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RADIATIVE TRANSFER OF SOUND WAVES IN A
RANDOM FLOW: TURBULENT SCATTERING,
STRAINING, AND MODE-COUPLING*

ALBERT FANNJIANG! AND LEONID RYZHIK?

Abstract. We study the sound wave propagation in a random flow, whose mean flow is large
compared with its fluctuation, in the infinite three-dimensional space. We consider the intermediate
regime, where the range of acoustic wave numbers overlaps with the range of turbulent wave numbers.

We use the multiscale expansions for the Wigner distributions to derive the radiative transport
equations that describe the evolution of acoustic correlation and the turbulent scattering, strain-
ing, and mode-coupling of sound waves. We show that, because of the flow-straining term, the
flow-acoustic scattering becomes nonconservative and, depending on the propagation direction, a
sound wave can gain or lose energy. We calculate the attenuation/amplification coefficients due to
mode-coupling and/or turbulent scattering with flow-straining. These coefficients depict interest-
ing dependence on the propagating direction and the wave length of sound wave. We demonstrate
numerically that the attenuation/amplification coefficients are enhanced significantly when both the
straining and the mode-coupling effects are present.

We also obtain the diffusion equations on the physical space and, thus, further reduce the di-
mension of the flow-acoustic equations.
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1. Introduction. Flow acoustics concerns three different processes: propaga-
tion of sound through flow, generation of sound by flow, and generation of flow by
sound [24], [26]. Correspondingly, there are three main effects: scattering (and refrac-
tion), acoustic radiation, and absorption. Refraction alters the direction of a beam
of sound and is well studied in geometrical acoustics. Scattering is the redistribu-
tion of energy among different wave numbers and/or different components (modes)
of the same wave number and results in spectral or directional broadening. Both
refraction and scattering processes are commonly assumed to preserve the acoustic
energy. This is not the case, however, when the effect of flow-straining is taken into
account. As a sound wave propagates through an extensive body of the turbulence it
may be attenuated or amplified through two mechanisms: wave mode-coupling and
straining. These effects are usually small but can be important in a fluid turbulence
with a strong mean flow (like a jet or a grid turbulence in a wind tunnel [4], [5], [27]),
especially when both the straining and the mode-coupling are active (see Figures 5
and 6).

Turbulent scattering of sound waves has been much studied both theoretically and
experimentally since the single-scattering theory of Blokhintzev [3], Lighthill [23], and
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Kraichnan [20] (see [28] and [17] and the references therein). The experimental studies
have been mainly of sound propagation in the atmosphere or oceans, but relatively
few experiments have been conducted under laboratory conditions. This is more so
when it comes to the study of turbulent absorption of sound waves, with [18], [25],
and [14] being notable exceptions. These experiments suggest loss of acoustic energy
which cannot be accounted for by turbulent scattering or refraction caused by the
variation of the mean flow. These experiments typically have turbulent intensity
of 20%, turbulent Mach number on the order of 1073, the integral scale roughly
10 c¢cm, and the Kolmogorov dissipation scale roughly 1 mm. The acoustic wave
lengths used (e.g., 600 to 5000 Hz in [18]) in the experiments are typically larger than
the integral scale. This is a long wave regime. The work [18] suggests a turbulent
absorption mechanism which is frequency independent in the above frequency range in
contrast to the frequency-square dependence of absorption by molecular dissipation.
Theories have been proposed to explain this phenomenon qualitatively [27], [16]. The
work [27] invokes the semiempirical viscoelasticity theory of turbulence (see also [8]),
while [16] extends Lighthill’s approach. Both assume certain temporal structure of
the turbulence and ignore the effect of the mean flow, while acknowledging that the
absorption can become significantly greater in the presence of a mean flow (see also
[15]).

We have also seen significant advances in the study of the short wave regime
where the geometrical acoustics or the parabolic approximation is valid [28], [32]. In
the present study we consider the intermediate regime where the sound wave lengths
are comparable to the sizes of the turbulent eddies under the influence of a mean flow.
This regime would correspond to the high-end audible range or the low-end ultrasonic
frequencies in the experimental setting of [18]. Under such a circumstance turbulent
scattering and absorption of sound waves are expected to be more pronounced (Figures
3-8).

Our main goal is to derive the transport equation for the phase-space distri-
bution of the sound field with the explicit formulas for the scattering cross section
and the attenuation/amplification coefficient. The radiative transport equations de-
scribe naturally the aforementioned mechanisms of turbulent scattering, straining, and
mode-coupling. We show that, because of the flow-straining term, the flow-acoustic
scattering becomes nonconservative and, depending on the propagation direction, the
flow can emit or absorb acoustic radiation. Moreover, this effect is most pronounced
when both the straining and the mode-coupling are active (see Figures 3-8).

2. Phase-space formulation.

2.1. Flow-acoustic equations. Flow field and sound field are different modes
of the total fluid motion described by the compressible fluid equations; they are distin-
guished by dispersion relation (see section 3.2). Although flow acoustics is nonlinear
in general, the fraction of the total fluid energy contained in the acoustic field is very
small in a subsonic flow (the ratio of sound-to-flow amplitude is of order 103 for
the loudest sounds of interest). The linear mechanisms of the mode-coupling and the
flow-straining are more important in this case.

We think of the sound (generated by the flow or other sources) as a small pertur-
bation of a background flow field and study the sound propagation via the linearized
Euler equations for weakly compressible, homentropic fluids:

op 1
(1) 8t+v Vp-i—KOV u+u-Vp, =0,
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v
2) M v.vus X puvv—o,
ot Po

where p;, V are the pressure and the velocity fields of the underlying random, in-
compressible flow, py &~ const is the density, ko = 1/(c3po) is the compressibility of
the fluid, and p, u are the pressure and velocity fluctuations due to the perturbation
by sound waves. Here ¢y is the sound speed of the (still) fluid and assumed to be a
constant.

When kg is relatively small, we can make the following approximation:

Op 1
bt 4 . ~V-u=0

(3) 8t+v Vp-i—ﬁo u ,

(4) N v.vu+ P vV o
ot Po

That is, the turbulent pressure field is neglected. Further simplification can be made
under suitable conditions by neglecting altogether the lowest order terms responsible
for flow-straining effect:

Op 1 B
(5) E+V~Vp+’—£v‘u—0,
Ou Vp

This approximation is valid for very high frequency waves.

We do not consider the effect of solid structure (such as walls, edges, corners), so
(1)-(2), (3)—(4), or (5)—(6) are studied in an infinite medium (see [17]).

The effect of molecular viscosity is neglected. Although viscosity is ultimately re-
sponsible for the conversion of mechanical energy into heat, it has a negligible influence
on the transfer of energy between the sound and the turbulence. The incompressibility
of the flow is not essential to our approach; we assume it to simplify the presentation
of the method and the results.

Specifically, we assume the background flow field has a small turbulent intensity
with a mean flow, G, and write the velocity field as

(7) V(x) = 0+ Vav(x),

where /¢ is the turbulent intensity (< 1, typical of wind tunnels) and /ev(x) is the
turbulent velocity fluctuation assumed to be a mean zero, time independent, space
homogeneous, divergence-free random field with covariance matrix R = [R;;(x)],
R;j(x) = (vi(-)v;(- + x)). The homogeneity of the turbulence is a reasonable as-
sumption for, e.g., the core region of fully developed turbulent (pipe, jet, or grid)
flows, or the outer region of a turbulent boundary layer. The incompressibility of
the flow requires that the (turbulent) Mach number measured in the reference frame
of the mean flow is infinitesimally small (M; = \/e(]v|?)/co < 1), while the mean-
flow Mach number (M, = |a|/cy) is assumed to be small to moderate. We assume
for simplicity a uniform mean flow, in which case the mean-low Mach number can
be arbitrary. Stratified wind mean velocity profile is an important factor in sound
propagation in the atmosphere and the resulting refraction can be accounted for by
geometrical acoustics or parabolic approximation. Such an effect is decoupled from
the turbulent scattering because of separation of scales.
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When the turbulent intensity is small, time dependence of the turbulent fluctua-
tion is negligible compared to the pulsation seen from the moving reference frame of
the mean flow. This is called the random sweeping effect 7, 31] and is closely related
to the Taylor hypothesis of frozen turbulence [12]. Also, when the turbulent Mach
number is small and the incident sound wave lengths are comparable to the eddy
sizes, the frequencies of the turbulent pulsations are much smaller than those of the
incident sound. Thus only the spatial correlations of the turbulence are pertinent to
sound propagation and the turbulence is effectively frozen for our purpose.

The covariance function R;; can be determined from its Fourier transform, which
takes the following form in the case of locally isotropic turbulence:

Ri;(k) := R(K|) (65 — kik; k| 72) |k[*~C Vi, 5.

The factor (6ij - kikj]k|‘2), resulting from the incompressibility assumption, is the
projection onto the plane orthogonal to k. A typical example is given by the power-law
spectrum

(8) R(k|) = Rolk|™", £;' < |k| < £, somev € (—o0,00), Ry >0,

and decaying rapidly elsewhere. Kolmogorov’s spectrum corresponds to v = 5/3 with
¢1, 4y being the dissipation and the integral lengths, respectively [12].

The form of the velocity field (7) is more of mathematical convenience than ne-
cessity. U can be seen as representing the flow component on the integral scale and
Vev as that in the inertial subrange. Small e corresponds, in this connection, to the
fact that the integral scale is the energy-containing scale. Indeed, the kinetic energy
contained in the shell [k,2k] diverges as k — 0 for any v > 1, including the Kol-
mogorov spectrum. In this view, (7) is a simple model of real turbulence which may
not exhibit separation of scales between the integral scale and the inertial subrange
as implied by (7).

2.2. The Wigner distribution, the Wigner equation, and transport scal-
ing. Radiative transfer theory is well established [6], [2], [19], [29] for strictly hy-
perbolic waves, such as acoustic, electromagnetic, and elastic waves propagation in
inhomogeneous media at rest, governed by equations of the form
9) C%v?v +DJ—§—ZV; =0, x=(z1,22,73),
where the positive definite matrix C = C(x) represents nonuniform materials prop-
erties pertaining to the speed of wave propagation and D’ are constant, symmetric
matrices. The wave filed w may be a scalar, a vector, or a tensor. In the case of under-
water sound propagation in a density stratified fluid, the medium fluctuation occurs
in material properties, such as density and compressibility, as opposed to nonuniform
movements of otherwise uniform medium, and is relatively small:

(10) C(x) = Co + veCi(x).

Assuming the medium perturbation C; is smooth, wave propagation on the scale
of the inhomogeneities is only slightly perturbed. On larger scales, however, multi-
ple scattering results in significant effects. If interactions between the wave and the
medium inhomogeneities are incoherent, then we expect a Markovian-type of trans-
port to take place on larger scales. This motivates the transport scaling

(11) t—tle, x—x/e, k—k,



ACOUSTIC TRANSFER IN RANDOM FLOWS 1549

where k is the Fourier variable associated with the scale of the inhomogeneities. In-
coherent scattering is a result of the randomness of medium fluctuation and the di-
mensionality three. For periodic medium fluctuation, the Bloch waves arise. In lower
dimensions, coherent backscattering may be strong and results in localization, instead
of transport, of waves.

Waves usually do not have a well-defined phase-space energy density, a funda-
mental distinction between waves and particles. However, a pseudodensity function,
called the Wigner distribution, can be defined as

Witk = [ eiow (tx-F) ow (Lx+)

before the scaling factor & of the medium fluctuation is considered. As the Wigner
distribution preserves all the wave properties, it usually loses positive semidefiniteness
as it evolves in time. Here and below * denotes the complex conjugate for scalars and
the conjugate transpose for vectors and matrices, and 4 denotes the imaginary number
v/—1. In [29], the Wigner distribution was used to derive radiative transfer equations
for hyperbolic waves [13].

In contrast, for the flow-acoustic problem at hand, the material properties are
uniform and represented by a constant matrix

C = diag(po, po, po, Ko)-

(The case of variable C can be treated also, but we do not pursue it here for the sake
of presentation.) Instead of material inhomogeneities, we have a nonuniform fluid flow
u(x). We rewrite the linearized Euler equation as

ow

(12) v

+u(x) ~Vw+C‘1DJ‘% +Gw =0, w=(u,p)

with symmetric, constant matrices D7 and

G o0 = Ov;
G= , G= .
(wpr 0) &[5
The lower-order term (not displayed) corresponds to the flow-straining effect. It
should be noted that (12) is not strictly hyperbolic because of the presence of the

nonpropagating vortical mode (see section 3.1).
By the transport scaling, the flow field (7) becomes

(13) i+ VeV (;)

We also assume
X
p1 = VeP <E)

for some space-homogeneous random function P. The rescaled flow-sound field w,
now satisfies the equation

ow,

ot

+ <ﬁ+ N (%)) - Vw, + C‘IDJ'% + \%G (g) w. =0,

we(0,x) = w(x).
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For the rescaled field w. the Wigner distribution should rescale accordingly as

1) Weltx) = [ e (1x- T ) ow: (hx+ T

which satisfies the Wigner equation
oW, 10W,

OW,
- VxW, C IDI——= + = ic™!
ot * Ox; +2 8:1:]DC

+ —:—kjc-lniws - EweijJC‘

) AP inx/er. -
_ 7/ pdezp - 9(p) [We (k+ B) - W (k- B))]
5 OW.(k-B) OW.(k+%
[ ot [T e
J i
o dp 'lp~x/5 _ B p A

(15) = / o [G(p)we (1 2) +W, (k+§) G (p)]
with G*(p) the Fourier transform of G:

(16) G(p) = i(¥(p), P(p)) ® b,

where p = (p1,p2,p3,0). For ease of notation here and below, we omit writing
the independent variables of physical quantities as much as possible. For example,
W.(k + E) denotes W,(t,x,k + §) here. We also adopt the summation convention
for repeated indices except for Greek letters in the superscript that distinguish differ-
ent modes. Only the summation over superscripts in Greek letters will be displayed
explicitly. The derivation of the Wigner equation from the wave equation is lengthy
but straightforward, so we leave it to the reader.

Why do we use the Wigner distribution? Among other things, the energy density

E(t,x) = (Cwe - we)
and the energy flux
Filt,x) = uj(x)(cwe “We) + (Djwe ‘W)
can be recast in terms of the Wigner distribution as
(17) E(t,x) /dkCW (t,x, k),
(18) Fj(t,x) =Tr / dk [u;(x)CW,(t,x,k) + D?W,(t,x,k)] .

The advantage of the phase-space formulation is that while a transport equation of
the form

o€
(19) +Z 8@ S,

where S is the source term accounting for the generation or absorption of sound
[17], is not always valid, the Wigner equation is. Moreover, in the transport limit
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€ — 0, the nonpositiveness of the Wigner distribution disappears and the weak limit
of the averaged Wigner distribution (W) satisfies the radiative transfer equation
which corresponds to a Markov process in the phase space and preserves the positive
semidefiniteness. In the following sections, we present and analyze such transport
equations, which are derived in the appendices.

Before ending the section, we pause to note that the transport limit of the Wigner
equation when D7 = G = 0 (i.e., the transport of a passive scalar) has been rigorously
obtained by an entirely probabilistic method in [11]. Another case where the transport
limit has also been rigorously obtained is the Schrédinger wave in a random potential
of the form (10) [10] (see also [30] and [1]). In both cases, the unknowns are scalars.
In addition, the inhomogeneity of the Schrodinger equation is in the lower-order term.

3. Radiative transfer.

3.1. Linear dispersion: Acoustical and vortical modes. To analyze (15)
we consider a multiscale expansion

(20) We(t,x, k) = Wolt, x, k) + VEW (£,%,2,k) +eWa (6%, % k) + -
T’ €
We introduce the fast scale variable z = E

and make the substitution

Vx = Vx + lvz
£

in the Wigner equation (15). Inserting (20) we obtain in the leading order O(e~!):
(21) L(k)Wo — WoL*(k) =0,
where L(k) is the dispersion matrix given by

L(k) = C™'k;D7.

As L is symmetric with regard to the scalar product Cx -y, L has a complete
set of eigenvectors and associated real eigenvalues. Let w, (k) be the eigenvalues of
L(k) with the multiplicities r,, and let b®7(k), 5 = 1,..., 74, be the corresponding
eigenvectors

(22) L(k)b** = w,b*?,
normalized so that
(23) Cb(k) - bP (k) = 6;;6ap-

For our system (5)—(6), the matrix C = diag(pq, po, o, ©0)- The dispersion matrix
L(k) is

0 0 0 kl/p()
_ 0 0 0 kz/po
(24) Lk =| | 0 0 ki

kl/Kio kz/Kio kg/,“éo 0

It has three eigenvalues:

w1 =colk|, w2 =—colk|, wz=0,



1552 ALBERT FANNJIANG AND LEONID RYZHIK

where cg = 1/,/Kopo is the speed of sound. The eigenvalues w; (k),wz(k) are simple,
whereas the zero eigenvalue has multiplicity two. The eigenvalues w; (k) and wa(k)
correspond to the (acoustical) longitudinal modes (forward and backward, respec-
tively) while the eigenvalue w3 corresponds to the (vortical) transverse mode. The
corresponding eigenvectors are

: R
T e T I e R ST (s I
V2p0 \/2Ko V200" V/2ko VPo

To fix the idea, we take the first coordinate axis to be in the direction of @, the second
to be on the @ — k plane, and the third to be orthogonal to the i1 — k plane. Let 6 be
the angle between @ and k. Then we have

R cosf A —cos ¢siné R sin ¢ sin 6
(25) k= | sinf |, kS_l) =| cosdcosd |, k(f) = | —sin¢cosb |,
0 sin ¢ cos ¢

in terms of the angular coordinates 0, ¢. Note that when k¢ < 1, the acoustic wave
modes point predominantly in the direction of the pressure variable.
The solution Wy of (21) is given by

(26) o(t,x,k) = > Wa(t,x, k)b (k) ® b7 (k)
a,i,]
2 . .
=W'b'@b' + W?b* @b’ + Y Wib* @b,
i,j=1

where W = [W7] are the r, x r, Wigner distribution matrices associated with
Wa,a=1,2,3.

The matrices W provide a decomposition of the total fluid energy density on
the phase space among different modes and polarizations so that

Etx)=>) / dkTrWe (¢, x, k).

Likewise, the flux F can be decomposed as
_ Owe
F;= ;/dk {uj + 79-];;] TrW*(t,x, k).

Note that the first term corresponds to the mean flow, and the second to the phase
speed.

3.2. The radiative transport equations. Throughout this section we use a
to denote the 4-vector

a= (a17a2aa3a0)

for any given 3-vector a = (a1, az,a3). We denote by R = [R;;] the 4 x 4 correlation
tensor of the vector (v, P). Note that the divergence-free property of the flow implies
the symmetry

(27) R(p-kk -k=R(p-kk p=R(p-kp-p.
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Assuming the expansion (20) and (26) we derive, in Appendix A, the transport
equations

(28) 8“/;5"1) + (0 + Viwr) - V(W)

+ (WHK)ET(K))nm + (7 (K) (W) (K))nm

-3 [ o R — 055 D)7 (B W) ()6l () -5+ (k).

where the total scattering cross section matrices X7 (k) are given by

R k)S78 (k,p)SPT
(29) Z / ]lp ]mr( p lrs( )

)4 w-(k) —ws(p) + @ (k—p) —i0

Note that [S{fr] is rank-1 for 7,8 = 1,2, rank-2 if exactly one of two superscripts is

3, and rank-3 if both superscripts are 3. They can be rewritten more concretely as

1 ~ ~ 1 ~ K
11 P LA =z N k _0
$*(1cp) = 5(0c-p+ Dk - (] - k-p) (K [20).
1o . e 1 N
8% (k,p) = 5 (k- p+ 1k~ 5 (Ip| - k- p) (k,— =),
Po
1, -1 . R
2(k,p)=-(k-p-1k- 5 p) Kk, \/—
$70k,p) = 5(k-p— Dk - 5(lp ~k-p) (ky /2 |,
1. = ~ K
S?(k,p) = s(k-p—1)k - =(jp| - k- p (k,— —0),
(k,p) = 5 ) 2(Ipl P) p”
1 - 1 . [k
813 ka =—k k A(m) +'—k (k, _0), :1,2a
1 ~ 1 K
8231 k, z_kkA(m) +_k’A(m) (k’_ _0)’ m=1,2,
(k,p) /2 (k-p1™) 72 P %
1= my . 1 om
S'n(k,p) = ﬁk(k'rﬁ )+ Z&-P) pk™,0) =82 (k,p), m=1,2,
s, =k(k(™ p0) +k-pP(k{™,0), mi=12,

with Rﬂ_m), p J_) defined as in (25). S'!,8%2, 833 account for the self-coupling of acoustic
and vortical modes, S'2,S?! the coupling between the forward and backward acoustic
modes, and S'3, 823 the coupling between the acoustic and vortical modes. For weak
compressibility kg < 1, we have the following approximations:

(30) S'(k,p) ~ 8*(k,p)~ (f( f’ +1/2 - |pl/(2[k|))k,
(31) $(k,p) ~ S¥ (k,p)~ (k- p—1/2 - |pl/(2[k|))k,
(32) S13 (k,p) ~ % (k,p)~ \/_k . p(lm)k, m=1,2.

Equation (28) is a coupled system of equations for the limiting distributions
(WhH(t,x, k), (W?)(t,x,k) and (W?3)(¢,x,k) for the acoustic and the vortical modes,
respectively. The coupling occurs between the level surfaces (ellipsoids) of the (Doppler)
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acoustic frequency and the level surfaces (planes) of the vortical frequency (see the
next section).

Equation (28) preserves the positive definiteness of the initial data so that if
initially the matrices (W7)(0,x,k) are positive definite, the solution (W7)(¢,x, k)
will remain positive definite. However, it does not in general conserve the energy

E(t) = /E(t,x)dx = const

(of the perturbation) due to the flow-straining.

To see how the flow-straining term has affected the transport equation, we derive,
in Appendix A, the radiative transfer equations by neglecting the term involving G
in (15):

O(WT)
ot

d .
_ Zﬁ: / Gy (R (P~ Kk k) Tk, p) (W) p)

(33)

+ (04 Viwy) - V(W) + TT(WT) (k) + (WT)(k)E7*(k)

xT%(p,k)8(w- (k) + @ -k —ws(p) — @~ p),
where the total scattering cross section matrices X7 (k) are given by

r . dp ~ T‘rﬂ(ka p)TﬁT(p’ k)
by (k)“z;/m( v(p_k)k'k)wr(k)+ﬁ,k_wﬂ(p)_ﬁ-p+i0

with

(34) T2%(k,p) = Cb”™ (k) - b (p),

or, more explicitly,

(35) T'(k,p) = (k- p+1)/2 =T*2(k,p),
(36) T (k,p) = (k-p—1)/2 =T*(k,p),
(37) TBkp)= k-p'/V2 =T#(k,p), i=1,2,
(38) T3k,p) = kP -p¥, ij=12

We know from (23) that T:g (k,k) = 6486m;. It is interesting to compare (35)—(38)
with (30)—(32) to see the effect of flow-straining. (Note that the square of k has been
factored out of T%.)

In addition, thanks to the reciprocity relations

T (p, k) = T™?*(k, p)

(33) preserves positive definiteness, as well as the averaged total energy
(E(t)) = Z Tr /(WT)(x, k)dxdk = const.
T

Energy conservation is due to the absence of the straining term in (5)—(6).
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3.3. Resonant interaction: Mode-coupling and conversion. Because of
the presence of Dirac’s delta-function in the kernels of the transport equations, acous-
tic/vortical waves interaction is best described in terms of the Doppler frequency
surfaces S,:lt and Py, for h € R,

Si = {klwy (k) = h},
Ph = {Klwy (k) = h}

with

wy (P) = eolp| + 1P, wy(p)=1-p
being the Doppler frequencies of the forward, backward acoustic modes and the vor-
tical mode, respectively.
We have the relation

ST, ={-kkeS}, heR,

between the frequency surfaces S; and S; associated with the forward and backward
acoustic modes.

In addition to self-coupling the acoustic modes can interact with the vortical mode
through resonance

teolk|+a-k=10-p

and, as a result, the transport equations for the acoustic energy densities W*(t, x, k),
i = 1,2, couple with that for the vortical Wigner distribution matrix W3(t, x, p).

The surfaces Py, for the vortical mode are planar. Thus the vortical energy cas-
cades to high wave numbers regardless of coupling with the acoustic mode. The
vortical energy cascade does not introduce long-range correlation in velocity fluctua-
tions and, hence, maintains the validity of the short-range correlation assumption in
(13).

The frequency surfaces Sff are hyperboloids for supersonic flows @ > ¢y and
ellipsoids for subsonic flows @1 < ¢g. In the supersonic regime the acoustic energy

cascades to high wave numbers since S,:—”, h € R, also have infinite surface area. The
hyperboloids defined by

kl*=|h-u-kj? h>0,

have two branches: the forward branch S ,f and the backward branch S,, correspond-
ing to the forward acoustic mode w;(k) = ¢olk| and the backward acoustic mode
wa(k) = —cg|k|, respectively, with the major axis of symmetry in the direction of a.
The normal form of the hyperboloids is

&

af? - g’

] Rlal \?

(I8~ (&1~ =3z ) —c(&+&)=h
[a?> —c5

where £; is the coordinate in the direction of @ and &3,&s the coordinates in the

orthogonal directions. In the long times the acoustic energy is driven in the directions

of the asymptotes which form two (forward and backward) cones of semiangle

Co
¥ = arccos —

la|’
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__F1G. 1. The supersonic diagram. The point O is the origin in the wave vector space. The length
of OA is |h|/|ul.

with the axis of symmetry parallel to 1, joining their tips at

o' hua
T a2 -2
0

(Figure 1). Since the slope of the asymptotes is independent of h, the acoustic en-
ergy gradually transfers to higher and higher wave vectors parallel to the asymptotes
regardless of the initial distribution and eventually dissipates into heat.

Since the subsonic regime @ < ¢y is probably more relevant, our attention is
restricted to this regime in what follows.

The frequency surfaces S,f are football-like ellipsoids with the major axis parallel
to 4. The normal form of the ellipsoids is

(¢ = |u)*)? €+ hal \?* &-|af
c2h? ! c — |al? h?

where the coordinate &; is in the direction of u and &3, €3 are in the orthogonal direc-
tions. The major and minor radii are hco/(c2 — |@|?) and h/+/c3 — |i|2, respectively.
Note that S ,'f and S, exist only for positive and negative h, respectively. This means
that the coupling of forward and backward acoustic modes disappears in the subsonic
regime (Figure 2). Furthermore, the center of S; is shifted backward (h > 0) and
the center of S, forward (h < 0) due to the stronger backscattering of wave vectors
in the direction of the mean flow. This has an important implication on the Stokes
drift (see section 4.3).

In the long times, equidistribution of energy takes place between the coupled sur-
faces S,jf and Pj, and within themselves, in the wave vector space. Since the surface
area of S,:f is finite the coupled acoustic energy gradually converts into vortical energy

(39) GE+8) =1,
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__FI1G. 2. The subsonic diagram. The point O is the origin in the wave vector space. The length
of OA is h/|q|.

which, in turn, is spread further and further over eddies of increasingly smaller scales
and eventually is dissipated as heat by molecular viscosity. This is the turbulent
dissipation resulting in the absorption of sound waves. Conversely, the background
turbulent flow energy can convert into acoustic energy by the mode-coupling mecha-
nism and emit acoustic radiation. The flow-generated sound waves are called aero- or
hydrodynamic sound [21], [22].

3.4. Subcritical wave numbers. The acoustic wave vector k is effectively de-
coupled from the vortical mode p if the sound-flow scattering cross section is much
smaller than 1/7, where 7 is the observation time unit. In this case, the mode-coupling
between acoustic and vortical modes does not occur. Such acoustic wave numbers are
called subcritical; otherwise, they are called supercritical.

For simplicity of discussion, let us assume the correlation matrix R is isotropic
and is band-limited with support of R enclosed by the ball of radius r, which roughly
equals 1/¢; for the power-law spectrum (8). In the high-frequency end, wave vector
k is subcritical if the distance from S, to P}, for h = w] (k) is greater than r.. This
leads to the explicit condition

(40) wy (k) > re(co + [uf)|al/co
after some calculation or, equivalently,
(41) k| > re(1+ My)M,,

where M, = u/cg is the mean-flow Mach number.

In the low-frequency end, we make the following observation. The ellipsoids Shi
are nearly spheres centered at —hii/c2 with radius |h|/co. The distance between Py,
and S is roughly h/|@|. For fixed p € Py, R(k—p)k-k is of the order Tr[R(|p|)]h2/c2.
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Subcritical wave vectors k at the low-frequency end can then be characterized as

ol

o TR

4. Subsonic regime.

4.1. Absorption/emission due to mode-coupling. In the subsonic regime
the forward and backward acoustic modes are decoupled. We have the (forward)
acoustic transport equation:

W)
ot

(43) + (@4 Viewn) - V(W) + (S (k) + 21 (k) (W) (k)

—Z / R(p — k)5 (k, D) (k. p) (W2 )(B)6(colk| — w5 (p) + 8- (k — p)),

which is coupled with the vortical mode through S!3, S3!.

As the sound waves propagate through the random flow, in addition to being scat-
tered by the turbulent flow, the supercritical acoustic wave numbers can convert into
the vortical mode by mode-coupling, resulting in the absorption of these wave numbers
and the generation of flow which can occur with or without flow-straining. Conversely,
the supercritical acoustic wave numbers can cause the background turbulent fluctu-
ation to emit acoustic radiation via mode-coupling, resulting in the amplification of
these wave numbers and sound generation. This latter effect, however, requires the
presence of flow-straining.

The absorption/emission coefficient L(k) due to mode-coupling is twice the real
part of ¥1. In the absence of flow-straining, we have

= ; » _ . 13 31
209 = [T [ o 420) [Relp =0k 1] T pITE .10
1 , 1 o
(44) = || (2m)d-T /w"’(k)._w ®) dQ(p) [Rv(p -k)k- k] 5(1 - k- p|2)

which is always nonnegative. Here d2(p) is the area element of the surface {p|w] (k) =

wy(p)}
In the presence of flow-straining, we have

L(k) = / (;’T")déﬂ(p — k)53 (k, p) 5P (p, K)b(colk| + @ - (k — p))

N W /w;"(k)=wu(P) ) { [RV(k “Ple k] (1= kPl
(45) +i[ (k- p)k- A‘"”] [(p—k)-f(] [R.p@]}.
=1

We recall the convention that the lower index r in (45) is summed over r = 1,2 (see
(30)—(32)). In addition to the factor 2 in the first term, the second term in (45)
is entirely due to flow-straining and can be positive or negative depending on the
direction of propagation and, as shown in Figures 3-6, dominates in magnitude over
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the first term at small or medium Mach numbers. The vanishing of L(k) for small and
large k corresponds to the conditions for subcritical wave numbers (40)-(42). Note
that the numbers in Figures 3 and 4 when the straining is absent are significantly
lower in magnitude than those in Figures 5 and 6 when both the flow-straining and
the mode-coupling are active.

For the numerical calculations of L(k) (as well as A(k) in the next section) we
have used, instead of the Kolmogorov spectrum, the Von Karman spectrum

R(Ik]) = Rolk|*(|k|* + k§) 7%, |k| < k1 = 1/41,

and taken ¢g = 1,u = 0.1,Ry = 1,kg = 1/4y = 0.1,4; = 0.01. The Von Kéarmén
spectrum provides a good approximation to the turbulence spectrum but avoids the
abrupt transition at ko in the Kolmogorov spectrum [28], and so is more convenient
for computation. The angle 6 is between the mean flow u and k (cf. (25)).

4.2. Attenuation/amplification due to scattering with flow-straining.
In the simpler case of subcritical regime (i.e., the mode-coupling is absent) we have a
single closed equation for (W)(t,x,k) (dropping the superscript 1)

(46) % + (@4 cok) - Vo (W) — A(K)(W) = Q(W),

where @ is a conservative scattering operator with a nonsymmetric kernel:

1 dQ(p) Y
4N W)= o [ e (e B (P) — o(p (W) ()

and A(k) is the attenuation/amplification coefficient given by

S _d(p) . .
A G / +00=w (p) [0+ coP [o'(k,p) — o (k. p) + o (p. k)
with

2
o(k,p) = (Ru(p ~ k)k - k) (1; bt %_l_kl_)
g L el (4.4 ol
2Ry |k|( By 2|k|) <k.p Ikl)
F150 R (o~ KK (fc-f)—%)
and
o'(k,p) = (Ry(p — K)k - k) <k + % _ 2||Lk||> (% _ _QITple)

3 2R3 1lkl (kb 5~ L) (1+k-p) (1- 121)
L
)

gt o) (0 (-2
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Note that o(k, p) is a quadratic form associated with the nonnegative-definite matrix
ft(p — k) for all k,p and, thus, is nonnegative for all k, p. The rate of pumping or
draining energy A(k) vanishes, however, if u = 0. Both the straining mechanism and
the mean flow are necessary for destroying energy conservation in the radiative transfer
equation when the temporal variation of the turbulent fluctuation is negligible.

For small k¢ < 1, the scattering cross sections become

2
(49) o(k,p) = (Re(p — K)k - k) (ﬁ.f,+%_2|_rkl_l> |
(50) g'(k,p)=(ﬁ~(p—k)k.k)<§,ﬁ+%_2|_|pk|_|) <2|_|1;|_|__2|TI:1)—(|—|_>'

Then, we have o'(k,p) — o/(p, k) = o(k,p) — o(p, k) and, consequently,

(51) A(k) = Wl—/ﬂk) _i@_(___p)__ '(p, k).

— —0
—wi(p) 1T+ coP|

Figures 7 and 8 show the dependence of A, as given by (51), on the wave numbers
and the direction of propagation. Note that the numbers in Figures 7 and 8 when the
mode-coupling is absent are considerably smaller in magnitude than those in Figures
5 and 6 when both the straining and the mode-coupling are active.
Setting . = P = 0 we recover the transport equation of Howe [15]:
oWw)

(52) 5 T cok - V(W) = Qo (W)
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with

(53)  Qof i= ——

e / dQ(p) Ry (p ~ K)k - k) (k- p)? [£(p) — f(K)].

The geometric factor in (53) prohibits orthogonal scattering which would result in
k-p=0.

4.3. Diffusion approximation without flow-straining. In the absence of
flow-straining, the transport equation for the subcritical wave numbers becomes, after
dropping the superscript,

(54) KD 1 @+ col) - T (W) = QW)

with

(52 / AU gn k1) k- p+ 12 () - F(K)
m)dt k)=w{ (p) Icop + 1| P P P '

Notice that the geometric factor changes from (k- p)? in (53) to (k- p+1)2/4 in (55)
due to the absence of flow-straining. In contrast to that in (53), the scattering kernel
prohibits backscattering which would result in k- p+1=0.

Next we consider a situation where energy transfer per frequency can be ade-
quately described by a physical-space transport equation like (19): sound propaga-
tion over distances much longer than the mean free path. In this case the transport
process can be decomposed into an effective transport and a fluctuation.
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Since we expect the fluctuation to be diffusion-like, we make the diffusive scaling
after subtracting the effective part

(56) t=2

> X_ﬁeﬁ‘t=}—’, k—k
€ €

with the transport velocity

(57) U (h) = 0+ i/ cok 2 _ Qh=/ _dQk)
Sy

Qn [t + cok|’ st |6+ cok|’
where the Stokes drift

1 _d0(K)
—— CoK——m——+
Qn Jsy 7 |a+ cok|

accounts for the difference between the transport velocity and the Eulerian mean flow.
Note that @i is parallel to @ but is smaller in magnitude since the ellipsoid S,;” is
shifted to the left from the origin (Figure 2). Thus turbulent scattering reduces the
transport velocity of sound resulting in negative Stokes drift. This can be explained
physically as follows: the wave vectors parallel to the mean flow are scattered more
intensely than those antiparallel to the mean flow due to the difference in speed
relative to the turbulent fluctuation. Notice also that the reduction in speed is linearly
proportional to u for low Mach number and is roughly independent of frequency.

In the multiscale expansion (W) = Wy + eW; + - -, the leading order term W
satisfles a diffusion equation on the physical space (see Appendix B for derivation)

oWy

(58) ot =Vy- D(w;—(k))vyWO,
where the anisotropic diffusion matrix D = [D;;] is given by
1 - dQ(k
D(h)= — / (0 — Qefr + cok) ® X—_—(—)r
Qn Js |a + cok|
with x being the vector-valued solution of the equation
(59) U — G + cok = Qx.
By (59) the diffusion matrix D may be expressed as
D(h) = — — _d(k)
Qn Jsr |G + cok|

Thus the matrix D is nonnegative since the operator Q is nonpositive definite [9)].

4.4. Diffusion approximation with flow-straining. In this section we con-
sider the long time limit of the perturbation of Howe’s equation (52): the case of small
mean-flow Mach number, M, = ¢ < 1. We write the mean flow as t = ecg1 where
u = u/|u|. The appropriate equation is (46) with (49)—(50).

As shown in Appendix C, the long-time amplification/attenuation effect due to
a small mean flow is a second-order effect. To capture the second-order effect we
consider the diffusive scaling

(60) t—>i x—>§, k—k
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for (46) and derive a phase—space d1ffus1on equation for the leading order term in the
expansion (W) = Wy 4 eW,; + -

oW, _ _ _
(61) WO +BW) - VxWy + A(w)Wo = Vy - DV, W,

with w = ¢g|k|. The diffusion matrix D = [D;;] is given by

(62) D) = -4 [ datkiog

and is positive definite. Here Qy is defined by (53). The drift B is given by

kP
Am
1

et - / A k)ko(k)

(63  B= / d(k) (@ k— - p)p - Vp [o(k, p) (x(p) — x(K))]

and the attenuation/amplification coefficient is

3
a=-NC / 40(k) (8- k — 8- )p -V [o(k,p)(6(p) ~ (k)]
(64) tm [ 4900060020000 + - [ (kG- kA1 (19 - 43(0).

Here o is given by (49) and ¢, x = [x;] are solutions of the following equations,
respectively:

(65) 4109 = Quo(k).
(66) cokj = Qox; (k)
with
d-1 N A . .
M) = o [ 0B R(KIP ~ KDk K- P)(p - ) ),

which is the leading-order term in the small Mach number expansion of A(k), (48),
and

d—1 A . R
Aol = = [ R k- pk- (- 5) )

Co

Equation (61) describes the transport mechanisms as projected on the physical
space. This reduction is possible because of the decoupling of different acoustic fre-
quencies due to a vanishing Mach number. Equation (61) is simpler to solve than
(46) because the dimension is halved once the two auxiliary equations (65) and (66)
are solved in the phase space. Finally we remark that although the derivation of
the diffusion equation is lengthy, it can be done rigorously because we start with the
transport equation rather than the linearized Euler equation.
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5. Conclusion. We study the sound wave propagation in a random flow whose
mean flow is large compared with its fluctuation in the infinite three-dimensional
space. In such a case, the temporal variation of turbulent fluctuation is negligible. We
consider the intermediate regime, where the range of acoustic wave numbers overlaps
with the range of turbulent wave numbers, between the short wave regime of geometric
acoustics or paraxial approximation and the long wave regime of homogenization.

We have used the multiscale expansions for the Wigner distribution to derive
the radiative transport equations that describe the evolution of the correlation of
acoustic field and the turbulent scattering, straining, and mode-coupling of sound
waves. We have shown that, because of the flow-straining term, the flow-acoustic
scattering becomes nonconservative.

Further, we have calculated the attenuation/amplification coefficients due to
mode-coupling and the scattering with flow-straining, respectively. We show that
the absorption or the emission of sound waves is significantly enhanced when both the
straining and the mode-coupling are active. The anisotropy of the coefficients is due
to the presence of mean flow.

Finally, we have obtained the diffusion equations which describe the transport
process in the physical space, and, thus, further reduced the dimension of the flow-
acoustic equations.

Appendix A. Derivation of the radiative transport equations.

We derive the radiative transport equations (28) in this appendix. The order
O(e7!) terms in (15) imply that the leading term in the asymptotic expansion (20)
has the form (26). The order O(¢~'/?) terms imply that

oW, L1 10W;
O0z; 2 0z

o oo 2) o)
-/ (d_pdeip-z [GoIWs (1= 2) + W (k+ B) 6(p)]

. RS |
(67) ﬁ-vzW1+iC—1ijJW1-iwlijJc—1§C 'DJ —DiCc™!

2m)
and in the order € we get
8Wo 1 1
8 +0a-ViWo+u- -V, Wy +1iC™ kD]WQ—ZWQkD]C
OW 1 0W 1 OW 10W
o lpi 2o ‘pic-! + 185 Y 2 “2hic-t
+2C D 0z t3 2 Ox; D c 2C D 0z; t3 2 0z;

~if (jf)deip'%k - ¥(p)) [W1 (k+5) - Wi (k- 3)]

- (;;dezpzﬁj(p) [OWIE()';— 5. angng{: %)]
(68) ‘/ (;;deip.z [(‘;.(p)w1 (k_ §> W, (k+ %) G*(p)] |

The term W can be solved for in terms of Wy from (67). Inserting the resulting
expression into (68) and averaging we can get a closed equation for (Wy). This is
done as follows. We solve (67) for W;(t,x,z,k) by taking the Fourier transform of
this equation in z and representing

Wi (t,x, p,k) Z F"‘th,p,k)bo‘*"<k+ >®b5m<k g)

a,3,n,m
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where b*" (k) are defined by (22). We insert (69) and (26), multiply the resulting
equation by the matrix Cb?™(k — ) ® (Cb*"(k + B)), and take the trace. Now we
get

(69) F2(t.x,p.K)
W (k+ B) [ (k- v(p)) T3 (k= B,k + B) +3(G* (p)CDP™ (k — B) - b3 (k + B))|
- wok+8)—wsk—-8)+u-p—if
Wk = B) [(k- ¥(p))Tfe (k — Bk + B) — i(CG(p)b (k — B) - b*"(k + B))]
wak+8)—wsk—8)+a-p—if ’

T:g(k, p) = Cb#™(k)-b%7(p) as in (35)—(38). To avoid a vanishing denominator, a
regularization parameter 6 is introduced. The limit § — 0 will be taken at the end of
the derivation.

To get an effective equation we average equations (68), multiply throughout the
averaged equation by the matrix C™™"(k) = Cb™™(k) ® (Cb™"(k)), and take the
trace. We assume that Wy(t, x,2z,k) is sublinear in the fast spatial variable z and
thus (V,Wj) = 0. We note that

TrC™™" (k)(L(k)W3 — W,L*(k)) = 0

because of (22).
We get the left side of the equation:

Lis = Wanl | a4 Gyor) VoW,

The right side is a sum of several terms:

(70) RHS = If,nm + Ig,nm + Ig,nm?
where
1 AP oy OW;1(k—2) oW, (k+B)
IT e\ Pz, 2 2 T,mn
1,nm 2 < (27r)de vj (p) ( sz + 82j C (k) )

I3 = <T¥ / (;;deip‘” (it v@)Wi (k+5) = Wi (k+ £) G*(p) C”""(k)> ,
and
B = = <T&' [ e (it vo)ws (k= 5) + GoIw: (k- 2)) CT’"’"(k)> .

First we observe that I7,, contains (after averaging) terms of the form p;R;(p)
which vanish because v(x) is incompressible. Thus we have

I = 0.
We also have the symmetry

(71) 13 m = I5;

3,mn"
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So we have only I3 .., to compute. We have

(72)

G = S ([ B R (a0+2)

) s )

~(G @b b (1 § - ) (Cb7m09 b (e B+ )] > |

x [i(k : O(p))(CbT m (k) . b ( g

We insert expression (69) for F¢#  ~and (16) for G(p) into (72). We evaluate this
average by assuming the hypothesis of scales separation: W} varies on a scale much
slower than the velocity fluctuation so that, up to the leading order, (W'f]') factors

out. We get
(73)

Tiom =3 / P brabams R(B) [ T35,k K + B)— (B - b (k + ) (CB™()),]

[ Ve (IRTS (k +p.K) + (B b () (ChP™ ), (k + p))
Wo(k) —wg(k+p)—ua-p—16

(W) (k+p) kT (k+ p,k) — (- b (k + p))(Cb™); (k)]
Wo(k) —wg(k+p)—ua-p—16 )

We define the tensor

Simi(k,P) = KT (k, p) — (B — K) - b*(p))(CB™"(K));,

which, like T;f; (k,p) in (34), is completely determined by the dispersion matrix L(k)
but independent of the flows. For the system (1)-(2) we have the explicit expression
for S]Tfll as in section 3.2. Then we may rewrite (73), using also incompressibility of
the fluctuations v(y), as

k) ,< )S’fir( )sﬁ:s( k)

i / dp <W:;>( )Riu(p - k)s;,ﬁs( P)Si, (k. p)
(em? " wr(k) —ws(p) + - (k—p) — i

Note that because v is incompressible, the tensor R

satisfies
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and
(Rv,p(k) - k)6(k +q) = (P(k)¥(q)) - k = —(P(k)¥(q) - q) = 0.

We combine (74) and the symmetry (71) to evaluate the right side of (70) in the
limit § — 0 and obtain

RHS =3 | G Balp =052, )57 (k. )W) )50 (1)

—wg(p) +u- (k—p))
- (W (K)ZT(K))nm — (7 (K)(WT)(K))nm

with 7 given by (29).

Appendix B. Derivation of the diffusion equation without flow-straining.
Here we derive the diffusion equation (58). Equation (54), after the change of coor-
dinates (56), becomes

(75)

629212 + €(Tt — Bt + cok) - Vy (W)

_ 1 W) o o 1 )
= G /w:(m%;(p) g Rp — Wk ) 11+ k- B (p) — (W) k)

Inserting the expansion (W) = Wy + eW; + €2Ws + -+ into (75) we obtain, in the
order O(1),

_ dp) o T
(2m)a=t /w:<k>=w:<p> G5 cop] P~ Wk k)7 (14 k- p) [Wo(p) — Wo(k)] = 0.

Then it follows from the Krein—-Rutman theorem [9] that W} is constant on the ellip-
soids SiF for all h € R:

(76) Wo = Wo(s,y, colk| + @ - k).

The order O(e) term in (54) gives

(77) (i — G + cok) - Vy Wo = QW (k)

with the operator Q as defined by (55). The solvability condition for W, from (77) is

X _ dQ(k)

/+ (@ — Tegt (h) + cok) - VyWy(k)———— =0 VheR.
wi (k)=h [t + cok|

Using (76) we obtain the effective drift Gieg as given in (57).
To solve (77) we first solve for the corrector x (k)

(78) i — G + cok = Qx.
Then the first-order term W is given by

(79) Wi(t, x, k) = x(k) - V, Wy
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The order O(£?) terms in (54) give

oW, )
880+(u Gt + cok) - Vy Wy = QW

which is solvable provided that

oWy -) dQ(k)
+ (0 — Qe +cok) VoW )| ——— =0 VheR.
/ ( Os ( m+ cok) - Vy W |a + cok|

Using (79) we have

dQ(k )
| + cok|

/ (%Zg+(u Teg + cok) - Vy[x~VyW]) =0 VheR

Thus the limiting diffusion equation for Wy is (58).

Appendix C. Derivation of the diffusion approximation with flow-
straining. We derive in this section the diffusion approximation with straining (61).
In the long run the deviation from the equilibrium state with equidistribution of en-
ergy on frequency surfaces is small. It is more convenient to use a slightly different
form of the transport equation (46), which, after rescaling, becomes

(80) é’é@ + eco(k + i) - Voo (W) — L (k)(W)

ot
- / wj’%a(k, P) (W (D) — (W) (k)5(colk]| — eolp] + ecotr - (k — p)),
where
(1) (k) = / @—;’;—_laxk, p)6(colk| — colp| + ecott - (k — p)),

which is different from (51) since o(k,p) # o(p, k) in general. The cross sections
o(k,p) and o’(k, p) are given by (49) and (50). Let us first consider the coefficient
L’ (k) defined above.

We use the delta function expansion

(82) / dpf(p)8(colk| — colp] + ecott - (k — p))

- / dpf(p)8(colk| — colp]) — ¢ / dpf(p)(B - @)8(colk| — colp])
k|
+e—

c dQ(p) (1 - (k — )b - Vp ([P f(P)) + O(¢?)
0 Jip|=|k|

for any smooth, fast decaying test functions f(p). Using (82) we write
(83) Li(k) = €A1 + € Ax+ -

The scalars A, 2 are given by

d—1 N .
A = B [ Ry - k1 - B) (B 1) )
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\E/)

d-1 o R R
Aot = B [ BB (R, )k (k- )

x [ﬁ.ﬁ(gk-p—1)+k-ﬁ(1+ﬁ.f>)]

T /l 4UP) i 5y -k 0)% -V, [IpI2 (R (k — p)k- k).

Co =k (2m)d-1

Note that we have
(84) / dQ(k) A, (k) =

and hence the amplification/attenuation effect is only second order in the Mach num-
ber ¢, and hence diffusive scaling leads to a nontrivial limit. Similarly, we expand the
right-hand side of (80).

We assume the expansion (W) = W§ + eW; + ¢2W, + - - - with the ansatz for the
leading term

oWofcolk)
Ow

Here w = co|k| denotes the frequency variable. Then the contribution of the leading
term W§ to the right side of (80) vanishes identically,

WE = Wo(t, x, colk| + ecott - k) = W (t, x,w) + ecotd - k

/ (2:)11)1—1 U(k, p) [Wo (p) - ( )] 6(colk| — CO|P| + ecpti - (k _ p)) =0,

since W is constant on the frequency ellipsoids. The leading-order term in (80) is
O(e):
(85) cok - VxWo(w) — A1 (k)Wo(colk|) = QoW1

with Qp as defined by (53). The solvability condition for (85) is that the integral of
the left side over the frequency sphere S;” = {k : ¢olk| = h} for all h > 0 vanishes.
We note that

/ cok - Vi Wo(colk|)6(colk| — w)dk =0 Vw >0

and also (84) holds. Thus, (85) is solvable by the Fredholm alternative.
Let ¢(k) and x;(k) be solutions of (65) and (66), respectively. Then W is given
by

(36) ng %m( W,

Substituting (83), (C) in (80), we find the order O(e?) term

BWO 82W 8WO
W‘FCQU v W0+Cok v W1+cou kk’@ a — cold - kAl(k) ER

(87) —AWy — AWy — QW = QoW
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since the terms on the right that involve Wy and its derivatives vanish identically by
construction. The operator Q; on the left side of (87) is defined by

.~ A
YL [ o Rk~ )k )@+ )k B (P) - £0K)

co (2m)d-1
k|42 aam) . ~ . .
+| Lo /(277)(‘5)—)1(11.1(_“.1))

p e 1
PV ['p'zm’v(k — )k K)((p) - £(K)) ( b+ 3 }
As before W, is solvable from (87) if the left side of (87) has the zero mean on

every frequency surface colk| = w. Let us now compute all the terms in (87) after
averaging over this sphere of wave vectors:

oW, _ Anlk|? OWp(w)
/dk6t6(|| W)=
and
_ - 4mlkf?
/ dkeott - Vo Wob(colk| — w) = dr[k|2d - Vi Wo = ”c’ “B, . v, 7.
By (86),
/ dkeok - VoW1 (K)8(colk| — w)
W oW,
= Ik [ a2k ()52 + kP [ a0
n
4r|k|? 0*°W, 47r[k12 =
- D"J 6xn8.’11'_7 + Bl ° VxW07
and
. 0?W, dmeolk|]® . 0PWo  4nlk|? _, 0°W
2 0 —w) = . = 0 ,
(88) /dkcou klc](9 o 5(colk| — w) 5 U 82,00 - F 92,0

So we have B; = [B; ;], Ao with

1
Bii= - [ 425600,
1 N
Ao = E/dQ(P)¢Qo¢~

The next term on the left side is

—co / dkit - kA; (k)6(co k| ~w)5—uuj° = —|k]? / dQ(k)u kA; (k

47r|k|
Co 1 6w

) oW,

(89)
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The next term on the left in (87) is

kP BWO

- [ a8l - w) = -5 [ d0@) Ao 00 5

2
|k| / 0k (K)Wo

47r|k|2 47r|k|2
Co

Bz v Wo+ AOWO-

ThllS, B2 = [Bg’j] with

1 A
Bay = 3= [ d0)Qu
The second-to-last term on the left of (87) is

4r|k|?
Co

llc{{|)2 /dQ( )AQ(k)Wo(w) = A1WO

where A; becomes part of the attenuation/amplification coefficient. The last term on
the left side of (87) that we have to compute is

_ / dk Q1 [W1]6(colk| — w) = / dkQ, [X]aw"]a(co|k| W)

- /deI [¢Wo]5(00|k| —w)
=I1+4+1I.

The first term may be written as

4 0 ~
-5 - [ an ) [ Gy (= Pk 19 (- B) - B (p) - Xj(k))?azo )
Ikls/ ) [ G @ k-ap)

b 94| I =) K0 () G colpl) x50 G2 clk) (k- + - 2L )2
=1 + I.

Using (66) we have

n=-EL [ G o e w5

2
— -k [ @)@ p)p- Vo = - il a- v,k
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and
(90)
B= - faago [ 280 @ k- p)p- Ty | PR (- Pk 19
< (o) 22D g P (. 2 %)T
- - faodo [ 250 a k- a-p) {lklz(ﬁv(k Pl () P g
+ b Vi [P~ P10 ((p) — x50 (K- B+ 5 — o) } ngj“‘“}
_ 47‘!2"2 [F; 52‘?’ +B3-va0].

Next we look at
—_ / dkQ; [p(k)Wo(K))8(colk| — w) = IT, + I,

By (65) we have

) A
m= K (jf)(j’_)l Qo (p) (@ B)Wo

= B [ @i pate) = B2 [ aop)a- o))

_ 47T[k|2g1_W0
o w
2
:47r|k| AW,
Co
and
(91)

1L, = Jkls / (k) / d”)(l’) (@-k—a-p)p-V, [Iplz(ftv(k—p)k-k)

x (¢(p)Wo(colpl) — ¢(k)Wo(colk])) < P+ % _ QLI%) }

- M Jando [ S22 @ k-a p>{|k| (B — plk - 10)0(p) (k- )2y 2

+BVp [|p12(ftv(k—p>k-k> (@(p) — 000) (k-p+ 5~ o) ] Wo(Colk|)}

_ anfkf? { 0288Wo

+ A3 Wo}
Co
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Now we start simplifying these expressions and putting them together. The terms
involving the mixed second-order derivative in x; and w appear in (88) and (90).
Their total contribution is zero:

F;

4
Akl clk .
_0_|_|uj J I/dQ - kQox; (k)

= FJQ +Fj1
= B, - B [aa) [ 420 @ k- o p)Ry(c - p)k (K- 5 (P)

3 97 4 (2r)d-1

3 J

= A, - B [ aoion-k [ 220 (R, - pk- 1)k 504 )~ x,0)

(27l')d 1

3

3
CQIk[A ¢ [kl N
= 03 U — 03 u; =0,

where we used (66). The drift in frequency OW,/0w appears in (89) and (91). Its
total contribution is also zero:

Ci1+ Cq
3 R 0 R ~
- B [aad [ S Ry k- plic19(a- k- - p) (k- 5V 6(p)
3 R R 0 . N
== G [andioa-) [ S (Rt pk- Kk B0(6) - 901
k|co

=Cit+ == / dQ (k) A; (k) (a - k) = 0,

where we used (65) and (89). Therefore different frequencies are decoupled.

Now we look at the drift in the spatial variable x and the amplification/attenuation

coefficient. The following term in the expression of B3 can be simplified:

2
_2lk| / )/ dﬂ(p)l(m k—pk-k)(i-k—1a-p)(k- p)*(x;(p) — x;(k))

4meg (2
2 ~ A
‘i':c'() / a9k (@ / (ZQ)(},’ Pk 5 (R~ )k k) (p) — x5 ()
= / aq(i)(a - ¥ Qox;
- -§COUJ7

as well as a similar term in the expression of As,

2 ~ ~

2 [ aad / e EUD) (R (ke — pk - K) (K — - )k - B)2(0(p) - (k)
2 ~ ~

4"" [ dama- ) [ Gk 5 (R (- pIk-1(6(P) — o(K)

——/dQ Al(k) = —401/0.)
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Note also that By = B;. Then we collect the rest of the terms. In summary we get
a diffusion equation for Wy:

oW, - _

——8t° +B(w) - Vi Wo + A(w)Wy = D
with B, A, D;; given by (63), (64), (62), respectively.
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