ω�

√
N(ηl′−ηl)

2z0

sin ω�(ηl′−ηl)

2z0

∣∣∣∣∣∣ .
Let

κ = min
l �=l′

min
j∈Z

{∣∣∣∣�(ξl′ − ξl)

λz0
− j

∣∣∣∣ ,
∣∣∣∣�(ηl′ − ηl)

λz0
− j

∣∣∣∣
}

.

Clearly κ is nonzero with probability 1. For l �= l′, the probability density functions (PDF)
for the random variables

�(ξl′ − ξl)

λz0
,

�(ηl′ − ηl)

λz0

are either the symmetric triangular distribution or its self-convolution supported on
[−2ρ−1, 2ρ−1]. In either case, their PDFs are bounded by ρ. Hence, the probability that
{κ > β} for small β > 0 is larger than

(1 − 2ρβ)n(n−1)/2 > 1 − βρn(n − 1)

where the exponent counts the number of distinct unordered pairs (l, l′). Note that the above
analysis is independent of k = k′. Since sin θ � θ,∀θ ∈ [0, π/2] we have that

P

⎡
⎣sup

k=k′
l �=l′

np

N

∣∣∣∣∣∣
N∑

j=1

φijφ
∗
i ′j

∣∣∣∣∣∣ �
π2

4Nβ2

⎤
⎦ � βρn(n − 1). (73)

Setting

max

{
α√
N

}
<

π2

4Nβ2
= 1

np − 1
(74)
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Figure 4. The numbers of recoverable (by Subspace Pursuit) objects for RI with p = (n+1)/2 and
MR as n varies. The curves indicate a quadratic behavior predicted by the theory. The difference
between recoveries with the exact and paraxial Green functions is negligible in both the RI and
MR setups.

and using (72) and (73) we have

P

⎡
⎣sup

i �=i ′

np

N

∣∣∣∣∣∣
N∑

j=1

φijφ
∗
i ′j

∣∣∣∣∣∣ �
1

np − 1

⎤
⎦ � βρn(n − 1) + 2n2p(p − 1) e−α2

. (75)

As a consequence,

P

⎡
⎣sup

i �=i ′

np

N

∣∣∣∣∣∣
N∑

j=1

φijφ
∗
i ′j

∣∣∣∣∣∣ �
1

np − 1

⎤
⎦ < ρn(n − 1)

π

2

√
np − 1

N
+ 2n2p(p − 1) e

− N

(np−1)2

by maximizing the right-hand side of (75) under constraint (74). �

8. Numerical simulations

We use two numerical settings: the diffraction-limited case when (28) is satisfied (figures 3–6)
and the under-resolved case when the ratio in (28) is smaller than unity (figure 7).

For the diffraction-limited case we set z0 = 10 000 and λ = 0.1 for the search domain
[−250, 250]2 with � = 10. The targets are i.i.d. uniform random points in the grid with
amplitudes in the range [1, 2]. We randomly select sensor locations from [−50, 50]2 with the
aperture A = 100 satisfying (28). With these parameters

(A + �
√

N)4

λz3
0

≈ 1.3

condition (23) is barely satisfied. Although the Lasso or Basis Pursuit solvers generally have
better performance, for the sake of the speed of computing figures 3–7 we have used the
Matlab code Subspace Pursuit (SP) (available at http://igorcarron.googlepages.com/cscodes).

20

http://igorcarron.googlepages.com/cscodes


Inverse Problems 27 (2011) 065012 A C Fannjiang

Figure 5. The number of recoverable objects as a function of the number of sensors n = 1, 2, 3,
4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 150, 200, 300, 600 with np = 600
fixed. The top panel is for the Subspace Pursuit and the bottom panel for OST. The left ends of
both curves indicate superresolution.

Figure 6. Noisy recovery by Subspace Pursuit for n = 1, 30, 100, 600 and with np = 600 fixed.
The noise is given by the circularly random Gaussian noise of magnitude σ‖Y‖2 where σ is the
horizontal coordinate. Note that in this case E‖E‖2

2 = npσ 2‖Y‖2
2.

We use the true Green function (20) in the computation of scattered waves and in the
recovery of the exact Green function as well as its paraxial approximation to construct
the sensing matrix (for comparison). In other words, we allow model mismatch between
the forward and inversion steps.
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Figure 7. The number of recoverable objects in the under-resolved case as a function of the number
of sensors n = 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 150, 200, 300,
600 with np = 600 fixed.

In the first set of simulations, we compare the performances of SP for two imaging setups:
one with RI and the other with MR. As figure 3 shows, the RI setup has a higher success
probability than the MR setup. Another comparison is shown in figure 4 in terms of the
number of recoverable objects over a range of n. The quadratic behavior is consistent with
the prediction of (39) and (36). The difference between the exact and paraxial Green function
recoveries is negligible in both the RI and MR setups. For a given n, SP with the RI setup
recovers a higher number of objects than SP with the MR setup does.

Figure 5 compares the performances of SP (top panel) and OST (bottom panel) in terms
of the number of recoverable objects for a fixed np = 600 but variable n. Clearly, SP can
recover far more objects exactly than the OST does. For a fixed np the performance for each
method appears relatively constant over the whole range of n. For small n, the performance
curves of both methods indicate superresolution. As noise level increases SP performance
decays (figure 6).

To further understand the superresolution effect of RI, we consider the setup with
z0 = 25000, λ = 0.4 for which the ratio in (28) is 0.1. This is an under-resolved case
whose performance is shown in figure 7. In contrast to the diffraction-limited case (figure 5),
the number of recoverable objects in the under-resolved case decays rapidly as p decreases
(n increases). To maintain high performance in the under-resolved case, it is necessary that
p � 1. The number of recoverable objects is calculated based on 90% recovery of 100
independent trials.

We demonstrate in figures 8–11 the performance for extended objects in the presence of
external noise of the form

α√
2
(ν1 + ıν2)

‖Y‖2√
np

, α = 5%, 20%

where α is the percentage of noise in each entry of the data vector and ν1, ν2 are i.i.d. uniform
random variables in [0, 1].
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Figure 8. The original 40 × 80 pixel image (left) and the BPDN reconstructions (middle panel,
5% noise; right panel 20% noise) with one sensor and 500 RI.

Figure 9. The original 40 × 80 pixel image (left) and the BPDN reconstructions (middle panel,
5% noise; right panel, 20% noise) with one illumination and 500 randomly distributed sensors.

Figure 10. The original 70 × 70 pixel image (left), the Shepp–Logan phantom and the TV-
minimization reconstructions (middle panel, 5% noise; right panel, 20% noise) with one sensor
and 1000 RI.

Figure 8 shows the original 40×80 pixel image (left) and its reconstructions (middle panel,
5% noise; right panel, 20% noise) by the BPDN solver YALL1 (http://yall1.blogs.rice.edu/)
using one sensor and 500 RI, while figure 9 shows the results with one illumination and 500
randomly distributed sensors.

Figure 10 shows the original 70 × 70 pixel image (left), the Shepp–Logan phantom and
its reconstructions (middle panel, 5% noise; right panel, 20% noise) by the total-variation
minimization [14, 31] solver TVAL3 (http://www.caam.rice.edu/optimization/L1/TVAL3/)
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Figure 11. The original 70 × 70 pixel image (left), the Shepp–Logan phantom and the
TV-minimization reconstructions (middle panel, 5% noise; right panel, 20% noise) with one
illumination and 1000 randomly distributed sensors.

using one sensor and 1000 RI, while figure 11 shows the results with one illumination and
1000 randomly distributed sensors.

For the one-illumination reconstructions (figures 9 and 11), the classical resolution
criterion (28) is met. Note, however, that the Shepp–Logan phantom is not in the class
of sparse extended objects analyzed in section 4 because the object support covers more than
50% of the domain (only the gradient is sparse). As a result, the same percentage of noise
represents a greater amount of noise in the case of Shepp–Logan phantom and has a more
serious effect on performance (figures 10 and 11, right panels).

9. Conclusion

We have proposed a new approach to superresolving point and extended objects based on
random illumination and compressed sensing reconstruction.

We have proved that in the diffraction-limited case both the Lasso and the OST with
random illumination can exactly localize s = O(m) objects where the number of data m is the
product of the numbers of random probes and sensors. For the under-resolved case where the
Rayleigh resolution limit is broken, the Lasso still has a similar performance guarantee if the
number of random illuminations is sufficiently large. It is possible to extend the OST result to
the under-resolved case which is omitted here to simplify the presentation.

Numerical evidence supports our theoretical prediction and confirms the superiority of
the Lasso to the OST in the setup with random illumination.

We have also shown that the BPDN is suitable for imaging extended objects and has
provided numerical examples to demonstrate its performance.

The superresolution effect with random illumination revealed here contrasts with the
subwavelength resolution with deterministic near-field illumination studied in [20].

Finally, we note that in our approach it is essential to measure the wave field. For intensity-
only measurements, additional techniques such as interferometry or phase retrieval methods
are necessary for object reconstruction.

Acknowledgments

I am grateful to Mike Yan for producing figures 3–7 and Hsiao-Chieh Tseng for producing
figures 8–11 of section 8. The research is partially supported by the NSF grant DMS-0908535.

24



Inverse Problems 27 (2011) 065012 A C Fannjiang

References

[1] Almoro P F, Pedrini G, Gundu P N, Osten W and Hanson S G 2011 Enhanced wavefront reconstruction by
random phase modulation with a phase diffuser Opt. Laser Eng. 49 252–7

[2] Baggeroer A B, Kuperman W A and Mikhalevsky P N 1993 An overview of matched field methods in ocean
acoustics IEEE J. Ocean. Eng. 18 401–24

[3] Bajwa W, Calderbank R and Jafarpour S 2010 Why Gabor Frames? Two fundamental measures of coherence
and their role in model selection J. Commun. Net. 12 289–307

[4] Baraniuk R, Davenport M, DeVore R and Wakin M 2008 A simple proof of the restricted isometry property for
random matrices Constructive Approx. 28 253–63
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