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RADIATIVE TRANSFER OF SOUND WAVES IN A 
RANDOM FLOW: TURBULENT SCATTERING, 

STRAINING, AND MODE-COUPLING* 

ALBERT FANNJIANGt AND LEONID RYZHIKt 

Abstract. We study the sound wave propagation in a random flow, whose mean flow is large 
compared with its fluctuation, in the infinite three-dimensional space. We consider the intermediate 
regime, where the range of acoustic wave numbers overlaps with the range of turbulent wave numbers. 

We use the multiscale expansions for the Wigner distributions to derive the radiative transport 
equations that describe the evolution of acoustic correlation and the turbulent scattering, strain- 
ing, and mode-coupling of sound waves. We show that, because of the flow-straining term, the 
flow-acoustic scattering becomes nonconservative and, depending on the propagation direction, a 
sound wave can gain or lose energy. We calculate the attenuation/amplification coefficients due to 
mode-coupling and/or turbulent scattering with flow-straining. These coefficients depict interest- 
ing dependence on the propagating direction and the wave length of sound wave. We demonstrate 
numerically that the attenuation/amplification coefficients are enhanced significantly when both the 
straining and the mode-coupling effects are present. 

We also obtain the diffusion equations on the physical space and, thus, further reduce the di- 
mension of the flow-acoustic equations. 
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1. Introduction. Flow acoustics concerns three different processes: propaga- 
tion of sound through flow, generation of sound by flow, and generation of flow by 
sound [24], [26]. Correspondingly, there are three main effects: scattering (and refrac- 
tion), acoustic radiation, and absorption. Refraction alters the direction of a beam 
of sound and is well studied in geometrical acoustics. Scattering is the redistribu- 
tion of energy among different wave numbers and/or different components (modes) 
of the same wave number and results in spectral or directional broadening. Both 
refraction and scattering processes are commonly assumed to preserve the acoustic 
energy. This is not the case, however, when the effect of flow-straining is taken into 
account. As a sound wave propagates through an extensive body of the turbulence it 
may be attenuated or amplified through two mechanisms: wave mode-coupling and 
straining. These effects are usually small but can be important in a fluid turbulence 
with a strong mean flow (like a jet or a grid turbulence in a wind tunnel [4], [5], [27]), 
especially when both the straining and the mode-coupling are active (see Figures 5 
and 6). 

Turbulent scattering of sound waves has been much studied both theoretically and 
experimentally since the single-scattering theory of Blokhintzev [3], Lighthill [23], and 
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Kraichnan [20] (see [28] and [17] and the references therein). The experimental studies 
have been mainly of sound propagation in the atmosphere or oceans, but relatively 
few experiments have been conducted under laboratory conditions. This is more so 
when it comes to the study of turbulent absorption of sound waves, with [18], [25], 
and [14] being notable exceptions. These experiments suggest loss of acoustic energy 
which cannot be accounted for by turbulent scattering or refraction caused by the 
variation of the mean flow. These experiments typically have turbulent intensity 
of 20%, turbulent Mach number on the order of 10-3, the integral scale roughly 
10 cm, and the Kolmogorov dissipation scale roughly 1 mm. The acoustic wave 
lengths used (e.g., 600 to 5000 Hz in [18]) in the experiments are typically larger than 
the integral scale. This is a long wave regime. The work [18] suggests a turbulent 
absorption mechanism which is frequency independent in the above frequency range in 
contrast to the frequency-square dependence of absorption by molecular dissipation. 
Theories have been proposed to explain this phenomenon qualitatively [27], [16]. The 
work [27] invokes the semiempirical viscoelasticity theory of turbulence (see also [8]), 
while [16] extends Lighthill's approach. Both assume certain temporal structure of 
the turbulence and ignore the effect of the mean flow, while acknowledging that the 
absorption can become significantly greater in the presence of a mean flow (see also 
[15]). 

We have also seen significant advances in the study of the short wave regime 
where the geometrical acoustics or the parabolic approximation is valid [28], [32]. In 
the present study we consider the intermediate regime where the sound wave lengths 
are comparable to the sizes of the turbulent eddies under the influence of a mean flow. 
This regime would correspond to the high-end audible range or the low-end ultrasonic 
frequencies in the experimental setting of [18]. Under such a circumstance turbulent 
scattering and absorption of sound waves are expected to be more pronounced (Figures 
3-8). 

Our main goal is to derive the transport equation for the phase-space distri- 
bution of the sound field with the explicit formulas for the scattering cross section 
and the attenuation/amplification coefficient. The radiative transport equations de- 
scribe naturally the aforementioned mechanisms of turbulent scattering, straining, and 
mode-coupling. We show that, because of the flow-straining term, the flow-acoustic 
scattering becomes nonconservative and, depending on the propagation direction, the 
flow can emit or absorb acoustic radiation. Moreover, this effect is most pronounced 
when both the straining and the mode-coupling are active (see Figures 3-8). 

2. Phase-space formulation. 

2.1. Flow-acoustic equations. Flow field and sound field are different modes 
of the total fluid motion described by the compressible fluid equations; they are distin- 
guished by dispersion relation (see section 3.2). Although flow acoustics is nonlinear 
in general, the fraction of the total fluid energy contained in the acoustic field is very 
small in a subsonic flow (the ratio of sound-to-flow amplitude is of order 10-3 for 
the loudest sounds of interest). The linear mechanisms of the mode-coupling and the 
flow-straining are more important in this case. 

We think of the sound (generated by the flow or other sources) as a small pertur- 
bation of a background flow field and study the sound propagation via the linearized 
Euler equations for weakly compressible, homentropic fluids: 

(1) 
p + V * Vp+ -V u + u Vp = O, At Ko 
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(2) -9 + V. X7Vu+ + u VV = 0, 
At Po 

where pl, V are the pressure and the velocity fields of the underlying random, in- 
compressible flow, po 0 const is the density, 0o = 1/(c2po) is the compressibility of 
the fluid, and p, u are the pressure and velocity fluctuations due to the perturbation 
by sound waves. Here co is the sound speed of the (still) fluid and assumed to be a 
constant. 

When Qo is relatively small, we can make the following approximation: 

(3) + V Vp + -V. u O, 
at Ko 

(4) u-+V Vu + vP +u VV = 0. 
At Po 

That is, the turbulent pressure field is neglected. Further simplification can be made 
under suitable conditions by neglecting altogether the lowest order terms responsible 
for flow-straining effect: 

(5) .+uV Vp+-V u=O, 
at Ko 

(6) -+ V.Vu+ 0. 
at Po 

This approximation is valid for very high frequency waves. 
We do not consider the effect of solid structure (such as walls, edges, corners), so 

(1)-(2), (3)-(4), or (5)-(6) are studied in an infinite medium (see [17]). 
The effect of molecular viscosity is neglected. Although viscosity is ultimately re- 

sponsible for the conversion of mechanical energy into heat, it has a negligible influence 
on the transfer of energy between the sound and the turbulence. The incompressibility 
of the flow is not essential to our approach; we assume it to simplify the presentation 
of the method and the results. 

Specifically, we assume the background flow field has a small turbulent intensity 
with a mean flow, u, and write the velocity field as 

(7) V(x) = u + vv(x), 

where VfF is the turbulent intensity (<< 1, typical of wind tunnels) and \/fv(x) is the 
turbulent velocity fluctuation assumed to be a mean zero, time independent, space 
homogeneous, divergence-free random field with covariance matrix R = [Rij(x)], 
R j(x) = (vi(.)vjQ + x)). The homogeneity of the turbulence is a reasonable as- 
sumption for, e.g., the core region of fully developed turbulent (pipe, jet, or grid) 
flows, or the outer region of a turbulent boundary layer. The incompressibility of 
the flow requires that the (turbulent) Mach number measured in the reference frame 
of the mean flow is infinitesimally small (Mf =V/e(v12)/co << 1), while the mean- 
flow Mach number (Ma = iul/co) is assumed to be small to moderate. We assume 
for simplicity a uniform mean flow, in which case the mean-flow Mach number can 
be arbitrary. Stratified wind mean velocity profile is an important factor in sound 
propagation in the atmosphere and the resulting refraction can be accounted for by 
geometrical acoustics or parabolic approximation. Such an effect is decoupled from 
the turbulent scattering because of separation of scales. 
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When the turbulent intensity is small, time dependence of the turbulent fluctua- 
tion is negligible compared to the pulsation seen from the moving reference frame of 
the mean flow. This is called the random sweeping effect [7, 31] and is closely related 
to the Taylor hypothesis of frozen turbulence [12]. Also, when the turbulent Mach 
number is small and the incident sound wave lengths are comparable to the eddy 
sizes, the frequencies of the turbulent pulsations are much smaller than those of the 
incident sound. Thus only the spatial correlations of the turbulence are pertinent to 
sound propagation and the turbulence is effectively frozen for our purpose. 

The covariance function Rij can be determined from its Fourier transform, which 
takes the following form in the case of locally isotropic turbulence: 

Rij(k) :=- R7(kl) (ij - kikjlk-2) [kld Vi,j. 

The factor (6ij - kikjlk-2), resulting from the incompressibility assumption, is the 
projection onto the plane orthogonal to k. A typical example is given by the power-law 
spectrum 

(8) 7Z([kl) = Rolkl-, to << Ikl << ? J , some v c (-oc, oo), Ro > 0, 

and decaying rapidly elsewhere. Kolmogorov's spectrum corresponds to v = 5/3 with 
f1, fo being the dissipation and the integral lengths, respectively [12]. 

The form of the velocity field (7) is more of mathematical convenience than ne- 
cessity. u can be seen as representing the flow component on the integral scale and 
v/_v as that in the inertial subrange. Small E corresponds, in this connection, to the 
fact that the integral scale is the energy-containing scale. Indeed, the kinetic energy 
contained in the shell [k, 2k] diverges as k -- 0 for any v > 1, including the Kol- 
mogorov spectrum. In this view, (7) is a simple model of real turbulence which may 
not exhibit separation of scales between the integral scale and the inertial subrange 
as implied by (7). 

2.2. The Wigner distribution, the Wigner equation, and transport scal- 
ing. Radiative transfer theory is well established [6], [2], [19], [29] for strictly hy- 
perbolic waves, such as acoustic, electromagnetic, and elastic waves propagation in 
inhomogeneous media at rest, governed by equations of the form 

(9) C + DJ =0, x= (x1,x2,x3), 

where the positive definite matrix C = C(x) represents nonuniform materials prop- 
erties pertaining to the speed of wave propagation and Dj are constant, symmetric 
matrices. The wave filed w may be a scalar, a vector, or a tensor. In the case of under- 
water sound propagation in a density stratified fluid, the medium fluctuation occurs 
in material properties, such as density and compressibility, as opposed to nonuniform 
movements of otherwise uniform medium, and is relatively small: 

(10) C(x) = Co + Iv/Cl(x). 

Assuming the medium perturbation Ci is smooth, wave propagation on the scale 
of the inhomogeneities is only slightly perturbed. On larger scales, however, multi- 
ple scattering results in significant effects. If interactions between the wave and the 
medium inhomogeneities are incoherent, then we expect a Markovian-type of trans- 
port to take place on larger scales. This motivates the transport scaling 

(11) t -+ t/?, x - X/?, k k, 
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where k is the Fourier variable associated with the scale of the inhomogeneities. In- 
coherent scattering is a result of the randomness of medium fluctuation and the di- 
mensionality three. For periodic medium fluctuation, the Bloch waves arise. In lower 

dimensions, coherent backscattering may be strong and results in localization, instead 
of transport, of waves. 

Waves usually do not have a well-defined phase-space energy density, a funda- 
mental distinction between waves and particles. However, a pseudodensity function, 
called the Wigner distribution, can be defined as 

W(t,x, k) ( )de 
w (t,x - w* t, x + 

before the scaling factor E of the medium fluctuation is considered. As the Wigner 
distribution preserves all the wave properties, it usually loses positive semidefiniteness 
as it evolves in time. Here and below * denotes the complex conjugate for scalars and 
the conjugate transpose for vectors and matrices, and i denotes the imaginary number 

-~1. In [29], the Wigner distribution was used to derive radiative transfer equations 
for hyperbolic waves [13]. 

In contrast, for the flow-acoustic problem at hand, the material properties are 
uniform and represented by a constant matrix 

C = diag(po, P0, Po, Ko). 

(The case of variable C can be treated also, but we do not pursue it here for the sake 
of presentation.) Instead of material inhomogeneities, we have a nonuniform fluid flow 

u(x). We rewrite the linearized Euler equation as 

()w _w 

(12) - + u(x) Vw+ C-1lDj j + Gw -=, w = (u,p) 

with symmetric, constant matrices D3 and 

G- (VP)* 0' ax 

The lower-order term (not displayed) corresponds to the flow-straining effect. It 
should be noted that (12) is not strictly hyperbolic because of the presence of the 

nonpropagating vortical mode (see section 3.1). 
By the transport scaling, the flow field (7) becomes 

(13) u + v () 

We also assume 

Pi - 
vP (-) 

for some space-homogeneous random function P. The rescaled flow-sound field w, 
now satisfies the equation 

+ (U+ Iv(-)) .Vw,+C-Di - + G (-w,=, 

wE (0, x) = w(x). 
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For the rescaled field w, the Wigner distribution should rescale accordingly as 

(14) We(t,x, k) = Y (2 ek-Yw (t,x- 2y ) w, (t,x+ 2 ) 

which satisfies the Wigner equation 

at + u VXwW + !- C-1D a 6 DjC- at 2 aOxj 2 axj 

+ -kjC- DW, - -WkjDjC-1 

idp if d2p eZP'x/ek - (p) [WE (k+ ) -W (k- 2)] 

x/ f dp Wix/e -aw(k - P) aWe(k + P)- 
- (27r)de pxVjp) ax j axq-j 

(15) - a d eip x/ 6 [G(p)We (k- 2) + We (k + ) G* (p)] 

with G*(p) the Fourier transform of G: 

(16) G(p) = i((v(p), P(p)) 0 P, 

where p (Pl, P2,P3, 0). For ease of notation here and below, we omit writing 
the independent variables of physical quantities as much as possible. For example, 
We(k + P) denotes We(t, x, k + P) here. We also adopt the summation convention 
for repeated indices except for Greek letters in the superscript that distinguish differ- 
ent modes. Only the summation over superscripts in Greek letters will be displayed 
explicitly. The derivation of the Wigner equation from the wave equation is lengthy 
but straightforward, so we leave it to the reader. 

Why do we use the Wigner distribution? Among other things, the energy density 

?(t, x) = (Cw *. wE) 

and the energy flux 

j (t, x) = uj(x)(Cw, . w) + (DJw, we) 

can be recast in terms of the Wigner distribution as 

(17) F(t,x) = Tr / dkCW(t, x, k), 

(18) Fj(t,x) = Tr dk [u(x)CW,(t,x,k) +D)W,(t,x,k)]. 

The advantage of the phase-space formulation is that while a transport equation of 
the form 

(19) t + SIa 

where S is the source term accounting for the generation or absorption of sound 

[17], is not always valid, the Wigner equation is. Moreover, in the transport limit 
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e - 0, the nonpositiveness of the Wigner distribution disappears and the weak limit 
of the averaged Wigner distribution (W6) satisfies the radiative transfer equation 
which corresponds to a Markov process in the phase space and preserves the positive 
semidefiniteness. In the following sections, we present and analyze such transport 
equations, which are derived in the appendices. 

Before ending the section, we pause to note that the transport limit of the Wigner 
equation when DJ = G = 0 (i.e., the transport of a passive scalar) has been rigorously 
obtained by an entirely probabilistic method in [11]. Another case where the transport 
limit has also been rigorously obtained is the Schr6dinger wave in a random potential 
of the form (10) [10] (see also [30] and [1]). In both cases, the unknowns are scalars. 
In addition, the inhomogeneity of the Schr6dinger equation is in the lower-order term. 

3. Radiative transfer. 

3.1. Linear dispersion: Acoustical and vortical modes. To analyze (15) 
we consider a multiscale expansion 

(20) W(t, x, k) = Wo(t,x, k) +/W (t, x,-, k) + W2 (t,x, , k) + 

x 
We introduce the fast scale variable z = - and make the substitution 

1 
Vx -+ Vx + -Vz 

in the Wigner equation (15). Inserting (20) we obtain in the leading order O(e-1): 

(21) L(k)Wo - WoL*(k) = 0, 

where L(k) is the dispersion matrix given by 

L(k) = C-1kjDj. 

As L is symmetric with regard to the scalar product Cx . y, L has a complete 
set of eigenvectors and associated real eigenvalues. Let w,(k) be the eigenvalues of 

L(k) with the multiplicities rs, and let bc'j (k), j = 1,... , r,, be the corresponding 
eigenvectors 

(22) L(k)ba'i = wCbba, 

normalized so that 

(23) Cba' (k) b' i(k) =- 6ij6a. 

For our system (5)-(6), the matrix C = diag(po, po, po, so). The dispersion matrix 

L(k) is 

0 0 0 ki/poN 
0 0 O k2 /po (24) L(k)= - ? ? ? k2/P 

(24) w ~ 
~0 0 0 k3/po 

ki/Nio k2/0o k3/10o 0 / 

It has three eigenvalues: 

ov = Col|k, w2 = -Colkl, 3 = 0, 
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where co = 1/V/ioPo is the speed of sound. The eigenvalues wi(k),Wc2(k) are simple, 
whereas the zero eigenvalue has multiplicity two. The eigenvalues w1 (k) and w2(k) 
correspond to the (acoustical) longitudinal modes (forward and backward, respec- 
tively) while the eigenvalue :3 corresponds to the (vortical) transverse mode. The 
corresponding eigenvectors are 

"*'(l^ y 2=(^ *-^ 0 , 
3,i -12.I 

To fix the idea, we take the first coordinate axis to be in the direction of ui, the second 
to be on the u - k plane, and the third to be orthogonal to the u - k plane. Let 0 be 
the angle between iu and k. Then we have 

(5(cos 0 ) -cos s0 sin0 sn( snqsn0 
(25) k= sin , k = cos4cos0 -sin4cos0 , 

0 / \ sin 0 cos 0 

in terms of the angular coordinates 0, 0. Note that when 0o << 1, the acoustic wave 
modes point predominantly in the direction of the pressure variable. 

The solution Wo of (21) is given by 

(26) Wo(t,x, k) = E W (t,x,k)bai (k) 0 bi (k) 
a,i,j 

2 

= Wlbl X b1 + W2b2 O b2 + W3,b3,' ? b3'j, 
i,j=l 

where W" = [Wij] are the rs x ra Wigner distribution matrices associated with 
w, a = 1, 2,3. 

The matrices W" provide a decomposition of the total fluid energy density on 
the phase space among different modes and polarizations so that 

?(t, x) = E /dkTrWa(t, x, k). 

Likewise, the flux .F can be decomposed as 

j= dk uj + -W TrW(t, x,k). 
^ J - Ok _ 

Note that the first term corresponds to the mean flow, and the second to the phase 
speed. 

3.2. The radiative transport equations. Throughout this section we use a 
to denote the 4-vector 

a= (a, a2, a3, 0) 

for any given 3-vector a = (ai, a2, a3). We denote by R = [Rij] the 4 x 4 correlation 
tensor of the vector (v, P). Note that the divergence-free property of the flow implies 
the symmetry 

R(p - k)k k = R(p - k)k p = R(p - k)p p. 
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Assuming the expansion (20) and (26) we derive, in Appendix A, the transport 
equations 

(28) 
(W ) + (U + VkWr) * Vx(Wnm) 

+ ((W ) (k)Er(k))nm + (EY*(k)(Wr)(k))nm 

= E (2)d-1 Rj1 (p- k)Sj(k, p) S,(k, p) (W ) (p)6 (w(k)-w (p) +Ui(k-p)), 

where the total scattering cross section matrices El (k) are given by 

_dp Rjl(p- k)Sjr(k,p)Sl(p,k) 
(29) Em (k) =- i dp jmr ( s (p k) (29 E/(k) ^- - y i (27r)d wvr (k) - wv (p) + fl. (k - p) - i0 

Note that [S[3] is rank-1 for , /3 = 1, 2, rank-2 if exactly one of two superscripts is 
3, and rank-3 if both superscripts are 3. They can be rewritten more concretely as 

S" (k, p) = (k * p + l)k - (I k p) k, , 2 2 Po0 

S22(k, p) = (k p+l)k-1 (Ip-k kp) k,- , 

Sl2(k,p) = (kp-lf)k-l-(p-k p) k,/) 

2 2 \ Po/ 

P 1 

S 2(k, p) = (kp-l)k- (1p -k p) - 
2 2 Po/ 

S13 (k, p)- 
1 

p^(m))+ 1 k p(m)k , m 1,2, 

1 1 k(m) N 
S.m (k,p)= kk(k .I)+ /kpm) k,- m=12 

X'2- 2- - Pol 
1 1S32 

S (k, p) = k(k ^p 0) - S (kk,p), m = 1,2, 

S.33 = (k? ) *p) +k p()(k(m),O0), l = 1,2, 

with k (m), l) defined as in (25). S11, S22, S33 account for the self-coupling of acoustic 
and vortical modes, S12, S21 the coupling between the forward and backward acoustic 
modes, and S13, S23 the coupling between the acoustic and vortical modes. For weak 
compressibility no << 1, we have the following approximations: 

(30) S1(k, p) S22(k, p) (k p+ 1/2- Ip/(2lkl))k, 

(31) S12(k, p) S21(k,p) (k p- 1/2- p /(2[kl))k, 

(32) S3 (k, p) S23 (k, p) Vk. fmk, m = 1,2. 

Equation (28) is a coupled system of equations for the limiting distributions 
(W1)(t, x, k), (W2)(t, x, k) and (W3)(t, x, k) for the acoustic and the vortical modes, 
respectively. The coupling occurs between the level surfaces (ellipsoids) of the (Doppler) 
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acoustic frequency and the level surfaces (planes) of the vortical frequency (see the 
next section). 

Equation (28) preserves the positive definiteness of the initial data so that if 
initially the matrices (WT)(0, x,k) are positive definite, the solution (Wr) (t, x, k) 
will remain positive definite. However, it does not in general conserve the energy 

E(t) = J ?(t, x)dx = const 

(of the perturbation) due to the flow-straining. 
To see how the flow-straining term has affected the transport equation, we derive, 

in Appendix A, the radiative transfer equations by neglecting the term involving G 
in (15): 

(33) (t + (u + VkwT) . Vx(W ) + E (Wr)(k) + (W) (k)Er*(k) 

I(2r)d-1 (R(p- k)k k)TT1(k, p)(W/)(p) 

xTI 3(p, k)6(wT(k) + u k - w3(p) - u p), 

where the total scattering cross section matrices S (k) are given by 

E dpX ( rd ( (u k)k k) T" (k, p)T" (p, k) E (k)=-i ZI (R) (p-k)k.k)(k P) ( ) 

with 

(34) Tm (k, p) = Cb/O'm(k) ba'j(p), 

or, more explicitly, 

(35) T1l(k, p) (k + 1)/2 T22(k p) 

(36) T12(k,p)= (k. p-1)/2 = T21(k,p), 

(37) T13(k, p) = k* p)/2 = T23(k, p), i = 1,2, 

(38) T33(k, p)- k(P- )(), i,j= 1,2. 

We know from (23) that T, (k, k) = 6,36mj. It is interesting to compare (35)-(38) 
with (30)-(32) to see the effect of flow-straining. (Note that the square of k has been 
factored out of TiJ.) 

In addition, thanks to the reciprocity relations 

T' (p, k) = TT'* (k, p) 

(33) preserves positive definiteness, as well as the averaged total energy 

(E(t)) = ETr (W)(x,k)dxdk = const. 
7' 

v 

Energy conservation is due to the absence of the straining term in (5)-(6). 
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3.3. Resonant interaction: Mode-coupling and conversion. Because of 
the presence of Dirac's delta-function in the kernels of the transport equations, acous- 
tic/vortical waves interaction is best described in terms of the Doppler frequency 
surfaces Sh and Ph, for h E R, 

,S - {k|lw(k)= h}, 

Ph ={klwv(k) = h} 

with 

W (p) = +copl + p, v(p) P= ) p 

being the Doppler frequencies of the forward, backward acoustic modes and the vor- 
tical mode, respectively. 

We have the relation 

S-h={-k|k S+}, h R, 

between the frequency surfaces S+ and S- associated with the forward and backward 
acoustic modes. 

In addition to self-coupling the acoustic modes can interact with the vortical mode 
through resonance 

?colkl + u k = u p 

and, as a result, the transport equations for the acoustic energy densities Wi(t, x, k), 
i = 1, 2, couple with that for the vortical Wigner distribution matrix W3(t, x, p). 

The surfaces Ph for the vortical mode are planar. Thus the vortical energy cas- 
cades to high wave numbers regardless of coupling with the acoustic mode. The 
vortical energy cascade does not introduce long-range correlation in velocity fluctua- 
tions and, hence, maintains the validity of the short-range correlation assumption in 
(13). 

The frequency surfaces S? are hyperboloids for supersonic flows ui > co and 
ellipsoids for subsonic flows u < co. In the supersonic regime the acoustic energy 
cascades to high wave numbers since S?, h C R, also have infinite surface area. The 
hyperboloids defined by 

c02kl2 = Ih-u kl2, h > 0, 

have two branches: the forward branch S+ and the backward branch S3, correspond- 
ing to the forward acoustic mode wi(k) = Colkl and the backward acoustic mode 
W2(k) = -colkl, respectively, with the major axis of symmetry in the direction of u. 
The normal form of the hyperboloids is 

/I-[2 "2\ (c h^l h \2 _ 2 
(U -- 2C) 1- 12 _ 2 -c( c2( + ) = h2 c2 O I 

I 
2 - u2 2 

2I 
- ?2 

where 1i is the coordinate in the direction of u and ~2, 3 the coordinates in the 
orthogonal directions. In the long times the acoustic energy is driven in the directions 
of the asymptotes which form two (forward and backward) cones of semiangle 

co 
7 = arccos -I, 

|u| 
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of OA is Ihl/lil. 

with the axis of symmetry parallel to i, joining their tips at 

O? = -2 
Ua2 -_Co 

(Figure 1). Since the slope of the asymptotes is independent of h, the acoustic en- 
ergy gradually transfers to higher and higher wave vectors parallel to the asymptotes 
regardless of the initial distribution and eventually dissipates into heat. 

Since the subsonic regime fi < co is probably more relevant, our attention is 
restricted to this regime in what follows. 

The frequency surfaces Sni are football-like ellipsoids with the major axis parallel 
to u. The normal form of the ellipsoids is 

(39) (c 2)2 + hlu 2 + co U2 (c2 + ) 1 

where the coordinate sl is in the direction of u and ~2, '3 are in the orthogonal direc- 
tions. The major and minor radii are hco/(co- Ui 2) and h/V/c2 -l 2, respectively. 
Note that S+ and SW exist only for positive and negative h, respectively. This means 
that the coupling of forward and backward acoustic modes disappears in the subsonic 
regime (Figure 2). Furthermore, the center of Sh+ is shifted backward (h > 0) and 
the center of SW- forward (h < 0) due to the stronger backscattering of wave vectors 
in the direction of the mean flow. This has an important implication on the Stokes 
drift (see section 4.3). 

In the long times, equidistribution of energy takes place between the coupled sur- 
faces Sni and Ph, and within themselves, in the wave vector space. Since the surface 
area of St is finite the coupled acoustic energy gradually converts into vortical energy 
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FIG. 2. The subsonic diagram. The point 0 is the origin in the wave vector space. The length 
of OA is h/liil. 

which, in turn, is spread further and further over eddies of increasingly smaller scales 
and eventually is dissipated as heat by molecular viscosity. This is the turbulent 
dissipation resulting in the absorption of sound waves. Conversely, the background 
turbulent flow energy can convert into acoustic energy by the mode-coupling mecha- 
nism and emit acoustic radiation. The flow-generated sound waves are called aero- or 
hydrodynamic sound [21], [22]. 

3.4. Subcritical wave numbers. The acoustic wave vector k is effectively de- 
coupled from the vortical mode p if the sound-flow scattering cross section is much 
smaller than 1/r, where T is the observation time unit. In this case, the mode-coupling 
between acoustic and vortical modes does not occur. Such acoustic wave numbers are 
called subcritical; otherwise, they are called supercritical. 

For simplicity of discussion, let us assume the correlation matrix R is isotropic 
and is band-limited with support of R enclosed by the ball of radius rc which roughly 
equals 1//1 for the power-law spectrum (8). In the high-frequency end, wave vector 
k is subcritical if the distance from S+ to Ph for h = w+ (k) is greater than rc. This 
leads to the explicit condition 

(40) + (k) > rc(co + u|i )iul/co 

after some calculation or, equivalently, 

(41) lkl> rTc(1 + Ma)Ma, 

where Ma = U/co is the mean-flow Mach number. 
In the low-frequency end, we make the following observation. The ellipsoids Sh 

are nearly spheres centered at -hu/co with radius lhl/co. The distance between Ph 

and Sh is roughly h/lul\. For fixed p e Ph, R(k-p)k.k is of the order Tr[R(lpl)]h2/cC. 
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Subcritical wave vectors k at the low-frequency end can then be characterized as 

(42) Mlkl 
~(42) k~?~\/7,r f Tr[R(r)]rdr 

4. Subsonic regime. 

4.1. Absorption/emission due to mode-coupling. In the subsonic regime 
the forward and backward acoustic modes are decoupled. We have the (forward) 
acoustic transport equation: 

(43) (W1) + (u + Vkwl) Vx(W1) + (El(k) + El*(k))(Wl)(k) 

=dp jl(p-k)SJs(k p)S119(k, p)(Wr)(p)(cok -k o(p) + ui. (k-p)) --- ~ (27r)d- 
'l (P , r 

which is coupled with the vortical mode through S13, S31 
As the sound waves propagate through the random flow, in addition to being scat- 

tered by the turbulent flow, the supercritical acoustic wave numbers can convert into 
the vortical mode by mode-coupling, resulting in the absorption of these wave numbers 
and the generation of flow which can occur with or without flow-straining. Conversely, 
the supercritical acoustic wave numbers can cause the background turbulent fluctu- 
ation to emit acoustic radiation via mode-coupling, resulting in the amplification of 
these wave numbers and sound generation. This latter effect, however, requires the 
presence of flow-straining. 

The absorption/emission coefficient L(k) due to mode-coupling is twice the real 
part of E1. In the absence of flow-straining, we have 

L(k) I= l dQ(p) Rv(P - k)k k] Tr3(k, P)Tr(pk) 
a W (k)= P (p) 

(44) 1 [d-p d( [Rv(p 
- k)k . k] (1 - k *)12), 

tI1(2^)dTJ1 i4(k)=wv(p) 
L / 

which is always nonnegative. Here dQ(p) is the area element of the surface {plw+ (k) = 
v (p)}. 

In the presence of flow-straining, we have 

L(k) = (2d) djl(p - k) l(k,p) Sl(p,k)6(colkl + u. (k - p)) 

uI(27r)d- dQ(p) { [Rv(k - p)k. k] (1-Ik p2) tiZ(F)dl Ja+ (k) = Lo)(p) 
L 

(45) + E [Rv(k - p)k * p(m)] [(p - k). k] [k . p_ ] } . 
m=l 

We recall the convention that the lower index r in (45) is summed over r = 1, 2 (see 
(30)-(32)). In addition to the factor 2 in the first term, the second term in (45) 
is entirely due to flow-straining and can be positive or negative depending on the 
direction of propagation and, as shown in Figures 3-6, dominates in magnitude over 
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FIG. 3. L(k) without straining at 0 = 0.257r. 
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FIG. 4. L(k) without straining at 0 = 0.757r. 
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Angle=0.25~i 

2 4 6 8 10 12 14 16 18 20 
Wave number k 

FIG. 5. L(k) with straining at 0 = 0.25-r. 
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FIG. 6. L(k) with straining at 0 = 0.757r. 
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the first term at small or medium Mach numbers. The vanishing of L(k) for small and 
large k corresponds to the conditions for subcritical wave numbers (40)-(42). Note 
that the numbers in Figures 3 and 4 when the straining is absent are significantly 
lower in magnitude than those in Figures 5 and 6 when both the flow-straining and 
the mode-coupling are active. 

For the numerical calculations of L(k) (as well as A(k) in the next section) we 
have used, instead of the Kolmogorov spectrum, the Von Karman spectrum 

RZ(Ikl) R0lk2(lkl2 + k2)-17/6, kIl < k1 = l/fi, 

and taken co = 1,iu 0.1, Ro 1, ko = 1/?o = 0.1,1 - 0.01. The Von Karman 
spectrum provides a good approximation to the turbulence spectrum but avoids the 
abrupt transition at ko in the Kolmogorov spectrum [28], and so is more convenient 
for computation. The angle 0 is between the mean flow u and k (cf. (25)). 

4.2. Attenuation/amplification due to scattering with flow-straining. 
In the simpler case of subcritical regime (i.e., the mode-coupling is absent) we have a 
single closed equation for (W)(t, x, k) (dropping the superscript 1) 

9(W) 
(46) (at + (u + cok) . Vx(W) - A(k)(W) = Q(W), 

where Q is a conservative scattering operator with a nonsymmetric kernel: 

(47) Q(W) = 
1 [ dQ(p) [ac(k,p)(W)(p) - a(p,k)(W)(k)] (27r)d_1 J(k)=w(p) u + co0I 

and A(k) is the attenuation/amplification coefficient given by 

(48) A(k) = 1(2r)d + [(k, p) - a(k, p) + or(p, k)] 
(27)d-1 a+(k)= +(p) [1'a + Co 

with 

o,(k,p) = (Rv(p-k)k.k) (k p+ - - 

and 

,J'(k,p) 
^ 

= (R(p-k)k.k) (k .p +! _ IP I -pP) (kl -p ) 

+ (R vp(p - k). k)lkl(k . )p 2 k -p 

+4 Rp(p - k)[k)l (2p - 2k PIk 

err(k, p) - R(Pi(p - k) k.- k) P-. ( k lpl 
lkl- k 
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FIG. 7. A(k) at 0 = 0.257r. 

Note that a(k, p) is a quadratic form associated with the nonnegative-definite matrix 
R(p - k) for all k, p and, thus, is nonnegative for all k, p. The rate of pumping or 
draining energy A(k) vanishes, however, if iu 0. Both the straining mechanism and 
the mean flow are necessary for destroying energy conservation in the radiative transfer 
equation when the temporal variation of the turbulent fluctuation is negligible. 

For small r0 ~< 1, the scattering cross sections become 

(49) a(k, p) - (Rv(p- k)k k) (k p + -1 2 

(50) o'(k,p) 
= 

(Rv(p-k)k. k) (k.p-+ 2- )() 

Then, we have c'(k, p) - cr'(p, k) = r(k, p) - or(p, k) and, consequently, 

(51) A(k) 1 dQ(p) k). 
(51 ) A(2k 7r)d_-l +(k)=W(p) u+ C0P[ p 

Figures 7 and 8 show the dependence of A, as given by (51), on the wave numbers 
and the direction of propagation. Note that the numbers in Figures 7 and 8 when the 
mode-coupling is absent are considerably smaller in magnitude than those in Figures 
5 and 6 when both the straining and the mode-coupling are active. 

Setting u = P = 0 we recover the transport equation of Howe [15]: 

(52) (w) + cok Vx(W) = Qo(W) (52)~~~~~? o 
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FIG. 8. A(k) at 0 = 0.757r. 

with 

(53) Qof c p(27) d-1 dQ (p)(v(p - k)k. * k)(k- p)2 [f(p) - f(k)]. 

The geometric factor in (53) prohibits orthogonal scattering which would result in 
k p=0. 

4.3. Diffusion approximation without flow-straining. In the absence of 
flow-straining, the transport equation for the subcritical wave numbers becomes, after 
dropping the superscript, 

(54) (Wt + (u + cok) Vx(W) = Q(W) 

with 

(55) 

Qf -- (27r)d / (k)=+(p) + (R(p - k)k. k)(k . p + 1)2 [f(p) - f(k)]. 

Notice that the geometric factor changes from (k. p)2 in (53) to (k. p + 1)2/4 in (55) 
due to the absence of flow-straining. In contrast to that in (53), the scattering kernel 
prohibits backscattering which would result in k p + 1 = 0. 

Next we consider a situation where energy transfer per frequency can be ade- 
quately described by a physical-space transport equation like (19): sound propaga- 
tion over distances much longer than the mean free path. In this case the transport 
process can be decomposed into an effective transport and a fluctuation. 
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Since we expect the fluctuation to be diffusion-like, we make the diffusive scaling 
after subtracting the effective part 

(56) t = , x-Uet-fft k k 
e2 e 

with the transport velocity 

+ , -, I c0 dQ(k) d - (k) 
(57) Ueff(h) = u + cok vhI) = A dQ(k 

Qh S+ |u + cok| S+ |u + cok| 

where the Stokes drift 

- f cok dQ(k) 

Qh S+ c u + cokl 

accounts for the difference between the transport velocity and the Eulerian mean flow. 
Note that ieff is parallel to u but is smaller in magnitude since the ellipsoid S+ is 
shifted to the left from the origin (Figure 2). Thus turbulent scattering reduces the 
transport velocity of sound resulting in negative Stokes drift. This can be explained 
physically as follows: the wave vectors parallel to the mean flow are scattered more 
intensely than those antiparallel to the mean flow due to the difference in speed 
relative to the turbulent fluctuation. Notice also that the reduction in speed is linearly 
proportional to u for low Mach number and is roughly independent of frequency. 

In the multiscale expansion (W) = Wo + eW1 + ..., the leading order term WO 
satisfies a diffusion equation on the physical space (see Appendix B for derivation) 

Wo0 
(58) 0? = Vy D(w+(k))VyWo, 

where the anisotropic diffusion matrix D = [Dij] is given by 

D (h) = (u-Ueff + Cok) X X l k ^h i u + cok| 

with X being the vector-valued solution of the equation 

(59) U - Ueff + Cok = QX. 

By (59) the diffusion matrix D may be expressed as 

D(h) h f dQ(k) 
D - h uJs+ X + cok| 

Thus the matrix D is nonnegative since the operator Q is nonpositive definite [9]. 

4.4. Diffusion approximation with flow-straining. In this section we con- 
sider the long time limit of the perturbation of Howe's equation (52): the case of small 
mean-flow Mach number, Ma = e << 1. We write the mean flow as u = Ecoii where 
u = u/ lu. The appropriate equation is (46) with (49)-(50). 

As shown in Appendix C, the long-time amplification/attenuation effect due to 
a small mean flow is a second-order effect. To capture the second-order effect we 
consider the diffusive scaling 

(t x 
(60) t - x--, k-k 

62 
, 
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for (46) and derive a phase-space diffusion equation for the leading order term in the 
expansion (W) = Wo + eWI + : 

(61) ?- + B(w) . VxWo + A(w)Wo = Vx DVxwo 

with u = colkl. The diffusion matrix D =[Dij] is given by 

(62) Dzj(w) = dQ(k)xi Qoxi 

and is positive definite. Here Qo is defined by (53). The drift B is given by 

Ik(3 I - 

(63) B =- J dQ(k)(fiu k - fi p)p Vp [u(k, P)(X(P) - X(k))] 

- Cou + J dQ(k)ko(k) 

and the attenuation/amplification coefficient is 

A =-k /dQ(k)(fiu k- f p)p' Vp [a(k,p)(O(p) 
- 0(k))] 

(64) +1 JdQ(kl)b(k)Qo0(k) + JdQ (k)(5ui- kA1(k) - A2(k)). 

Here a is given by (49) and 0, X = [Xj] are solutions of the following equations, 
respectively: 

(65) -A1(k) - Qo(k), 

(66) Co0k - QoXj(k) 

with 

lkid-I 
Al (k) -= c 1 dQ(p) (Rv( |k(p - k))k . k)) u), 

which is the leading-order term in the small Mach number expansion of A(k), (48), 
and 

k Id-1 d(27)d-1 
A2(k) = 2cO C (27)dI (Rv(k -p)k *k)((k -p) iu) 

x [p iu(3k. p - 1) + k ui(1 + k p)] 

- 
I=k 

2 
(2 )d)-1 (k p)((P-k) u)p Vp [ipl2(Rv(k- p)k k) . 

J |p|=|Ik| (27) L d1 

Equation (61) describes the transport mechanisms as projected on the physical 
space. This reduction is possible because of the decoupling of different acoustic fre- 
quencies due to a vanishing Mach number. Equation (61) is simpler to solve than 
(46) because the dimension is halved once the two auxiliary equations (65) and (66) 
are solved in the phase space. Finally we remark that although the derivation of 
the diffusion equation is lengthy, it can be done rigorously because we start with the 
transport equation rather than the linearized Euler equation. 
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5. Conclusion. We study the sound wave propagation in a random flow whose 
mean flow is large compared with its fluctuation in the infinite three-dimensional 
space. In such a case, the temporal variation of turbulent fluctuation is negligible. We 
consider the intermediate regime, where the range of acoustic wave numbers overlaps 
with the range of turbulent wave numbers, between the short wave regime of geometric 
acoustics or paraxial approximation and the long wave regime of homogenization. 

We have used the multiscale expansions for the Wigner distribution to derive 
the radiative transport equations that describe the evolution of the correlation of 
acoustic field and the turbulent scattering, straining, and mode-coupling of sound 
waves. We have shown that, because of the flow-straining term, the flow-acoustic 
scattering becomes nonconservative. 

Further, we have calculated the attenuation/amplification coefficients due to 
mode-coupling and the scattering with flow-straining, respectively. We show that 
the absorption or the emission of sound waves is significantly enhanced when both the 
straining and the mode-coupling are active. The anisotropy of the coefficients is due 
to the presence of mean flow. 

Finally, we have obtained the diffusion equations which describe the transport 
process in the physical space, and, thus, further reduced the dimension of the flow- 
acoustic equations. 

Appendix A. Derivation of the radiative transport equations. 
We derive the radiative transport equations (28) in this appendix. The order 

O(E-1) terms in (15) imply that the leading term in the asymptotic expansion (20) 
has the form (26). The order o(c-~/2) terms imply that 

IW1 39W I 0 Wl 
(67) u . VzWi + iC-1kjD3W - iWlkjDJC-l-C-lD 1 + DjC-1 2 uOz 2 0zj 

=i/ (2)d eP. (k.v(p)) Wo (k + )-Wo k- )] 

-/(2r)de [G(p)Wo (- ) +Wo (k+ ) G(p) 

and in the order c? we get 

a0t + ui' VxWo + u . VzW2 + iC-1kjDW2 - iW2kjDC-1 

1 Dawo IaWo DC I 1 *W2 I aW2 D + C- Dj + DiC-1 + C-1Dj + DC- 
2 axj 2 ax- 2 oza 2 Ozj 

i/ dp eiz(k v(p)) [W1 (k+ )-W1 (k-)] 

1 / dp a^ . 'Wl(k- ) OWl(k+ P)- 
2 (27r)d ep v3(p) +aa3 

(68) - (2deiPz [G(p)Wl (k- 2) + W (k + ) G*(p)] . 

The term WI can be solved for in terms of Wo from (67). Inserting the resulting 
expression into (68) and averaging we can get a closed equation for (Wo). This is 
done as follows. We solve (67) for WI (t, x, z, k) by taking the Fourier transform of 
this equation in z and representing 

W1 (t,x,p,k)= F (t p k)b (k + p b (k- 
Q,F3,n,m 
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where bc"r(k) are defined by (22). We insert (69) and (26), multiply the resulting 
equation by the matrix Cb'm (k - P) 0 (Cba'n (k + p)), and take the trace. Now we 
get 

(69) F~ (t,x,p,k) 

Wnj (k + )[(k-v{(p))T. (k- P,k + ) + i(G*(p)Cb'm(k- P)- bi,(k + )) 

w(k + P) - w(k- P) + 
- 

p- iO 

Wjk (k- -) [(k- v(p))Tj7(k - P, k + P) - i(CG(p)b3O,(k - P). b",n(k + P))] 
W,(k + P) - wo(k - P) + .u p - i0 

Tm(k, p) - Cb,m(k) ? b'j (p) as in (35)-(38). To avoid a vanishing denominator, a 
regularization parameter 0 is introduced. The limit 0 - 0 will be taken at the end of 
the derivation. 

To get an effective equation we average equations (68), multiply throughout the 
averaged equation by the matrix CT^mn(k) = CbT'm(k) 0 (Cbr'n(k)), and take the 
trace. We assume that W2(t, x, z, k) is sublinear in the fast spatial variable z and 
thus (VzW2) = 0. We note that 

TrCrmn (k)(L(k)W2 - W2L*(k)) = 0 

because of (22). 
We get the left side of the equation: 

LHS (W + 
(Ut + VkWr) 

* Vx(Wnm). 

The right side is a sum of several terms: 

(70) RHS = 1,nm + 1i2,nm + 13,nm 

where 

r - Tr/m 
dp 
ePi.z)d ()( awl(k- P) O+W(k+ ))CTrmi(k)\ 

ITn ( (2 de (i(k (p))W (k + p)-Wi (k + ) G*(p)) Cm r(k)X 

and 

Irinm =j- TrJ(2 d eiP.z (i(k. - (p))W (k - 2) + G(p)W (k - )) C m(k) 

First we observe that I' nm contains (after averaging) terms of the form pjRjl(p) 
which vanish because v(x) is incompressible. Thus we have 

Il,nm 0. 

We also have the symmetry 

T2 rm_ 3m* 
I2,nm - -[3,rmn' 
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So we have only I'nm to compute. We have 

(72) 

dpdqe , 
ipk+ p 

\r = E J J P q(27r)d 
,m (q,k+ 

x [i(k. v(p)) (Cbrm(k) b ml (k + - 
)) (Cbr'n(k) ban1 (k +- + 

)) 

-(G*(p)Cbr'm(k) b' ml (k + - 
)) (Cbrn(k) bn (k + + ))] 

We insert expression (69) for F:fdmi and (16) for G(p) into (72). We evaluate this 
average by assuming the hypothesis of scales separation: W~i varies on a scale much 
slower than the velocity fluctuation so that, up to the leading order, (Wi^) factors 
out. We get 

(73) 

I2nm = E J(27r)d 6r6nnll (P) [ik,sTml (k, k + p)- i(p -b m 
(k + p))(Cbrm(k)),] 

(Wn l) (k) [kiTml (k + p,k) + (p . 
ba(k))(Cb )ml)l (k + p)] 

I W)ca(k) -w/(k + p) - u p-iO 

_ (W/m)(k + p)[klTj3n (k + p,k) - (p b3i(k + p))(Cbanl)1(k)] I 
Wo,(k) -w(k + p) -u p-i iO 

We define the tensor 

S (kp) = ( k, ) = p)- ((p -) b (p))(CbT m(k))j, 

which, like Tmr (k, p) in (34), is completely determined by the dispersion matrix L(k) 
but independent of the flows. For the system (1)-(2) we have the explicit expression 
for S^m as in section 3.2. Then we may rewrite (73), using also incompressibility of 
the fluctuations v(y), as 

I2,nm - J (27r)d (k) - w(p) + u (k - p) - iO 

sj( dp (W4s)(p)Rji(p-k) Sms(k, p)St (k, p) 

- (27r)d W(k) -w(p) + u (k-p) - iO 

Note that because v is incompressible, the tensor R 

Rv, Rv,p 

satisfies 

R(k)k = 
(v,p(k)' k. RV, 
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and 

(Rv,p(k) . k)6(k + q) = (P(k)v(q)) . k - -(P(k)vr(q) . q) = 0. 

We combine (74) and the symmetry (71) to evaluate the right side of (70) in the 
limit 0 -> 0 and obtain 

RHS= J - 
(2d R(p-k) Sjs (k, p)Sr 1(k, p) (W )(p)6(cv(k) 

- cw(p)+u (k-p)) 
- ((WV) (k)E(k))nm - (Z*(k)K(W)(k))nm 

with ET given by (29). 

Appendix B. Derivation of the diffusion equation without flow-straining. 
Here we derive the diffusion equation (58). Equation (54), after the change of coor- 
dinates (56), becomes 

(75) c2 9(W) + c(u 
- Ueff + cok) Vy (W) 

(27)d-1 7+(k)=w+(p) Iu + cop 
(27r) 

jWk)=w() 
+ (R(pk)k (1 + p)2[(W)(p) -(W)(k)] 

Inserting the expansion (W) = Wo + eW1 + 62V2 +... into (75) we obtain, in the 
order 0(1), 

() Ik) (p) dfp d(R(p 
- k)k k)(1 + k p)2Wo(p) -Wo(k)] = 0. 

Then it follows from the Krein-Rutman theorem [9] that Wo is constant on the ellip- 
soids Sh for all h E R: 

(76) Wo = Wo (s, y, co kl + u. k). 

The order 0(e) term in (54) gives 

(77) (u - Ueff + cok) . VyWo = QW1(k) 

with the operator Q as defined by (55). The solvability condition for W1 from (77) is 

J (u - Ueff(h) + cok) VyW(k) d ) = 0 Vh ER. 
+(k)=h u + cok| 

Using (76) we obtain the effective drift ieff as given in (57). 
To solve (77) we first solve for the corrector x(k) 

(78) u - Ueff + cok = QX. 

Then the first-order term W1 is given by 

WV(t, x,k) = x(k). VyWo. 
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The order O(E2) terms in (54) give 

aW0 + (u - Ueff + cok) . 
VyWl - QW2, 

which is solvable provided that 

j (ow ?+(u--U,ff+ck) VWlv ) 
dQ(k) -0 VhER. 

-+ a\ s I / -|ue + +cokl 

Using (79) we have 

j (OW -+- (u- Ueff+ cok) Vy[X- VyWo) -k Vh E R. 

Thus the limiting diffusion equation for W0 is (58). 

Appendix C. Derivation of the diffusion approximation with flow- 
straining. We derive in this section the diffusion approximation with straining (61). 
In the long run the deviation from the equilibrium state with equidistribution of en- 
ergy on frequency surfaces is small. It is more convenient to use a slightly different 
form of the transport equation (46), which, after rescaling, becomes 

(80) 62 () + cCo(k + eu). Vx(W) - L(k)(W) 

=J (2w)dl a(k, p)((W)(p) - (W)(k))8(co lk -co pl + ecofu. (k - p)), 

where 

(81) (k) (2,dp u'(k, p)6(co kl - c olp[ + Ecou. (k- p)) (81) L'e ( k) - (27r)d_I 

which is different from (51) since ar(k, p) : ac(p,k) in general. The cross sections 

cr(k, p) and u'(k, p) are given by (49) and (50). Let us first consider the coefficient 
L' (k) defined above. 

We use the delta function expansion 

(82) Jdpf(p)6(co[kl - co p + ecoufi (k - p)) 

= Jdpf(P)6(colkl- colpl) -e dpf(p)(p . iu)(co kl- colpl) 

+ekl dQ( )(u (kp))p ( pk )) (IPl2f(p)) + 0(e2) 

for any smooth, fast decaying test functions f(p). Using (82) we write 

(83) L'(k) = eA1 + 62A2 + . 

The scalars A1,2 are given by 

Al(k) = 
CkO1 (2 dr)(d (Rv(p - k)k. k)(k p)((p- k) . fi) 
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and 

A2(k) = k 
[d1 / d(pd) (Rv(k - p)k. k)((k - f~p) u) 

x [p-.u(3k-p- 1) + k fu(l +k k p)] 

kd- 
2 

p = (2) (k p)((p - k) . i)2p Vp [ 2(v(k - p)k k)] 

Note that we have 

(84) dQ(k)A (k)= 0 

and hence the amplification/attenuation effect is only second order in the Mach num- 
ber e, and hence diffusive scaling leads to a nontrivial limit. Similarly, we expand the 
right-hand side of (80). 

We assume the expansion (W) = W1 + eWl + e2W2 + .. with the ansatz for the 
leading term 

Wo = Wo(t,x,colkl + ecoiu k) = Wo(t, x,) + ecoui k ?(o ) + 

Here w = colkl denotes the frequency variable. Then the contribution of the leading 
term W0 to the right side of (80) vanishes identically, 

(27)1 a(k, p) [W0o(p) - W (k)] 6(colkl - colpl + ecou . (k - p)) = 0, 

since W~ is constant on the frequency ellipsoids. The leading-order term in (80) is 
0(e): 

(85) cok . VxWo(w) - Ai(k)Wo(cojlk) = QoW1 

with Q0 as defined by (53). The solvability condition for (85) is that the integral of 
the left side over the frequency sphere Sh = {k : colk =h} for all h > 0 vanishes. 
We note that 

fcok VxWo(colkl)6(colk| - w)dk = 0 Vw > 0 

and also (84) holds. Thus, (85) is solvable by the Fredholm alternative. 
Let X(k) and j (k) be solutions of (65) and (66), respectively. Then W1 is given 

by 

(86) W1 = x(k) a? + (k)Wo. 
j=l 

Substituting (83), (C) in (80), we find the order O(e2) term 

aw0o aW_o aWo 
at + coul. VxWo + cok VxWi + cou kkj - cou kAj (k) (87) -At1 - A2W W-Qi Wx = Qo W2,O 

(87) -AI W - A2Wo - QlWi = QoW2, 
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since the terms on the right that involve Wo and its derivatives vanish identically by 
construction. The operator Qi on the left side of (87) is defined by 

Qif = _Ikl / d2(p) (Rv(k- p)k *k)(i. p)(k p)2(f(p) - f(k)) 

Jkld-2 dQ(p) ) 
+ 

Co (27r)d-1 
p 

-P 2 

xp f Vp Ipl2(Rv(k-p)k - k)(/(p) - f(k)) (k * P + 2 - 2 

As before W2 is solvable from (87) if the left side of (87) has the zero mean on 
every frequency surface Colkl = w. Let us now compute all the terms in (87) after 
averaging over this sphere of wave vectors: 

JW o 4rrIkI2a0VVo (w1 ) 
dk 5t 6(colkl - w) = 47rk o () 

and 

dkcoui VxWo5(colkl - w) = 47r|k|2ui Vxo 44rlk Bo VxVVo. 
CO 

By (86), 

dkcok VxWi (k)6(co|kl - o) 

= \k2 dQ(k)knXj (k) o? + Ik2J dQ(k)k(k) wo(k 

47rlkl2 02 + 4rIkl2 , 
?C= 

- 
Dw"J'Q j + Bl- VxWo, 

Co OXnOXj Co 

and 

aw 2_ , Wo 47rcolk|3 92Wo 4rkl2 o a2Wo 
(88) / dkcou kkj a (colkl -w) = 4co Jtk :=0 F? 9 W 

J QxjO~ 3 Uxj CO 
3 

9xj9aW 

So we have B1 = [Bi,j], Ao with 

Bij--^r d(P])QoXj, 

AoB =1 / dQ(p)OQox). 

The next term on the left side is 

-co /Jdkiu kA (k)b(coIkl-) = -k3 d(k)u kA](k) 
awo 

(89) := ol C? = 
Coaw 
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The next term on the left in (87) is 

k2JdkA )(k)( -w) - 1dkAj(k)Wi(k)6(co\k[- w) - 
Co aw( dfQ(k)Al(k)xj(k) Ox 

IOk2 J dfQ(k)Ai (k)0(k)1Wo 

4:rk= 2 B' 
VxVo + 4 AoAWo. 

Co Co 

Thus, B2 = [B2,j] with 

B2,j = 4I dQ() QoXj-. 

The second-to-last term on the left of (87) is 

I-k JdQ(k)A2(k)Wo(w) := A4rlk2Wo 
co JCo 

where A1 becomes part of the attenuation/amplification coefficient. The last term on 
the left side of (87) that we have to compute is 

-JdkQl[WI]6(colkl - w) = - dkQ Xj- x (colk| -) 

- dkQl [Wo]6(co kl- w) 

:=I+ II. 

The first term may be written as 

I - Ik14 / 

Ikl3 

dQ(k)J (2)dl (R,(k - p)k. k)(fi p)(k . )2(Xj(p) - Xj(k)) () 

dQ(k) (2)d .k- 1u.f?) 

OWo Wo ( 1 Ip 2 xf. Vp lpl2(fRv(k-p)k.k)Xj(p) ?(copI)-p-xj(k) (colkl) (kP +- 2 k 

:=I1 +12. 

Using (66) we have 

lk2 

CO (2))d-1 Qo j(P)( fi) ,o 
(2ir)dl u)x3 

- 1kI2JdQ(P)(f1j5)f.V Wo = _4iiik 12 
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and 

(90) 

I2 = 
2 IJdQ(k) 
O 

d( I (() (iu k - i. p)p) Vp lpl2(v(k - p)k k) f(27r) d- 1 

Xj(p)OWo(colpl) ;Wo(colkl) I |p| 
O xj 

-x3(k) 
ixj 2 21kI ( (P&W4OIP) X(k- . )) (k P+ - I k,pl)2 

I dQ(k) ) (ul.k-u fp) ik12(fv(k-p)k. k)x3(p)(k. p)2co xw 

+ p Vp lplI2(R(k-p)k k)(j(p) - xj(k)) (k . + 

47rlk12 
- 

o W? - - 

'--co xj 
- 

B3xWo 

2IPk 
21kl 2 

Next we look at 

II - dkQ1[O(k)Wo(k)]6(cok\ -w) II + II2. 

By (65) we have 

II, - [kl2 / dQ(p) 

co= (2 )d-1 Qox(p)(f ) )( )(p) 

CO C 

= 47rk 2C1o o 
CO C 

47rlkl2 
' A2Wo CO 

and 

(91) 

II2 = - JdQ(k) J (2)d) (fiu k - uf p)fp Vp pl2(Rv(k - p)k. k) 
C? J ) 

[PI )2 
21k _ 

x (q(p)Wo(colpI) - 0(k)Wo(colkl)) (k. p + - - 
2 

= _c J (k ( (uf. k- fi. p) lkl2(Rv(k- p)k. k)o(p)(k. p)2co O? 

4/j~ 2 { ~ 0 fP I 9 } 
+p Vp p]2(Rtv(k - p)k k)(t(p) - (k)) fP + - 2 ) Wo(colki) 

'= 
C2 aw +oA3WO 

OWo(colkl) 
x J 
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Now we start simplifying these expressions and putting them together. The terms 
involving the mixed second-order derivative in xj and w appear in (88) and (90). 
Their total contribution is zero: 

Fj F? F+ F1 

= c uk 4 k 3 dQk) (2)dl (u. k - u . p)(Rv(k- p)k k)(k p)2X (p) 

= clk Ikl /d(k)fi. k) d (p (Rv(k - p)k k)(k ) (Xj(p) xj (k)) 3 47r (22r)d- 

colkl / dQ(k)u f kQoj(k) 3 47r 

3 4c c dQ(k) kk 

C2lkl C21kl = 3 -0, 

where we used (66). The drift in frequency &Wo/0w appears in (89) and (91). Its 
total contribution is also zero: 

Cl +C2 

= C, - -/ d f (p) dI(Rv(k- p)k. k)(fi k -u fp)(k p)2?(p) 4:c j 
(2w)d1 

=C - l J dQ(k)(fiu k) (2 )d I(Rv(k- p)k k)(k p)2(O(p) - (k)) 

= C1 + Jkl0 / dQ(k)Ai (k) (u k) = , 
47r 

I 

where we used (65) and (89). Therefore different frequencies are decoupled. 
Now we look at the drift in the spatial variable x and the amplification/attenuation 

coefficient. The following term in the expression of B3 can be simplified: 

- 
o/d(k) (-1 (R(k - p)k - k)(i k- f )(k p)2((p) - (k)) 

= 
47 jc dQ (k) (u k) (2 )d1 (k (Rv(k - 

p)kx k)(xj(p) 
- 

xj(k)) 

:=-- dQ(k)(ui k)QoXj 7r 

4 = 
3 couj, 

as well as a similar term in the expression of A3, 

- J dQk) J (2rr)d 1 (Rv(k -p)k k)(i(u k - i. )(k. )2(?(p) -_ (k)) 

=-4 f dQ(k)(k) (.p (k (R (k - p)k k)(?(p) - (k)) 4 d7rQc J (2r)d-1 

47' 

1575 



ALBERT FANNJIANG AND LEONID RYZHIK 

Note also that B2 = B1. Then we collect the rest of the terms. In summary we get 
a diffusion equation for WO: 

OW0 + B(w) 
. 
VxWo + A(w)Wo = Dij, aO 

with B, A, Dij given by (63), (64), (62), respectively. 
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