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Abstract

We analyze the time reversal of waves in a turbulent medium using the parabolic Markovian model. We prove that for waves
in a fractal medium with a sufficiently small Fresnel number the time reversal resolution can be a nonlinear (between linear and
guadratic) function of the wavelength and independent of the aperture. We establish the duality between the forward propagation
and time reversal. The duality holds true for any media and has two aspects: First there is an uncertainty inequality between
the turbulence-induced wave spread and time-reversal resolution. The inequality becomes an equality when the wave structure
function is Gaussian. Second, the turbulence-induced resolution in time reversal is identical to the turbulence-induced coherence
length. As a consequence, the turbulence-induced aperture can be estimatetihys2he forward spread, independent of the
original aperture.
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1. Introduction

Time reversal is the process of recording the signal from a remote source, time-reversing and back-propagating
it to retrofocus around the source. Time reversal of acoustic waves has been demonstrated to hold exciting techno-
logical potentials in subwavelength focusing, dispersion compensation, communications, imaging, remote-sensing
and target detection in unknown environments (8g£=-14,16,17,19hnd references therein). The same should
hold for the electromagnetic waves as well. Time reversal of electromagnetic waves is closely related to optical
phase conjugation which used to be limited to monochromatic wg8gl5] With the advent of experimen-
tal techniques, time reversal of high frequency EM waves hold diverse potential applications including real-time
adaptive optics, laser resonators, high-power laser systems, optical communication and information processing,
image transmission, spatial and temporal filtering, spectroscopy18t22]

Time reversal refocusing is the result of the time-reversal invariance of the wave equations, acoustic or electro-
magnetic, in time invariant media. The surprising and important fact is that the refocal spot in a richly scattering
medium is typicallysmaller than that in the homogeneous medium. That is, the time reversal resolution is enhanced
rather than hampered by the inhomogeneities of the medium. This subdiffraction-limit retrofocusing is sometimes
calledsuperresolution and in certain regimes has been explained mathematically in terms of an enlarged effective
aperture as a result of random mefia

In the previous experimental, numerical or theoretical results the superresolution comagasfanction of
the wavelength buindependent of the aperture. In this Letter we show that in fractal media the resolution can be
asuperlinear (between linear and quadratic) function of the wavelength and at the same time independent of the
aperture. The lowest achievable refocal spot size in this nonlinear regime is on the order of the smallest scale of
the medium fluctuations. Above the outer scale the resolution is diffraction-limited while below the inner scale it
is the previously reported aperture-independent enhanced resqllitidh

We will focus our analysis on the widely us@drabolic Markovian model for waves in atmospheric turbu-
lence[21]. Neglecting the depolarization effect let us write the forward propagating wavetfiatdhe carrier wave
numberk asE(t, z,X) = ¥ (z, X)e! 2= x ¢ R? where the complex wave amplitude satisfies the Schrédinger
equation in the non-dimensionalized form

0Py

o T
with A} being the Laplacian in the transverse coordinatesR? and V the fluctuation of the refractive index.
Here the Fresnel number equaIstkglL;2 with kg being the reference wavenumbeér, and L, the reference
scales in the longitudinal and transverse directions, respectively. The natatidtg. (1) means the Stratonovich
product (v.s. Ité product). In the Markovian modé(z, -) is assumed to be &correlated-inz stationary random
field such that

k
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where® (0, p) is the power spectrum density of the refractive index fluctuation at the ﬁuadé), p) € R®and, in
the case of atmospheric turbulence, has a power-law behavior in the inertial range. For simplicity of presentation
we assume an isotropic power-law

(k) =oplk| 2 k|2, k=(,p eR® |kle(Lyt 65Y), @)

whereLg and{g are respectively the outer and inner scales of the turbulenceamdconstant factor. Usuallgf
is taken to be 13 in the self-similar theory of turbulence. We assume that the spectrum decays sufficiently fast for
k| > €5 while staying bounded fdk| < L ™.

We will also establish rigorously the duality relation between the forward propagation and time reversal. The
duality has two aspects: First there is an uncertainty inequality for random media where the conjugate quantities
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are the turbulence enhancements of forward wave spread and time-reversal resolution. The inequality becomes
an equality when the wave structure function is Gaussian. Second, there is an identity between the turbulence
enhancements of time reversal resolution and coherence length of the scattered wave field prior to time reversal.
This relation has been observed in a time reversal experiment with a different random nfédidime duality

holds true for any power spectrum, not limited to the power (2w

2. Timereversal process

In the time reversal procedure, a sourggx) located atz = L emits a signal with the carrier wavenumber
toward the time reversal mirror (TRM) of apertutdocated at = 0 through a turbulent medium. The transmitted
field is captured and time reversed at the TRM and then sent back toward the source point through the same
turbulent medium, se€ig. 1, [10,11]

The time-reversed, back-propagated wave field-atZ. can be expressed as

lIltr(x)z/AG(La X, Xm)G(Ls Xs, Xm)WO(Xs)]IA(Xm)de dxs

Z/eip(xxs)/yW(L,X—sz,p)qfo(xs)dpdxs, 3)

wherel, is the indicator function of the TRMG the propagator of the Schrédinger equat{@y and W the
mixed-state Wigner distribution function

Wz % p) = / W2, X, P2 X L4 o) o

(Zn)zfe_ip'yG(z,X+yy/2, Xm)G (@ X — yY/2, X dY,

which is the convex combination of the pure-state Wigner distributi®iis x,,). Here we have used the fact that
time reversing of the signal is equivalent to the phase conjugating of its spatial component.

X

TRM Source

i e ]

z=L z

Fig. 1. The time reversal process.
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The Wigner distributions (pure or mixed) satisfy a closed form equation, the Wigner—Moyal equation, and for
the Markovian model all the moments also satisfy closed form equdBdnis particular, the mean field equation
is
aw) p

St W = o) @)

with the scattering operat@® given by

k2
Qs 0P =5 / D0, Q[-2f %)+ F(P+ v+ fXp - yd]da. 5)

Eq. (4) is exactly solvable and its Green function is

o 1 . _ _ _
Gw(z. %, p, % p) = (Zn)4/exp[z(q~(X—x)+y~(p—p)—zq'p/k)]
K2 [
X exp[—; / D*(yy+qys/k)ds] dydaq, (6)
0

where the (medium) structure functid@, is given by
D,(X) = f @0,q)[1— e"x'q]dq. @)

We shall refer to eX[D—kZ/yszZ D.(yy + qys/k)ds] as thewave structure function. WittGy we can calculate

any two-point functions associated with E@). Here and below denotes the Fourier transforffif of f. The
main property ofD, we need in the subsequent analysis is the inertial range asymptotic:

Dy (r) =~ C2r?H | 4y« r < Lo, (8)
where the effective Holder exponeHt, is given by

_|H+1/2 forH €(0,1/2),
Hi = { 1 for H € (1/2,1), ©)

and the structure paramet€y. is proportional tmé/z. Outside of the inertial range we have instéadr) ~ r2,
r <K Lo andDy(r) — D (oc0) for r — oo whereD, (c0) > 0 is a finite constant.
Let us consider a point source located(At 0) by substituting the Dirac-delta functiof(x) for ¥ in (3)
and calculatg¥;) with the Green functiorf6). We then obtain the point-spread function for the time reversed,
refocused wave field written 8&;(x) = Po(X) Ty (X) with

1
kN2 [ kX127~ [ kx k2
Po(X) = (y_L) exp[zzy—L]HA<y—L), Ttr(x)zexp[—ﬁL/D*(—sx)ds]. (20)
0

In the absence of random inhomogeneity the funcfigris unity and the resolution scajg is determined solely
by Po:
PO~y M A= s
AT Tk
This is the classical (Rayleigh) resolution formula where the retrofocal spot size is proportiohand the
distance to the TRM, and inversely proportional to the aperture

(11)
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3. Anomalousretrofocal spot-size

First we consider the situation where there may be an inertial range behavior. This requirésdytmat
k?y 2Dy (c0)L > 1, (12)

whereD, (c0) = lim,_, o D« (r). Condition(12) holds for a sufficiently small Fresnel number
In the presence of random inhomogeneities the retrofocal spot size is determifigdooy’;; depending on
which has a smaller support. For the power-law specii2ive have the inertial range asymptotic

Ty (x) ~ exp[ —C2k%y 2L |x[* (4H, + 2)7] (13)
for £9 <« |X| < Lo. We define the turbulence-induced time-reversal resolution as
ptr = \/ / IXI2T2(x) dx/ / TZ(x) dX, (14)

which by (13) has the inertial range asymptotic

ya O\ YH:
~ , Lo pr K Lo. 15
Ltr (C*«/Z> Ltr (15)

Under the following condition

Pt <K po (16)

the functionTy; is much more sharply localized aroure- 0 thanPy. Note that a1, < 1 the condition(16) holds
for a sufficiently smally. The nonlinear law15) is valid only down to the inner scak® below which the linear
law prevailspy ~ yAL~12. We see that undéi2) and(16) py is independent of the aperture, has a superlinear
dependence on the wavelength in the inertial range and the resolution is further enhanced as theldetadnce
random inhomogeneitie€’() increase. This effect can be explained by the notion of turbulence-induced aperture
which enlarges a& andC., increase as the TRM is now able to capture signals initially propagating in the more
oblique directions (see Sectidrfor more on this).

To recover the linear law previously reported 1, let us consider the situation whesg = O(y) and take the
limit of vanishing Fresnel number — 0 in Eq.(7) by settingx = yy. Then we have

. _ 1
lim ~2D.(7y) = Daly?. Do=3 [ @0 lada.

The resulting mean retrofocused fi€ld, (yy)) is Gaussian in the offset variabfeand the refocal spot size on the
original scale is given by

prr ~ yA(DoL) V2.

Hence the linear law prevails in the subinertial range.

4. Duality and turbulence-induced aperture

Intuitively speaking, the turbulence-induced aperture referred to in the previous section is closely related to how
awave is spread in the course of propagation through the turbulent medium. A quantitative estimation can be given
by analyzing the spread of wave energy.

To this end let us calculate the mean energy density with the Gaussian initial wave amplitude

¥ (0, x) = exp[—[xI/(202)]. (17)
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We obtain
d
o) =(55) [ edl-iallaa+ v/ @)
2L 7
X exp[iq-x]exp[—7fD*(qsyL/k)ds} dq.
0

Hence the turbulence-induced spread can be identified as convolution with the kernel which is the inverse Fourier
transformZ 17 of the transfer function
k?L
T(q) = exp, 7 D.(qsyL/k)ds |.
0

In view of (10), we obtain that

kz kX
1 1
F-T ES F Tl — ). 18

(X) ]'2L2 tr(yl) ( )

In this case it is reasonable to define the turbulence-induced forward spread

oum | [ i1 s/ |7t i

which, in view of(14) and(18), then satisfies the uncertainty inequality (see §163)

L
OxPtr = )/7 (19)

The equality holds wheff is Gaussian, i.e., wheH* = 1 or in the subinertial range. This strongly suggests
the definition of the turbulence-induced apertureA@s= y AL /oy in complete analogy t¢l1). And we have the
inequality

Ay < 210y,

where equality holds true for a Gaussian wave structure function.

5. Coherence length and time-reversal resolution

Another physical variable that is naturally dual to the wave spread is the coherence length. The physical intuition
is that the larger the spread the smaller the coherence length.
In the Markovian model with the Gaussian déi&) the coherence length has the following expression:

(W(L,x+y/2W(L,x—y/2)
2 _ 2
= (J%) /exp[—IQI2a2/4] exp[—iw );OIZS/H ]

L
2
x expiq - X] exp[—% / D*(—y+ yq(L — s)/k) ds:| dq. (20)
0
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In the point-source limitx — 0, we have

(W(L,x+y/2¥(L,x—y/2)

1
2\ 2 2
A (ﬁkd ) exp[iy%y-x] exp[—ky—ZL/D*(—ys)ds] (21)
0

yL

In view of (21) let us define the turbulence-induced coherence lefigts

1
k2L
5, = \/ / y2T2(y) dy/ f T3(y)dy. Tz(y)=exp[—7 / D*<—ys>ds]
0

SinceT> = Ty, 8, is equal to the turbulence-induced time-reversal resolyipand is related to the wave spread
as

yL

7,

where the equality holds for a Gaussian wave structure function. Because of the idesdtitaraf o, the time

reversal refocal spot size can be used to estimate the coherence length of the wave field which is more difficult to
measure directly.

0405 =

6. Discussion

In summary, we have proved three main results for the parabolic Markovian model. First, for a fractal medium
with a sufficiently small Fresnel number the time reversal resolution can be aperture independent and depend on the
wavelength in a nonlinear (between linear and quadratic) way. This is due to the self-similar nature of the media.
Second, we prove an uncertainty inequality for random media where the conjugate variables are the turbulence
enhancements of forward wave spread and time-reversal resolution. We show that the turbulence-induced aperture
is bounded from above byz2times the wave spread. The equality is attained when the wave structure function is
Gaussian. Finally we show that the turbulence-induced coherence length is the same as the turbulence-induced tim¢
reversal resolution. The last two results constitute the duality between the forward propagation and time reversal.
The duality is a general result not limited to the power-law speci{2nand is related to, but different from, the
duality established ifiL1] for the power-law spectrum which takes the form of asymptotic equality.

The preceding analysis has been carried out for a narrow-band signal. Because of the linearity of the equation a
wide-band signalg(z, X) can be decomposed into frequency components each of which can be analyzed as above
and then resynthesized. The mean retrofocused signal can be calculated as

_# i M —ik(t+1)
(ug) (T, X) = znyszfdyd”‘O(t’y)/dkHA< L )e

; 2 ; 2
« elkIX2/@r L) g =ikY/@r L) 2, (5 — )

from which it follows that the turbulence-induced spread in time is given by convolution w@&huasian ker-
nel becausdy is Gaussian ink, see(10). The Gaussian kernel has an offsetlepending variancetf(x) =
Lfol D..(sx)ds/y? which grows rapidly with the offset if « 1. It is precisely this rapid change of temporal
dispersion rate with the offset that produces the sharp spatial retrofocusing of the time-reversed pulse.

Our results above have been limited to the mean value of the time-reversed retrofocused field. Its second or
higher moments can be determined from those of the Wigner distribution which are not exactly solvable. In case
of self-averaging, however, the mean field is sufficient for determining all the higher moments. Self-averaging
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occurs, for example, when the narrow-band beam width in the transverse directions is large compared to the cor-
relation length of the random medium or when the signal is wide-ifaj7d. The former case has been analyzed
extensively in the literature (s¢®,10] and references therein) and there arise several canonical radiative transfer
equations as the self-averaging scaling limits. The case of temporally localized signals has only been studied for
thex-independent layered medium in a scaling limit where the superresolutiontiratisgerse direction does not

occur, seg4,20]. In the near-self-averaging regime the second moment of the Wigner distribution can be calculated
perturbatively and the result will be reported elsewhere.
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