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Abstract
Ptychography with an unknown mask and object is analyzed for general 
ptychographic measurement schemes that are strongly connected and possess 
an anchor.

Under a mild constraint on the mask phase, it is proved that the masked 
object estimate must be the product of a block phase factor and the true masked 
object. This local uniqueness manifests itself in the phase drift equation that 
determines the ambiguity at different locations connected by ptychographic 
shifts.

The proposed mixing schemes effectively connects the ambiguity 
throughout the whole domain such that a distinct ambiguity profile arises and 
consequently possess the global uniqueness that the block phases have an 
affine profile and that the object and mask can be simultaneously recovered 
up to a constant scaling factor and an affine phase factor.

Keywords: phase retrieval, ptychography, uniqueness, ambiguity

(Some figures may appear in colour only in the online journal)

1. Introduction

Ptychography is the scanning version of coherent diffractive imaging (CDI) [6] that acquires 
multiple diffraction patterns through the scan of a localized illumination on an extended object 
(figure 1). The redundant information in the overlap between adjacent illuminated spots is then 
exploited to improve phase retrieval methods [39, 43, 45]. Ptychography originated in electron 
microscopy [19, 25, 26, 29, 37, 38, 44] and has been successfully implemented with x-ray, optical 
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and terahertz waves [8, 18, 46, 48, 51, 52, 54]. Recently ptychography has been extended to the 
Fourier domain [40, 41, 60]. In Fourier ptychography, illumination angles are scanned sequen-
tially with a programmable array source with the diffraction pattern measured at each angle.

Ptychographic CDI has its origin in a concept developed for the crystallographic phase 
problem: Hoppe [25] pointed out that if one can make the Bragg peaks of crystalline diffrac-
tion patterns interfere, information about their relative phases can be obtained and therefore 
suggested to use a localized illumination instead of the usual extended plane wave. Due to the 
Fourier convolution theorem, the crystal’s diffraction peaks in the resulting far-field pattern 
are then convolved with the Fourier transform of the localized illumination. When the extent 
of the illumination is shrunk to about the same order of magnitude as the crystalline unit cell, 
this leads to overlap between adjacent Bragg peaks and thus the desired interferences. While 
these interferences already allow to determine the relative phases, the twin-image ambiguity 
remains. Hoppe showed that an unambiguous result can be obtained by recording another dif-
fraction pattern at a slightly shifted position of the localized illumination. Hoppe [26] further 
discussed the extension of ptychography to non-periodic objects and the possibility of scan-
ning transmission electron diffraction microscopy.

An important development in ptychography since the work of Thibault et al [51, 52] is the 
potential of simultaneous recovery of the object and the illumination (blind ptychography). 
Blind ptychographic reconstruction is affected by many factors such as the type of illumina-
tion and the amount of overlap between adjacent illuminations. In practice, numerical recon-
struction with the widely used algorithm, the extended ptychographic iterative engine (ePIE), 
and its variants typically require 60%–70% overlap between adjacent illuminations [5, 31, 33] 
(see section 9 for more discussion). The convergence of numerical reconstruction is monitored 
with the residual of the ptychographic data or the difference between successive estimates [20, 
23, 33, 34, 52, 53, 56].

Figure 1. Simplified ptychographic setup showing a Cartesian grid used for the 
overlapping raster scan positions. Adapted with permission from [36] © The Optical 
Society.

A Fannjiang and P Chen Inverse Problems 36 (2020) 045005



3

Even in the noiseless case, however, numerical convergence does not necessarily imply 
recovery of the mask and the object. To ensure that a vanishing residual (data fitting) implies 
a vanishing reconstruction error in the noiseless case, we need a theory of uniqueness of solu-
tion. To be sure, a completely blind ptychography or phase retrieval is untenable.

First of all, even with a complete prior information of the mask/illumination, we have 
shown in a recent work [7] that twin-image ambiguity does arise if the Fresnel number of the 
commonly used Fresnel illumination takes on certain values, resulting in poor reconstruction 
and hinting on the benefits of avoiding symmetry and increasing complexity of the mask. A 
simple way to avoid symmetry and increase complexity is to use a random mask for illumina-
tion. Random masking is a form of coded aperture and has found applications in many imag-
ing modalities and significant improvements on imaging qualities [1, 2, 4, 7, 10, 11, 15, 21, 
27, 28, 30, 31, 32, 42, 47, 49, 50, 55, 57–59].

For nonptychographic phase retrieval, the capability of a randomly coded aperture in 
removing all the ambiguities, including the translation and twin-image ambiguities, was rig-
orously analyzed in [12]. Moreover, uniqueness theory for blind phase retrieval with a plain 
and a randomly coded diffraction pattern has been developed in [16] which assumes slight 
prior knowledge about the phase range of the random mask. In other words, with a plain and 
a randomly coded diffraction pattern one can uniquely and simultaneously determine both 
the unknown object and the unknown mask. In contrast, in blind ptychography we work with 
just one unknown mask which is more challenging. As random masks are typically harder to 
calibrate (but easier to fabricate) than a deterministic mask, blind ptychography and phase 
retrieval is particularly useful when a random mask is used.

This paper concerns the uniqueness question for blind ptychography with a randomly 
phased mask under certain prior information. We exhibit examples to show these priors are 
in some sense necessary. Moreover, we aim to characterize a general class of measurement 
schemes that avoid the pitfalls of the regular raster scan shown in figure 1 (see examples 6.4 
and 6.5).

1.1. Inherent ambiguities

Let us begin with two inherent ambiguities to blind ptychography.
Let �k, l� denote the integers between and including the integers k and l. Let 

M0 := 2
m = �0, m − 1�2 be the initial window area, i.e. the support of the mask µ0. Let M 

be the object domain containing the support of the discrete object f .
Let T  be the set of all shifts, including (0, 0), involved in the ptychographic measurement. 

Denote by µt the t-shifted probe for all t ∈ T  and Mt the domain of µt. Let f t the object 
restricted to Mt. We refer to each f t as a part of f  and write f = ∨tf t where ∨ is the ‘union’ 
of functions consistent over their common support set. In ptychography, the original object is 
broken up into a set of overlapping object parts, each of which produces a µt-coded diffraction 
pattern. The totality of the coded diffraction patterns is called the ptychographic measurement 
data. Let ν0 (with t = (0, 0)) and g = ∨tgt  be any pair of the probe and the object estimates 
producing the same ptychography data as µ0 and f , i.e. the diffraction pattern of νt � gt is 
identical to that of µt � f t where νt is the t-shift of ν0 and gt is the restriction of g to Mt. 
For simplicity, we assume the periodic boundary condition on M (i.e. discrete torus). The 
periodic boundary condition refers to the measurement scheme when the mask crosses over 
the boundaries of the object domain M and should not be taken as the assumption of f  being 
a periodic object. The latter implies the former but not vice versa.
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Consider the probe and object estimates

ν0(n) = µ0(n) exp(−ia − ir · n), n ∈ M0 (1)

g(n) = f (n) exp(ib + ir · n), n ∈ M (2)

for any a, b ∈  and r ∈ 2. For any t, we have the following calculation

νt(n) = ν0(n − t)

= µ0(n − t) exp(−ir · (n − t)) exp(−ia)

= µt(n) exp(−ir · (n − t)) exp(−ia)

and hence for all n ∈ Mt, t ∈ T

νt(n)gt(n) = µt(n) f t(n) exp(i(b − a)) exp(ir · t). (3)

Since for each t, νt � gt is the phase factor exp(i(b − a)) exp(ir · t) times µt � f t where � is 
the entry-wise (Hadamard) product, g and ν0 produce the same ptychographic data as f  and µ0.  
This holds true regardless of the set T  of shifts and the mask.

In addition to the affine phase ambiguity (1) and (2), a scaling factor (g = cf , ν0 = c−1µ0, c > 0) 
is inherent to any blind ptychography. However, when the mask is exactly known (i.e. ν0 = µ0 
up to a constant phase factor), r = 0 and c  =  1 so neither ambiguity can occur.

In addition, for the regular raster scan (figure 1), it is well known that blind ptychography 
is susceptible to many other artifacts [51]. For a complete analysis of these ambiguities, the 
reader is referred to [13].

A crucial question then is, Under what conditions are the scaling factor and the affine phase 
ambiguity the only ambiguities in blind ptychography? We aim to answer this question in this 
paper.

Briefly and informally, we summarize the results as follows.

1.2. Contributions

The first basic requirement of our method is the strong connectivity property of the object 
with respect to the measurement scheme. It is useful to think of connectivity in graph-theor-
etical terms (figure 2): let the ptychographic experiment be represented by a complete graph 
Γ whose notes correspond to { f t : t ∈ T }. Given any positive integer s, an edge between two 
nodes corresponding to f t and f t′ is s-connective if

|Mt ∩Mt′ ∩ supp( f )| � s (4)

where | · | denotes the cardinality. In the case of full support (i.e. supp( f ) = M), (4) becomes 
|Mt ∩Mt′ | � s. An s-connective reduced graph Γs of Γ consists of all the nodes of Γ but only 
the s-connective edges. Two nodes are adjacent (and neighbors) in Γs iff they are s-connected. 
A chain in Γs is a sequence of nodes such that two successive nodes are adjacent. In a simple 
chain all the nodes are distinct. Then the object parts { f t : t ∈ T } are s-connected if and only 
if Γs is a connected graph, i.e. every two nodes is connected by a chain of s-connective edges. 
Loosely speaking, an object is strongly connected w.r.t. the ptychographic scheme if s � 1.

The second requirement is the existence of an anchoring part. Informally speaking, an 
object part f t is an anchor if its support touches four sides of Mt (figure 3). Specifically, an 
object part f t is an anchor if f t has a tight support in Mt, i.e.

A Fannjiang and P Chen Inverse Problems 36 (2020) 045005
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Box[supp( ft)] = Mt (5)

where Box[E] stands for the box hull, the smallest rectangle containing E with sides par-
allel to e1 = (1, 0) or e2 = (0, 1). An object part does not have a tight support if and only 
it has a loose support. Clearly, f t has a tight support if and only if Twin( ft) does since 
Box[supp( ft)] = Box[supp(Twin( ft))] + m for some m. In the case supp( f ) = M, any 

(a) (b)

Figure 2. A complete undirected graph (a) representing four connected object parts 
(b) where the grey level indicates the number of coverages by the mask in four scan 
positions.

Figure 3. Sparse objects such as this image of corn grains, where the dark area 
represents zero pixel value, can be challenging to ptychographic measurements. The 
two red-framed blocks are not connected even though they overlap. The object part in 
the lower-right block is not an anchor since the object support does not touch the four 
sides of the block while the object part in the upper-left block is an anchor. Indeed, the 
two corn grains at the lower-left and upper-right corners alone of the latter block suffice 
to create a tight support.

A Fannjiang and P Chen Inverse Problems 36 (2020) 045005
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object part is an anchor. For an extremely sparse object such as shown in figure 3, the anchor-
ing assumption can pose a challenge.

For the unknown mask, we need some prior information called the mask phase constraint 
(MPC):

The mask estimate ν0 has the property �(ν̄0 � µ0) > 0 at every pixel (where � denotes 
the component-wise product and the bar denotes the complex conjugate).

See figure  4. MPC can be relaxed as | arg[ν0(n)/µ0(n)]| < π/2 for sufficiently large 
percent age of n. For simplicity of presentation, however, we shall work with the technically 
simplifying version as above.

Even with the perfect knowledge of the mask amplitude, MPC allows a large relative error
√

1
π

∫ π/2

−π/2
|eiφ − 1|2dφ =

√
2(1 − 2

π
) ≈ 0.8525

when arg[ν0] is selected randomly and uniformly in the interval | arg[ν0(n)/µ0(n)]| < π/2.
For any strongly connective scheme under the assumptions of MPC and anchoring, we 

prove the local uniqueness result for blind ptychography (theorems 3.1 and 3.3) that with high 
probability (exponentially close to 1 in s) in the random selection of µ0,

νt � gt = eiθtµt � f t, t ∈ T , (6)

for some constants θt ∈  (called block phases) if g and νt produce the same diffraction pat-
tern as f  and µt for all t ∈ T . As shown by examples 4.1 and 4.2, both MPC and the anchoring 
assumption are in some sense necessary for (6) to hold.

We refer to the ambiguity equation (6) as the local uniqueness property since θt  may be 
more complicated than just an affine profile, θ0 + t · r, for some r ∈ 2, as in (3). Indeed, the 
affine phase ambiguity (1) and (2) means that the relation (6) with an affine profile in θt  is the 
best to hope for. On the other hand, we say that the global uniqueness holds if the affine phase 
ambiguity and the scaling factor ambiguity are the only ambiguities. We say that a ptycho-
graphic scheme is complete for a given object if the global uniqueness holds.

The ambiguity equation (6) can be transformed into the phase drift equation which plays 
the key role in our theory. Consider the object ambiguity represented by

h(n) ≡ ln g(n)− ln f (n), ∀n ∈ M,

provided that both f  and g are non-vanishing. The phase drift equation

h(n + t)− h(n + t′) = iθt − iθt′ mod i2π, ∀n ∈ M0, ∀t, t′ ∈ T (7)

equates the difference in the object ambiguity in different blocks with the phase drift in the 
block phase.

Figure 4. ν0 satisfies MPC if ν0(n) and µ0(n) form an acute angle for all n.

A Fannjiang and P Chen Inverse Problems 36 (2020) 045005
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Most important, we show that the mixing schemes, introduced here for the first time, ‘mix’ 
the ambiguity so completely that a distinct ambiguity profile (affine phase plus scaling fac-
tor) arises and the global uniqueness holds true (theorem 8.3). The mixing schemes include 
the special case of small perturbations of the regular raster scan (theorems 7.4 and 7.5). On 
the other hand, while the global uniqueness fails for the regular raster scan, the block phases 
nevertheless have an affine profile (proposition 6.1).

The rest of the paper is organized as follows. In section 2, we formulate the basic building 
block of the ptychographic measurement and discuss ambiguities in standard phase retrieval 
with one coded diffraction pattern. In section 3 we consider the ptychography with two over-
lapping diffraction patterns and prove the local uniqueness for the masked object (theorem 3.1).  
We then extend the local uniqueness to the multi-part ptychography (theorem 3.3). In sec-
tion 4 we demonstrate with examples that the prior information of MPC and anchoring is 
necessary for the local uniqueness result (examples 4.1 and 4.2). In section 5, we develop 
the phase drift equation that holds the key to the global uniqueness result. In section 6, we 
exhibit additional ambiguities associated with the regular raster scan (examples 6.4 and 6.5) 
and prove that the block phases of the raster scan must have an affine profile (proposition 6.1).  
In section 7, we prove the global uniqueness theorems for the perturbed raster scans with 
the overlap ratio greater than 50% (theorems 7.4 and 7.5). In section 8, we give an example 
showing that the minimum overlap ratio 50% is necessary for the perturbed raster scans to be 
ptychographically complete and introduce the mixing schemes which are ptychographically 
complete and whose block phases must have an affine profile (theorem 8.3). We conclude in 
section 9 and discuss a few practical implications of our theory. A preliminary version of this 
paper was presented in [14].

2. Coded diffraction pattern

We start with the set-up of coded diffraction patterns [35].
Let f 0 be a part of the unknown object f  restricted to the initial block M0 = 2

m, m < n, and 
let the Fourier transform of f 0 be written as

F(e−i2πw) =
∑

k∈M0

e−i2πk·wf 0(k), w = (w1, w2).

Under the Fraunhofer approximation, the diffraction pattern can be written as

|F(e−i2πw)|2 =
∑

k∈M̃0

{ ∑
k′∈M0

f 0(k′ + k)f 0(k′)

}
e−i2πk·w, w ∈ [0, 1]2 (8)

where

M̃0 = {(k1, k2) ∈ 2 : −m + 1 � k1 � m − 1,−m + 1 � k2 � m − 1}

and f 0 assumes the value zero outside of M0. Here and below the over-line notation means 
complex conjugacy.

The expression in the brackets in (8) is the autocorrelation function of f 0 and the summa-
tion over n takes the form of Fourier transform on the enlarged grid M̃0. Hence sampling |F|2 
on the grid

L =
{
(w1, w2) | wj = 0,

1
2m − 1

,
2

2m − 1
, · · · ,

2m − 2
2m − 1

}
 (9)

A Fannjiang and P Chen Inverse Problems 36 (2020) 045005
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provides sufficient information to recover the autocorrelation function.
A randomly coded diffraction pattern measured with the mask µ0 is the diffraction pat-

tern for the masked object f̃ 0(n) = f 0(n)µ0(n) where the mask function µ0 is a finite array 
of random variables. The masked object is also called the exit wave in the parlance of optics 
literature. In other words, a coded diffraction pattern is just the plain diffraction pattern of a 
masked object.

We assume randomness in the phases θ of the mask function µ0(n) = |µ0|(n)eiθ(n) where 
θ(n) are independent, continuous real-valued random variables. In other words, each θ(n) is 
independently distributed with a probability density function pγ  supported on (−γπ, γπ] with 
a constant γ ∈ [0, 1]. Continuous phase modulation can be experimentally realized with vari-
ous techniques such as spread spectrum phase modulation [59].

We also require that |µ0|(n) �= 0, ∀n ∈ M0 (i.e. the mask is transparent). This is necessary 
for unique reconstruction of the object as any opaque pixels of the mask would block the 
transmission of the object information.

First we review the case of a plain diffraction pattern (µ0 ≡ 1).

Proposition 2.1 ([22]). Let the z-transform F(z) =
∑

n f 0(n)z−n be given by

F(z) = αz−m
p∏

k=1

Fk(z), m ∈ 2, α ∈ (10)

where Fk, k = 1, . . . , p, are non-monomial irreducible polynomials. Let G(z) be the z-trans-
form of another finite array g0(n). Suppose |F(e−i2πw)| = |G(e−i2πw)|, ∀w ∈ [0, 1]2. Then

G(z) = |α|eiθz−p

(∏
k∈I

Fk(z)

)(∏
k∈Ic

Fk(1/z̄)

)
, for some p ∈ 2, θ ∈ ,

 (11)

where I is a subset of {1, 2, . . . , p}.

Remark 2.2. The undetermined monomial factor z−p in (11) corresponds to the translation 
invariance of the Fourier intensity data while the altered factors Fk(1/z̄) corresponds to the con-
jugate inversion invariance of the Fourier intensity data (see corollary 2.4 below). The conju-
gate inversion of f 0, called the twin image, in M0 is defined by Twin( f0)(n) = f̄0((m, m)− n).

Next consider a random mask µ0 and assume that f 0 is not a linear object. An object is a 
linear object if its support is a subset of a line. We recall a result in [12] that the z-transform of 
the non-line masked object f̃ 0(n) = f 0(n)µ0(n) is irreducible, up to a monomial.

Proposition 2.3 ([12]). Suppose f 0 is not a linear object and let µ0 be the phase mask with 
phase at each point continuously and independently distributed. Then with probability one the 
z-transform of the masked object f̃ 0 = f 0 � µ0 does not have any non-monomial irreducible 
polynomial factor.

A similar result can be proved for masks whose phases are discrete random variables by 
using more advanced tools from algebraic geometry (e.g. [3], proposition 4.1).

The following corollary is what we will need for proving the local uniqueness theorems.

Corollary 2.4. Under the assumptions of proposition 2.3, if another masked object 
g̃0 := ν0g0 produces the same diffraction pattern as f̃ 0 = µ0f 0 , then for some p and θ

A Fannjiang and P Chen Inverse Problems 36 (2020) 045005
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f̃ 0(n + p) = e−iθg̃0(n) or eiθ Twin(g̃0)(n) (12)

for all n ∈ M0 .

Proof. Let F̃  and G̃  be the z-transforms of f̃ 0 and g̃0, respectively. By proposition 2.3 and 
(11),

G̃(z) = eiθz−pF̃(z) or eiθz−pF̃(1/z̄), for some p, θ and all z

which after substituting z = exp (−i2πw) becomes

G̃(e−i2πw) = eiθeiw·pF̃(e−i2πw) or eiθeiw·pF̃(e−i2πw), for some p, θ and all z.

Note that G̃(e−i2πw) and F̃(e−i2πw) are the Fourier transforms of g̃0 and f̃ 0, respectively. 
Therefore in view of Remark 2.2 we have

g̃0(n) = eiθ f̃ 0(n − p) or eiθ Twin(f̃ 0)(n − p), ∀n ∈ M0,

which is equivalent to (12). □ 

3. Local uniqueness

First let us consider two-part ptychography where M = M0 ∪Mt.
We need two pieces of prior information: one on the mask phase and the anchoring assump-

tion on an object part.

3.1. Mask phase constraint (MPC)

Let µ0 be a nonvanishing random mask with phase at each pixel distributed continuously and 
independently according to a probability density function pγ  nonvanishing in (−γπ, γπ] with 
a constant γ � 1.

Let

α(n) exp[iφ(n)] = ν0(n)/µ0(n), α(n) > 0, ∀n ∈ M0. (13)

We say that ν0 satisfies MPC(γ) if, for all n ∈ M0  and some constant φ0

|φ(n)− φ0| � δπ mod 2π, (14)

where

δ < min (γ, 1/2) . (15)

The larger γ  is, the more phase diversity there is in the mask; the larger δ is, the weaker the 
MPC(γ) is as a constraint. When γ > 1/2, MPC(γ) can be written simply as

�(ν̄0(n)µ0(n)) > 0, ∀n ∈ M0. (16)

We demonstrate the necessity of MPC(γ) in example 4.1.
The following theorem gives sufficient conditions of the local uniqueness for 2-part 

ptychography.

A Fannjiang and P Chen Inverse Problems 36 (2020) 045005
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Theorem 3.1. Let f 0 and f t be a non-linear objects. Suppose that an arbitrary object 
g = g0 ∨ gt, where g0 and gt are defined on M0 and Mt, respectively, and an arbitrary mask 
ν0 defined on M0 produce the same ptychographic data as f  and µ0. Moreover, suppose that 
ν0 satisfies MPC(γ) and that f 0 and g0 are an anchor, i.e.

Box[supp( f0)] = Box[supp(g0)] = M0. (17)

Let

s = min{|S0|, |S′
0|} � 2 (18)

where

S0 = M0 ∩Mt ∩ supp( f 0), S′
0 = M0 ∩Mt ∩ supp(Twin( f0)).

Then for some constants θ0, θt ∈ , the following relations

ν0 � g0 = eiθ0µ0 � f 0 (19)

νt � gt = eiθtµt � f t (20)

hold true with probability at least

1 − cs, c < 1, (21)

where the positive constant c depends only on δ, γ, pγ  in MPC(γ).

Remark 3.2. The anchoring assumption can be relaxed to that of object support constraint 
(OSC) (see appendix A).

The proof of theorem 3.1 is given in appendix B.
Theorem 3.1 can be readily extended to the case of multi-part ptychography as follows.
Let T = {tk ∈ 2 : k = 0, . . . , Q − 1} denote the set of all shifts in a ptychographic meas-

urement. Let Mk ≡ Mtk and f k ≡ f tk .
We say that f k and f l are s-connected if

|Mk ∩Ml ∩ supp( f )| � s � 2 (22)

(see (18)) and that { f k : k = 1, · · · , Q − 1} are s-connected if there is an s-connected chain 
between any two elements.

Theorem 3.3. Let { f k, k = 0, · · · , Q − 1} be s-connected and every f k is a non-linear part.

Suppose that an arbitrary object g =
∨

k gk , where gk are defined on Mk , and a mask ν0 
defined on M0 produce the same ptychographic data as f  and µ0. Suppose that ν0 satisfies 
MPC(γ) and hence

p := max
a∈

Pr{Θ ∈ (a − 2δπ, a + 2δπ]} < 1 (23)

with Θ distributed according to the probability density function pγ � pγ .

In addition, suppose that for some �0 ∈ {0, 1, . . . , Q − 1} f �0 and g�0 are an anchor or 
more generally

ν�0 � g�0 = eiθ�0µ�0 � f �0 . (24)
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Then with probability at least 1  −  2Qps, we have

νk � gk = eiθkµk � f k, k = 0, . . . , Q − 1, (25)

for some constants θk ∈ .

The proof of theorem 3.3 is given in appendix C.

4. Ambiguities without MPC(γ) or anchoring assumption

The first example shows that (19) and (20) may fail in the absence of MPC(γ).

Example 4.1. Let M = m × n. Let m  =  2n/3 and t = (m/2, 0). Evenly partition 
f 0 and f t into two parts as f 0 = [ f 0

0 , f 0
1 ] and f t = [ f 1

0 , f 1
1 ] with the overlap f 0

1 = f 1
0  where 

f i
j ∈ m×m/2, i, j = 0, 1. Likewise, partition the mask as µ0 = [µ0

0,µ0
1],µ

t = [µ1
0,µ1

1] where µt 
is just the t-shift of µ0, i.e. µt(n + t) = µ0(n).

Suppose f 0
0 = f 1

1  and consider the mask estimate ν0 = Twin(µ0) and the following object 
estimate: let

g0 = Twin( f 0) = [g0
0, g0

1]

gt = Twin( f t) = [g1
0, g1

1]

where g0
1 = g1

0 due to f 0
0 = f 1

1 , i.e. g = g0 ∨ gt is a well-defined object. The mask estimate ν0 
violates MPC(γ) because

Twin(µ0)(n)
µ0(n)

=
µ̄0(N − n)
µ0(n)

, n ∈ M0,

has the maximum phase range (−2γπ, 2γπ].

Clearly we have

ν0 � g0 = Twin(µ0 � f 0)

νt � gt = Twin(µt � f t)

so ν0 and g produce the same ptychographic data as do µ0 and f  but violate (19) and (20) since 
in general

eiθ0µ0 � f 0 �= Twin(µ0 � f 0)

eiθtµt � f t �= Twin(µt � f t)

for any θ0, θt ∈ .

The next example illustrates the translational and twin-like ambiguities associated with a 
loose object support (non-anchor).
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Example 4.2. Assume the same set-up as in example 4.1 with the additional prior 
f 0
0 = f 1

1 = 0.

Let ν0 = µ0, νt = µt and g0 = [g0
0, 0], gt = [0, g1

1] where

g0
0 = f 0

1 � µ0
1/µ

0
0,

g1
1 = f 1

0 � µ1
0/µ

1
1.

Clearly, g = [g0
0, 0, g1

2] is different from f = [0, f 0
1 , 0].

It is straightforward to check that for m = (m/2, 0)

g0(n)ν0(n) = f 0(n + m)µ0(n + m), n ∈ M0

gt(n)νt(n) = f t(n − m)µt(n − m), n ∈ Mt

and hence g0 � µ0 and gt � µt produce the same diffraction patterns as f 0 � µ0 and f t � µt 
for any ν0. In particular, by setting ν0 = µ0, we satisfy MPC with δ = 0.

On the other hand, for m �= 0 and any θ0, θt ∈ ,

eiθ0 f 0 � µ0 �= f 0(·+ m)� µ0(·+ m)

eiθt f t � µt �= f t(· − m)� µt(· − m)

in general and hence (19) and (20) are violated.

For the twin-like ambiguity, consider the same set-up with

g0(n) = f̄ 0(N − n)µ̄0(N − n)/µ0(n), ∀n ∈ M0 (26)

gt(n) = f̄ t(N + 2t − n)µ̄t(N + 2t − n)/µt(n), ∀n ∈ Mt. (27)

Clearly, g = [g0
0, 0, g1

2] is different from f = [0, f 0
1 , 0] but because

g0(n)ν0(n) = f̄ 0(N − n)µ̄0(N − n), n ∈ M0

gt(n)νt(n) = f̄ t(N + 2t − n)µ̄t(N + 2t − n), n ∈ Mt,

g0 � µ0 and gt � µt, as twin images, produce the same diffraction patterns as f 0 � µ0 and 
f t � µt for any ν0. In particular, by setting ν0 = µ0, we satisfy MPC with δ = 0.

On the other hand, (19) and (20) fail to hold since for any θ0, θt ∈ ,

eiθ0 f 0 � µ0 �= f̄ 0(N − ·)� µ̄0(N − ·)
eiθt f t � µt �= f̄ t(N + 2t − ·)� µ̄t(N + 2t − ·)

in general.

5. Phase drift equation

In view of theorem 3.3, we make simple observations and transform (25) into the ambiguity 
equation that will be a key to subsequent development.
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Lemma 5.1. Let

α(n) exp[iφ(n)] = ν0(n)/µ0(n), α(n) > 0, ∀n ∈ M0

and

h(n) ≡ ln g(n)− ln f (n), ∀n ∈ M,

where f  and g are assumed to be non-vanishing. Suppose that

νk � gk = eiθkµk � f k, ∀k, (28)

where θk are constants. Then

h(n + tk) = iθk − lnα(n)− iφ(n) mod i2π, ∀n ∈ M0, (29)

and for all n ∈ Mk ∩Ml

α(n − tl) = α(n − tk) (30)

θk − φ(n − tk) = θl − φ(n − tl) mod 2π. (31)

Remark 5.2. The ambiguity equation (29) is a manifestation of local uniqueness (25) and 
has the immediate consequence

h(n + tk)− h(n + tl) = iθk − iθl mod i2π, ∀n ∈ M0, ∀k, l (32)

or equivalently

h(n + tk − tl)− h(n) = iθk − iθl mod i2π, ∀n ∈ Ml (33)

by shifting the argument in h.

We refer to (32) or (33) as the phase drift equation which determines the ambiguity (repre-
sented by h) at different locations connected by ptychographic shifts.

Proof. The ambiguity equation (29) follows immediately from (28) by taking logarithm on 
both sides.

By (28), for all n ∈ Mk ∩Ml,

g(n) = eiθk f k(n)µ0(n − tk)/ν
0(n − tk) = eiθl f l(n)µ0(n − tl)/ν

0(n − tl).
 (34)

We obtain by taking logarithm on both sides of (34) that

iθl − iθk − ln f k(n) + ln f l(n) + lnα(n − tk)− lnα(n − tl) + iφ(n − tk)− iφ(n − tl) = 0

modulo i2π. This implies that for n ∈ Mk ∩Ml

iθl − iθk + lnα(n − tk)− lnα(n − tl) + iφ(n − tk)− iφ(n − tl) = 0 mod i2π

which is equivalent to (30) and (31). □ 
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6. Raster scan

To fix the idea, we set M = 2
n for the rest of the paper.

Note that no other assumptions than the anchoring assumption and the connectivity condi-
tions, (18) and (22), are imposed on the scan scheme in theorem 3.3. In particular, theorem 
3.3 applies to the regular raster scan which is more conveniently described in terms of two 
indices: for some q ∈ ,

tkl = τ(k, l) = kτe1 + lτe2, k, l = 0, . . . , q − 1, (35)

where e1 = (1, 0), e2 = (0, 1) and τ  is the constant step size of the raster scan. For simplicity of 
the set-up, we also assume that τ = m/p = n/q for some integers p, q so that tql = t0l, tkq = t0l 
and the periodic boundary condition on 2

n is satisfied.
We first show that the regular raster scan gives rise to an affine profile of block phase.

Proposition 6.1. Under the assumptions of Lemma 5.1, the block phase {θkl} for the raster 
scan (35) has an affine profile:

θkl = θ00 + r1k + r2l (36)

for r1, r2 ∈ .

Remark 6.2. Due to the affine phase ambiguity, r1 and r2 are undetermined constants.

Proof. By (32), for all n ∈ M00 ∩ (M00 − (τ , 0)),

h(n + (τ , 0)) = h(n) + iθ10 − iθ00 (37)

and hence

h(n + tkl) = h(n) + iθkl − iθ00

= h(n + (τ , 0)) + iθkl − iθ10.
 (38)

On the other hand, (32) also implies

h(n + (τ , 0) + tkl) = h(n + (τ , 0)) + iθkl − iθ00 (39)

and by (38)

h(n + (τ , 0) + tkl) = h(n + tkl)− iθkl + iθ10 + iθkl − iθ00

= h(n + tkl) + iθ10 − iθ00
 (40)

for all n ∈ M00 ∩ (M00 − (τ , 0)).

By induction with (40), we have

h(n + (τ , 0) + tkl) = h(n + t0l) + (k + 1)i(θ10 − θ00). (41)

Likewise, we also have

h(n + (0, τ) + tkl) = h(n + tk0) + (l + 1)i(θ01 − θ00). (42)

Combining (41) and (42) with (32), we arrive at the desired result (36) with

r1 = θ10 − θ00, r2 = θ01 − θ00. □ 
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Corollary 6.3. For the raster scan (35) with τ = 1, we have

h(n) = h(0) + in · (r1, r2) mod i2π, (43)

φ(n) = θ00 −�[h(0)]− n · (r1, r2) mod 2π (44)

α = e−�[h(0)] (45)

θkl = θ00 + kr1 + lr2, k, l = 0, · · · , n − 1, (46)

for all n ∈ 2
n  and some r1, r2 ∈ .

Proof. Setting τ = 1 in (41) and (42), we have the identity (43).

By (29),

h(n + t) = iθt − lnα(n)− iφ(n) mod i2π, ∀t ∈ T . (47)

With t = t00, (47) and (43) imply (44) and (45).

The relation (46) follows from (47) and

h(n + t) = h(0) + i(n + t) · (r1, r2)

for any t ∈ T . Note that the argument for (46) is an independent proof from proposition 6.1.
 □ 

The expressions (43) and (44) correspond to the affine phase ambiguity while (45) is the 
scaling factor ambiguity.

Even though the global uniqueness (43) and (46) is our goal but the raster scan with τ = 1 
has too much redundancy and is impractical. On the other hand, when τ > 1, there are many 
additional ambiguities associated with the regular raster scan, posing substantial challenge to 
blind ptychographic reconstruction [13]. Two of these ambiguities are illustrated below.

The first example shows the ambiguity induced by the affine profile of the block phase (36).

Example 6.4. For q = 3, τ = m/2, let

f =




f00 f10 f20

f01 f11 f21

f02 f12 f22




g =




f00 ei2π/3f10 ei4π/3f20

ei2π/3f01 ei4π/3f11 f21

ei4π/3f02 f12 ei2π/3f22




be the object and its reconstruction, respectively, where fij ∈ n/3×n/3. Let

µkl =

[
µkl

00 µkl
10

µkl
01 µkl

11

]
, νkl =

[
µkl

00 e−i2π/3µkl
10

e−i2π/3µkl
01 e−i4π/3µkl

11

]
,

k, l = 0, 1, 2, be the (k, l)th shift of the probe and estimate, respectively, where µkl
ij ∈ n/3×n/3.

Let f ij and gij be the part of the object and estimate masked by µij and ν ij, respectively. For 
example, we have
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f 00 =

[
f00 f10

f01 f11

]
, f 10 =

[
f10 f20

f11 f21

]
, f 20 =

[
f20 f00

f21 f01

]

and likewise for other f ij and gij. It is easily seen that ν ij � gij = ei(i+j)2π/3µij � f ij.

The next example illustrates the periodic artifact called the raster grid pathology.

Example 6.5. For q = 3, τ = m/2 and any ψ ∈ n
3 ×

n
3 , let

f =




f00 f10 f20

f01 f11 f21

f02 f12 f22




g =




e−iψ � f00 e−iψ � f10 e−iψ � f20

e−iψ � f01 e−iψ � f11 e−iψ � f21

e−iψ � f02 e−iψ � f12 e−iψ � f22




be the object and its reconstruction, respectively, where fij ∈ n/3×n/3. Let

µkl =

[
µkl

00 µkl
10

µkl
01 µkl

11

]
, νkl =

[
eiψ � µkl

00 eiψ � µkl
10

eiψ � µkl
01 eiψ � µkl

11

]
,

k, l = 0, 1, 2, be the (k, l)th shift of the probe and estimate, respectively, where µkl
ij ∈ n/3×n/3.

Let f ij and gij be the part of the object and estimate illuminated by µij and ν ij, respectively 
(as in example 6.4). It is verified easily that ν ij � gij = µij � f ij.

The overlap ratio of above examples is 50% (since τ = m/2). However, the above construc-
tion of ambiguities can be easily extended to the raster scan with any overlap ratio. Moreover, 
all other ambiguities for blind ptychography with the raster scan can be shown to be the com-
binations of the above two types of ambiguity [13].

On the other hand, in the case τ = 1 (q  =  n), the ambiguity in example 6.4 is identical to 
the affine phase ambiguity (1) and (2) while the ambiguity in example 6.5 becomes the con-
stant phase factor inherent to any phase retrieval.

For the rest of the paper, we develop an approach to characterizing a more general class 
of scan schemes that enjoy the global uniqueness property (43)–(46) by leveraging the phase 
drift equations (32) and (33) more effectively. We refer to such schemes as ptychographically 
complete schemes.

7. Motivating example: perturbed raster scan

Consider small perturbations to the raster scan:

tkl = τ(k, l) + (δ1
kl, δ

2
kl), k, l = 0, . . . , q − 1 (48)

where τ = n/q, tql = t0l, tkq = t0l (the periodic boundary condition) and δ1
kl, δ

2
kl are small inte-

gers. Without loss of generality, we set δ1
00 = δ2

00 = 0 and hence t00 = (0, 0), see figure 6(b).
We assume the non-overstepping condition that the perturbations do not change the order-

ing of {tkl}, i.e.

τ + δ1
k+1,l − δ1

kl > 0, τ + δ2
k,l+1 − δ2

kl > 0, k, l = 0, · · · , q − 1. (49)
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Consider the triplet (tk−1,l, tkl, tk+1,l) for any k, l and let

a1
kl := (tkl − tk−1,l)− (tk+1,l − tkl) = 2δ1

kl − δ1
k−1,l − δ1

k+1,l, (50)

implying

h(n + 2tkl − tk+1,l − tk−1,l) = h(n + a1
kl). (51)

We want to reduce the lefthand side of (51) to h(n) by using (33) repeatedly.
There are at least two paths for reduction:

σ1 : (tkl − tk−1,l)− (tk+1,l − tkl) −→ tkl − tk−1,l −→ 0 (52)

σ2 : (tkl − tk−1,l)− (tk+1,l − tkl) −→ −(tk+1,l − tk,l) −→ 0, (53)

corresponding to the two paths depicted in figure 5. Following σ1, we have the identities

h(n + a1
kl) = h(n + tkl − tk−1,l) + iθkl − iθk+1,l, ∀n ∈ Mkl − a1

kl

= h(n) + i(2θkl − θk−1,l − θk+1,l) ∀n ∈ Mkl − tkl + tk−1,l

implying

h(n + a1
kl) = h(n) + i(2θkl − θk−1,l − θk+1,l) (54)

for all n in the set
[
Mkl − a1

kl

]
∩
[
Mkl − tkl + tk−1,l

]
. (55)

On the other hand, following σ2  we have the identities

h(n + a1
kl) = h(n + t10 − t00) + iθ10 − iθ20, ∀n ∈ Mkl − a1

kl

= h(n) + i(2θkl − θk−1,l − θk+1,l) ∀n ∈ Mkl − tkl + tk+1,l

implying (54) for all n in the set
[
Mkl − a1

kl

]
∩
[
Mkl − tkl + tk+1,l

]
. (56)

Combining the two routes of reduction, we have

h(n + a1
kl) = h(n) + i(2θkl − θk+1,l − θk−1,l) (57)

(modulo i2π) for all n in the set (Mkl − a1
kl) ∩ D1

kl where

D1
kl := (Mkl − tkl + tk−1,l) ∪ (Mkl − tkl + tk+1,l)

= Mk−1,l ∪Mk+1,l.
 (58)

Figure 5. Shortest paths (in the Manhattan distance) from the lower-right corner (1,−1) 
to the upper-left corner (0, 0) in the diagrams spanned by tkl − tk−1,l and tk+1,l − tkl. The 
left diagram corresponds to σ1 in (52) and the right diagram to σ2  in (53).
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Likewise, with

a2
kl := (tkl − tk,l−1)− (tk,l+1 − tkl) = 2δ2

kl − δ2
k,l−1 − δ2

k,l+1 (59)

we have

h(n + a2
kl) = h(n) + i(2θkl − θk,l+1 − θk,l−1) (60)

(modulo i2π) for all n in the set D2
k,l ∩ (Mk,l−1 − a2

kl) where

D2
kl := (Mkl − tkl + tk,l−1) ∪ (Mkl − tkl + tk,l+1)

= Mk,l−1 ∪Mk,l+1.
 

(61)

Repeatedly using (33), we can prove that the relation (57) and (60) hold respectively in the 
sets

⋃
t∈T

[
t − tkl + (Mk−1,l ∪Mk+1,l) ∩ (Mkl − a1

kl) ∩Mkl]
 (62)

and
⋃
t∈T

[
t − tkl + (Mk,l−1 ∪Mk,l+1) ∩ (Mkl − a2

kl) ∩Mkl]
 (63)

where the additional restriction due to the presence of Mkl  is to ensure the validity of applying 
(33) (See lemma 8.2 for a proof in a more general setting).

For a special class of perturbed raster scans, precise conditions for the sets in (62) and (63) 
to cover 2

n can be simply stated as follows.

Lemma 7.1. For the perturbed raster scan (48) with the non-overstepping condition (49), 
suppose

δ1
kl = δ1

k , δ2
kl = δ2

l , ∀k, l = 0, · · · , q − 1. (64)

(Consequently, a1
kl = a1

k , a2
kl = a2

l ) see figure 6(b).

If for some fixed k, l,

2τ � m +max{δ1
k−1 − δ1

k+1, δ2
l−1 − δ2

l+1} (65)

(a) (b)

Figure 6. Two perturbed raster scans. (a) Perturbed grid given by (64). (b) Perturbed 
grid given by (48).
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and

max
i=1,2

[|ai
k|+max

k′
{δi

k′+1 − δi
k′}] � m − τ , (66)

where

a1
k = 2δ1

k − δ1
k−1 − δ1

k+1, a2
l = 2δ2

l − δ2
l−1 − δ2

l+1,

then each set in (62) and (63) contains 2
n.

Remark 7.2. For the raster scan (35), a1
k = a2

l = 0 for all k, l.

For small perturbations δ1
k , δ2

l � 1, (66) is satisfied and (65) means an overlap ratio slightly 
greater than 50%. This is an improved and simplified version of the one given in [13].

Proof. First (65) implies that the right edge of Mk−1,l is no less than the left edge of Mk+1,l 
by more than one pixel and that the upper edge of Mk−1,l is no less than the lower edge of 
Mk,l+1 by more than one pixel. Hence both Mk−1,l ∪Mk+1,l and Mk,l−1 ∪Mk,l+1 are rec-
tangles and by the non-overstepping condition (49)

Mk−1,l ∪Mk+1,l ⊇ Mkl, Mk,l−1 ∪Mk,l+1 ⊇ Mkl.

For the remaining argument, it suffices to show that

2
n ⊆

⋃
t∈T

[
t − tkl + (Mkl − a1

k) ∩Mkl] , 2
n ⊆

⋃
t∈T

[
t − tkl + (Mkl − a2

l ) ∩Mkl] . (67)

To this end, since the intersection of two adjacent sets in (67)
{

tij − tkl +Mkl ∩ (Mkl − a1
k)
}
∩
{

ti+1,j − tkl +Mkl ∩ (Mkl − a1
k)
}

 (68)

{
tij − tkl +Mkl ∩ (Mkl − a2

l )
}
∩
{

ti,j+1 − tkl +Mkl ∩ (Mkl − a2
l )
}

 (69)

are congruent to
{
M00 ∩ (M00 − (a1

k , 0))
}
∩
{
(τ + δ1

i+1 − δ1
i , 0) +M00 ∩ (M00 − (a1

k , 0))
}

{
M00 ∩ (M00 − (0, a2

l ))
}
∩
{
(0, τ + δ2

j+1 − δ2
j ) +M00 ∩ (M00 − (0, a2

l ))
}

,

(66) implies that neither set in (68) and (69) is empty for any i, j. Therefore (67) holds true.
 □ 

The following is an immediate consequence of (57), (60) and lemma 7.1.

Corollary 7.3. Suppose that f  does not vanish in 2
n. Under the assumptions of lemma 7.1, if

a1
k = 1, a2

l = 1, for some k, l, (70)

then the scheme is ptychographically complete, i.e.

h(n) = h(0) + in · (r1, r2) mod i2π (71)

φ(n) = θ00 −�[h(0)]− n · (r1, r2) mod 2π (72)
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α = e−�[h(0)] (73)

θt = θ00 + t · (r1, r2) mod 2π, t ∈ T , (74)

for all n ∈ 2
n  where r1, r2 ∈  are undetermined constants (due to the affine phase ambigu-

ity).

Proof. The assumption (70), (57), (60) and lemma 7.1 imply that

h(n + e1) = h(n) + i(2θkl − θk+1,l − θk−1,l), h(n + e2) = h(n) + i(2θkl − θk,l+1 − θk,l−1)

for all n in 2
n and hence (71).

The rest of the proof is exactly the same as that of corollary 6.3. In particular, (74) follows 
from (71) and the phase drift equations (32) and (33). □ 

More generally, we have the following global uniqueness theorem for the perturbed raster 
scan (64).

Theorem 7.4. Suppose that f  does not vanish in 2
n. For the perturbed raster scan (64) 

satisfying the non-overstepping condition (49) let {(δ1
ki

, δ2
lj) : i, j} be any nonempty subset of 

perturbations satisfying (65) and (66) in lemma 7.1.

Let

a1
i = 2δ1

ki
− δ1

ki−1 − δ1
ki+1, a2

j = 2δ2
lj − δ2

lj−1 − δ2
lj+1, ∀i, j,

and suppose

gcd
i

(
|a1

i |
)
= gcd

j

(
|a2

j |
)
= 1 (75)

where gcd denotes the greatest common divisor. Then the global uniqueness (71)–(74) holds 
true and the scheme is ptychographically complete.

Proof. The coprime condition (75) implies the existence of c1
i , c2

j ∈  such that
∑

i

c1
i a1

i =
∑

j

c2
j a2

j = 1. (76)

By repeatedly using (57) and (60) we have

h(n + e1) = h

(
n + (

∑
i

c1
i a1

i , 0)

)
= h(n) + ir1 mod i2π

h(n + e2) = h


n + (0,

∑
j

c2
j a2

j )


 = h(n) + ir2 mod i2π

where

r1 =
∑

i

c1
i (2θki,i − θki+1,i − θki−1,i), r2 =

∑
j

c2
j (2θi,lj − θi,lj+1 − θi,lj−1)

and hence (71). □ 
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Instead of linear shifts with uneven step sizes in (64), the general case (48) produces curvi-
linear shifts which is more difficult to analyze. To state the analogous theorem for the general 
case (48), let ui := (ui1, ui2), i = 1, 2, be a 2-lattice basis, i.e. the four integers u11, u12, u21, u22 
satisfy

u11u22 − u12u21 = 1. (77)

Since u11u22 − u12u21 = 1, there exist integers bij,i,j   =  1,2, such that

b11u1 + b12u2 = e1 = (1, 0), b21u1 + b22u2 = e2 = (0, 1).

Theorem 7.5. Suppose that f  does not vanish in 2
n. For the perturbed raster scan (48) 

satisfying the non-overstepping condition (49), let {(δ1
kili , δ

2
kjlj) : i, j} be any nonempty subset 

of perturbations such that

2
n ⊆

⋃
t∈T

[
t − tkili + (Mki−1,l ∪Mki+1,l) ∩ (Mkili − a1

ki
) ∩Mkili

]
, ∀i (78)

and

2
n ⊆

⋃
t∈T

[
t − tkjlj + (Mkj,lj−1 ∪Mkj,lj+1) ∩ (Mkjlj − a2

lj) ∩Mkjlj
]

, ∀j.

 (79)

Let

a1
i := (tkili − tki−1,li)− (tki+1,li − tkili), ∀i (80)

a2
j := (tkjlj − tkj,lj−1)− (tkj,lj+1 − tkjlj), ∀j (81)

and suppose that
∑

i

c1
i a1

i = u1,
∑

j

c2
j a2

j = u2 (82)

for some c1
i , c2

j ∈  where {u1, u2} is a 2-lattice basis. Then the global uniqueness (71)–(74) 
holds true and the scheme is ptychographically complete.

Remark 7.6. The conditions (78) and (79) are tedious to state in terms of the perturbations 
δ1

kl, δ
2
kl and do not provide much insight beyond what is given in remark 7.2.

Proof. As before, we begin with

h(n + a1
i ) = h(n) + i(2tkili − tki−1,li − tki+1,li)

h(n + a2
j ) = h(n) + i(2tkjlj − tkj,lj−1 − tkj,lj+1)

( mod i2π) for all n ∈ 2
n  and repeatedly use (82) to obtain

h(n + u1) = h(n) + i∆1, h(n + u2) = h(n) + i∆2
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where

∆1 =
∑

i

c1
i (2θkili − θki+1,li − θki−1,li)

∆2 =
∑

j

c2
j (2θkjlj − θkj,lj+1 − θkj,lj−1).

Since u11u22 − u12u21 = 1, there exist integers bij,i,j   =  1,2, such that

b11u1 + b12u2 = e1, b21u1 + b22u2 = e2.

Therefore, for j = 1, 2,

h(n + e1) = h(n) + ib11∆1 + ib12∆2

h(n + e2) = h(n) + ib21∆1 + ib22∆2,

and (71)–(74) hold true. □ 

8. Mixing schemes with three-part coupling

Let us begin with a simple example showing that a perturbed scan with overlap ratios less than 
50% may result in excessive ambiguities.

Example 8.1. Let us consider the perturbed scheme (64) with q  =  2 and

tkl = (τk, τl), k, l = 0, 1, 2 (83)

where τ0 = 0, τ2 = n and

3m/2 < n < m + τ1. (84)

The condition (84) is to ensure that the overlap ratio (2  −  n/m) between two adjacent blocks is 
less than (but can be made arbitrarily close to) 50%. To avoid the raster scan (which has many 
undesirable ambiguities [13]), we assume that τ1 �= n/2 and hence τ2 �= 2τ1. Note that the 
periodic boundary condition implies that M00 = M20 = M02 = M22. Figure 7 illustrates 
the relative positions of M00 and M10.

First let us focus on the horizontal shifts {tk0 : k = 0, 1, 2}. As shown in figure 7, two sub-
sets of M = 2

n

R00 = �m + τ1 − n, τ1 − 1� × m, R10 = �m, n − 1� × m

are covered only once by M00 and M10 respectively due to the (84). It is straightforward to 
check that the conclusion of lemma 7.1 fails in this case.

Now consider the intersections

R̃10 := R10 ∩ (t10 + R00) = R10 ∩ �m + 2τ1 − n, 2τ1 − 1� × m

R̃00 := (R10 − t10) ∩ R00 = �m − τ1, n − τ1 − 1� × m ∩ R00
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which respectively correspond to the same region of the mask in M10 and M00 and let h1 be 
any function defined on M such that h1(n) = 0 for any n �= R̃10 ∪ R̃00 and h1(n + t10) = h1(n) 
for any n ∈ R̃00.

Consider the object estimate g(n) = eh1(n)f (n) and the mask estimate νk0(n) := e−h1(n)µk0(n), 
which is well defined because R̃10 = t10 + R̃00 and both correspond to the same region of the 
mask.

By the same token, we can construct a similar ambiguity function h2 for the vertical shifts. 
With both horizontal and vertical shifts, we define the ambiguity function h = h1h2 and the 
associated pair of mask-object estimate νkl(n) := e−h(n)µkl(n) and g(n) = eh(n)f (n).

Clearly, the mask-object pair (ν, g) produces the identical set of diffraction patterns as 
(µ, f ). Therefore this ptychographic scheme has at least (2τ1 − m)2 or (2n − 2τ1 − m)2 de-
grees of ambiguity dimension depending on whether 2τ1 < n or 2τ1 > n.

The above construction of the ambiguity function h extends to a perturbed scan (64) with 
any q � 2 and overlap ratios less than 50%. More importantly, R̃00 and R̃10 illustrate the 
notion of singly covered invariant regions which may be present in more general schemes of 
low overlap ratio.

A singly covered invariant region R is the union of congruent subsets Rj ⊂ M j  each of 
which is covered once only by the same subset S ⊂ M0 of the mask, i.e. Rj = tj + S for all j . 
As in example 8.1, the existence of such an invariant region entails an ambiguity function h 
that is any function defined on M such that h(n) = 0 for any n �∈ R and h(n + tj) = h(n) for 
all n. In other words, every component region Rj  is infected with the same ambiguity which 
is transported by the mask region S from component to component. The ambiguity dimension 
equals the size of each component region Rj .

Figure 7. A perturbed scan with q  =  2. The arcs indicate the extend of the two blocks 
M00 and M10. The dotted lines mark the midlines of the two blocks. The grey area 
represents the object with the light grey areas being R00 and R10 and the dark grey areas 
being the overlap of the two blocks. The white area inside M10 folds into the other end 
inside M00 by the periodic boundary condition.
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In what follows, we further develop the ideas in section 7 and example 8.1 and formulate 
uniqueness conditions for more general shifts than the perturbed raster scan (48). For simplic-
ity of presentation, we focus on 3-part coupling which is most relevant in the case of perturbed 
raster scans.

To this end, we resort to the single-indexed notation in section 3.
For two neighbors of f k, say f k−1 and f k+1, suppose

p1(tk − tk−1)− p2(tk+1 − tk) = a (85)

for some p1, p2 ∈  and a ∈ 2. For ease of notation, set

s1 = tk − tk−1, s2 = tk+1 − tk.

The same analysis is applicable to the other case p1s1 + p2s2 = a.
There are several paths for reducing h(n + p1s1 − p2s2) to h(n). Motivated by the exam-

ple of perturbed raster scan, we can represent a path of reduction from p1s1 − p2s2 to 0 by a 
directed path on the 2-lattice spanned by s1 and s2 as in figure 8 (for p1 = 2, p2 = 1). Figure 8 
depicts three shortest (in the Manhattan metric) paths

σ1 : 2s2 − s2 −→ 2s1 −→ s1 −→ 0 (86)

σ2 : 2s2 − s2 −→ s1 − s2 −→ s1 −→ 0 (87)

σ3 : 2s2 − s2 −→ s1 − s2 −→ −s2 −→ 0. (88)

Let Π( p1,−p2, s1, s2) denote the set of shortest paths (in the Manhattan metric) from 
( p1,−p2) to 0 in the lattice spanned by s1 and s2.

Each path σ ∈ Π( p1,−p2, s1, s2) gives rise to an identity

h(n + a) = h(n + p1s1 − p2s2) = h(n)− ip2(θk+1 − θk) + ip1(θk − θk−1)
 (89)

(modulo i2π) for all n in the set

(Mk − a) ∩ Dk(σ, s1, s2), Dk(σ, s1, s2) :=
⋂

(u,v)∈σ

(Mk − us1 − vs2) (90)

where (u, v) ∈ σ means all the grid points in the path σ, excluding the two end points.
By repeatedly applying (33) we can extend (89) to a larger region as follows.

Lemma 8.2. The relation (89) holds

h(n + a) = h(n)− ip2(θk+1 − θk) + ip1(θk − θk−1), a = p1s1 − p2s2 (91)

(modulo i2π) holds true in the set
⋃
t∈T

⋃
σ∈Π( p1,−p2,s1,s2)

[
t − tk + Dk(σ, s1, s2) ∩ (Mk − a) ∩Mk] .

 (92)

Figure 8. Three shortest paths connecting a to the origin (the upper-left corner) for 
p1 = 2, p2 = 1. The left diagram corresponds to σ1 in (86), the middle diagram to σ2  in 
(87) and the right diagram to σ3 in (88).
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Proof. For any fixed σ, we know from the above analysis that (91) holds true for all n in 
the set (90).

By (33),

h(n + tl − tk) = h(n) + iθl − iθk, ∀n ∈ Mk,

and by (89)

h(n + a + tl − tk) = h(n + a) + iθl − iθk

= h(n)− ip2(θk+1 − θk) + ip1(θk − θk−1) + iθl − iθk.

Hence we have

h(n + a + tl − tk) = h(n + tl − tk)− ip2(θk+1 − θk) + ip1(θk − θk−1).

In other words, (91) is valid in the set tl − tk +Mk ∩ (Mk − a) ∩ Dk(σ, s1, s2). Taking the 
union over all shifts and paths, we obtain (92). □ 

We now define the mixing schemes that connect different parts of the object by the ptycho-
graphic shifts in a non-degenerate manner.

8.1. The mixing property

Let {( jsi , ks
i , lsi )}, s = 1, 2, be a non-empty subset of triplets of index such that for some 

ps
i , qs

i ∈

2
n ⊆

⋃
t∈T

⋃
σ

[
t − tks

i
+ Di(σ, tks

i
− tjsi , tlsi − tks

i
) ∩ (Mks

i − as
i ) ∩Mks

i

]
 (93)

where σ ∈ Π( ps
i ,−qs

i , tks
i
− tjsi , tlsi − tks

i
) and as

i := ps
i (tks

i
− tjsi )− qs

i (tlsi − tks
i
).

Moreover, for some cs
i ∈∑

i

c1
i a1

i = u1,
∑

i

c2
i a2

i = u2 (94)

where {u1, u2} is a 2-lattice basis.
As seen in theorems 7.4 and 7.5, the most tedious part of the above definition is (93) when 

the set Di(σ, tks
i
− tjsi , tlsi − tks

i
) ∩ (Mks

i − as
i ) ∩Mks

i is not rectangular.
The mixing schemes are so named because the propagation of ambiguity by the ptycho-

graphic shifts, according to the phase drift equations (32) and (33), is so complete that a dis-
tinct ambiguity profile (affine phase  +  scaling factor) emerges as a result.

We can state the global uniqueness theorem for the mixing schemes whose proof is entirely 
analogous to that of theorem 7.5.

Theorem 8.3. Suppose supp( f ) = 2
n . If T  satisfies the mixing property, then

h(n) = h(0) + in · (r1, r2) mod i2π, (95)

φ(n) = θ0 −�[h(0)]− n · (r1, r2) mod 2π (96)

α = e−�[h(0)] (97)

θt = θ0 + t · (r1, r2) mod 2π, ∀t ∈ T , (98)
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for some r1, r2 ∈  and all n ∈ 2
n .

9. Conclusion and discussion

Under the MPC and the anchoring assumption, we have proved, for a strongly connected 
object, the local uniqueness (theorem 3.1 and theorem 3.3) manifested as the phase drift 
equations (32) and (33). We have shown by examples (examples 4.1 and 4.2) that both MPC 
and the anchoring assumption are necessary. For the global uniqueness with the exception of 
inherent ambiguities (scaling factor and affine phase factor), we have showed that the mixing 
schemes are ptychographically complete (theorem 8.3), including the perturbed raster scans 
(theorems 7.4 and 7.5).

Figure 9. The phase profile of (a) the random independent mask and (b) the correlated 
mask of correlation length equal to 0.7 mask size.

(a) (b)

Figure 10. Special scans that have good empirical performances [9, 21, 24]. (a) 
Concentric circles. (b) Fermat spiral.
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In addition, for both the mixing schemes and the regular raster scan (proposition 6.1), 
we have proved that their block phases must have an affine profile, θt = θ0 + t · r for some 
r ∈ 2. It is unclear if this holds true for any other schemes without the global uniqueness 
property.

Our approach to global uniqueness is based on 3-part coupling designed particularly for 
analyzing the perturbed raster scans. Our theory and example 8.1 prove that the overlap ratio 
50% is more or less the minimum requirement for blind ptychography with the irregularly 
perturbed raster scan (see (75) and (82)).

Our theory has several practical implications. First, the connectivity condition (4) suggests 
that in the case of a sparse object a higher overlap ratio may be required. Second, MPC is re-
interpretable in terms of other measurement uncertainties such as scan position errors [20]. 
The level of scan position off-sets that can be corrected depends on the type of mask used in 
measurement. For a random independent mask (figure 9(a)), MPC corresponds to correctable 
position error of about half a pixel; For a correlated mask, MPC corresponds to correctable 
position error on the order of the correlation length.

In other words, there is a trade-off between the mask correlation length and the correctable 
level of scan position error. Numerical evidence suggests that with the same MPC a highly 
correlated mask (figure 9(b)) performs only slightly worse than the random independent mask 
[17]. As mechanical and thermal vibrations are inevitable, it makes sense to use a mask of a 
comparable correlation length to compensate for scan position offset. On the other hand, a 
simple regular mask (e.g. Fresnel illumination spot) is often a sub-optimal choice as twin-
like ambiguities may be present even with perfect knowledge of the mask [7]. In addition, a 
random mask has the benefit of producing more diffuse illumination and thus data of lower 
dynamic-range.

Another implication of MPC is in numerical reconstruction. MPC is independent of the 
knowledge about the mask amplitude, meaning that the knowledge about the mask phase 
is much more important for blind ptychography. Indeed, MPC turns out to be an effective 
method for mask initialization, yielding geometrically convergent iterations, even when the 
initialization error (measured in L2 norm) is large [17].

One is naturally led to the important question of optimal scan schemes which use the 
minimum number of diffraction patterns for a given object (i.e. the minimum redundancy in 
measurement) to be ptychographically complete. The measurement redundancy is more or 
less proportional to the product of the number of adjacent blocks and the overlap ratio. Our 
results show that the irregularly perturbed raster scans with overlap ratio slightly over 50% 
is optimal among the class of perturbed raster scans. For more general scans, the minimum 
overlap requirement may be lowered and 5-part or higher order coupling must be directly 
accounted for. For example, the Fermat spiral scan scheme (figure 10(b)) is claimed to provide 
a more uniform coverage than the perturbed raster scans and the concentric circle pattern (fig-
ure 10(a)), thus lowering the overlap ratio [24]. A rigorous theory for general optimal scans, 
however, is beyond the scope of the present work and has to be left for future research.
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Appendix A. Object support constraint (OSC)

Instead of a tight support, an object part may possess various degrees of loose support depend-
ing on the scan position and size of the block (see figure 3). The looseness of support can be 
characterized by a set of admissible shifts T0 as follows.
Object support constraint (OSC). An object estimate g0 satisfies the OSC with respect to a 
given set of shifts T0 if m ∈ T0 whenever

supp(g0) or supp(Twin(g0)) ⊆ Box[supp( f0)]− m. (A.1)

We can use OSC to describe the precision of our prior knowledge about Box[supp( f0)] 
when f 0 has a loose support in M0. The smaller the set T0 is, the more precise the OSC is. 
When Box[supp( f0)] = M0, we can set T0  =  {(0,0)} since the condition (A.1) becomes

supp(g0) or supp(Twin(g0)) ⊆ M0 (A.2)

which is null and gives no new information.
Under OSC, the quantity s in (18) is defined instead as

s = min
m,m′∈T0

|S0(m)| ∧ |S′
0(m

′)| � 2 (A.3)

where T0 is the set of shifts in OSC and

S0(m) = M0 ∩Mt ∩ (supp( f 0)− m)

S′
0(m) = M0 ∩Mt ∩ (supp(Twin( f0)) + m).

The construction in example 4.2 satisfies the OSC (A.1) with

T0 =
{
(a, 0) : a = 0, . . . , m/2

}
.

On the other hand, if f 0
1 , f 1

0  are non-vanishing, then it can be verified that s  =  0, consistent 
with the fact that the probability for ambiguity is one as shown in the above construction.

However, if we enhance the precision of the support knowledge by tightening T0 by any 
amount l � 1 as

T0 =
{
(a, 0) : a = 0, . . . , m/2 − l

}
, (A.4)

then the constructions would violate the OSC (A.1), and be rejected. Moreover, for (A.4), 
s  =  ml with nonvanishing f 0

1 , f 1
0  so the probability of uniqueness is closed to one for m � 1 

as predicted by theorem 3.1.
Although OSC is more general than the anchoring assumption, it is also more complicated 

and less practical so we do not pursue the full proof here. For the interested reader, we refer 
to the preliminary version [14] for the proof of theorem 3.1 under the assumption of OSC.

Appendix B. Proof of theorem 3.1

Let N = (m, m). Applying corollary 2.4 to both M0 and Mt we have the following alterna-
tives: for some m1, m2 ∈ 2, θ0, θt ∈ .
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g0(n) = eiθ0 f 0(n + m1)µ
0(n + m1)/ν

0(n)

or Twin(g0)(n) = e−iθ0 f 0(n + m1)µ
0(n + m1)/Twin(ν0)(n), ∀n ∈ M0

 (B.1)
and

gt(n) = eiθt f t(n + m2)µ
t(n + m2)/ν

t(n)

or Twin(gt)(n) = e−iθt f t(n + m2)µ
t(n + m2)/Twin(νt)(n), ∀n ∈ Mt.

 (B.2)
Note that Twin(gt)(n) = ḡt(N + 2t − n) so we can rewrite (B.1) and (B.2) as

g0(n) = eiθ0 f 0(n + m1)µ
0(n + m1)/ν

0(n)

oreiθ0 f̄ 0(N − n + m1)µ̄
0(N − n + m1)/ν

0(n), ∀n ∈ M0 (B.3)

and

gt(n) = eiθt f t(n + m2)µ
0(n + m2 − t)/ν0(n − t)

oreiθt f̄ t(N + 2t − n + m2)µ̄
0(N + t − n + m2)/ν

0(n − t), ∀n ∈ Mt

 (B.4)
for some m1, m2 ∈ , θ0, θt ∈  where we have used the relation µt(·) = µ0(· − t), 
νt(·) = ν0(· − t). Note that N and N + t = (m + t1, m + t2) are the upper-right corners of M0 
and Mt, respectively.

In view of the anchoring assumption, (B.1) implies m1 = 0.
We now focus on the intersection M0 ∩Mt where (B.3) and (B.4) both hold. We have then 

four possible ambiguities from the crossover of the alternatives in (B.3) and (B.4).

 Case (i).  The combination of the first alternatives in (B.3) and (B.4) imply that for all 
n ∈ M0 ∩Mt

eiθ0 f 0(n)µ0(n)/ν0(n) = eiθt f t(n + m2)µ
0(n − t + m2)/ν

0(n − t) (B.5)

  provided that f 0(n) and f t(n + m2) are both zero or nonzero.

  We now show that with high probability (B.5) fails to hold for some n ∈ M0 ∩Mt .

  Consider any n ∈ S0  (hence f 0(n) �= 0) and assume that f t(n + m2) �= 0. Otherwise, 
(B.5) holds with probability zero.

  We obtain by taking logarithm on both sides of (B.5) that

lnµ0(n) + lnµ0(n − t)− lnµ0(n − t + m2)− lnµ0(n)

= iθt − iθ0 − ln f 0(n) + ln f t(n + m2) + lnα(n)− lnα(n − t)
+ iφ(n)− iφ(n − t)

 

(B.6)

  modulo i2π. We want to show that if |S0| is sufficiently large then (B.6) holds with at most 
exponentially small probability.

  Since n ∈ M0 ∩Mt  and n + m2 ∈ Mt, the points associated with the lefthand side of 
(B.6), n − t, n + m2 − t, belong in M0. Hence the random variables on the lefthand side 
of (B.6) are well-defined and have a finite value.

  The two points n − t, n + m2 − t can not be identical unless m2 = 0. In other words, if 
m2 �= 0, then the imaginary part Θ1 of the lefthand side of (B.6)
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Θ1 := θ(n − t)− θ(n − t + m2) (B.7)

  is the sum of two independent random variables and hence the support set of its prob-
ability density contains (−2γπ, 2γπ].

  On the righthand side of (B.6), however, as f 0(n) and f t(n + m2) are given (hence 
deterministic), the phase fluctuation is determined by φ(n)− φ(n − t) which ranges over 
the interval (−2δπ, 2δπ] due to the constraint (14). Consequently (B.6) holds true with 
probability at most

p1 := max
a∈

Pr{Θ1 ∈ (a − 2δπ, a + 2δπ]} < 1,

  for each n, since δ < min(γ, 1
2 ).

  For all n ∈ S0 , there are at least |S0|/2! statistically independent instances, corresponding 
to the number of non-intersecting {n − t, n + m2 − t}. Therefore (B.6) holds true with 

probability at most p|S0|/2!
1  unless m2 = 0.

  On the other hand, for m2 = 0, the desired result (19) and (20) follows directly from the 
first alternatives in (B.3) and (B.4).

 Case (ii).  Consider the combination of the first alternative in (B.3) and the second 
alternative in (B.4) that for n ∈ M0 ⋂Mt

g(n) = eiθ0 f 0(n)µ0(n)/ν0(n)

= eiθt f̄ t(N + 2t − n + m2)µ̄
0(N + t − n + m2)/ν

0(n − t),
 

(B.8)

  provided that f 0(n) and f̄ t(N + 2t − n + m2) are both zero or nonzero.
  Consider any n ∈ S0  (hence f 0(n) �= 0) and assume f̄ t(N + 2t − n + m2) �= 0. Otherwise 

(B.8) is false and can be ruled out.
  Taking logarithm and rearranging terms in (B.8) we have

lnµ0(n) + lnµ0(n − t)− ln µ̄0(N + t − n + m2)− lnµ0(n)

= iθt − iθ0 − ln f 0(n) + ln f̄ t(N + 2t − n + m2) + lnα(n)− lnα(n − t)
+ iφ(n)− iφ(n − t).

 
(B.9)

  The imaginary parts of the lefthand side of (B.9)

Θ2 := θ(n − t) + θ(N + t − n + m2) (B.10)
  is the sum of two independent random variables unless

n = t +
1
2
(N + m2),

  in which case Θ2 = 2θ(n − t). Since |S0| � 2, there exists some n ∈ S0  such that Θ2 is 
the sum of two independent random variables and hence the support of its probability 
density function contains (−2γπ, 2γπ]. By the same argument as above, (B.9) holds true 

with probability at most p|S0(m1)|/2!
2  where

p2 := max
a∈

Pr{Θ2 ∈ (a − 2δπ, a + 2δπ]} < 1

  since δ < min(γ, 1
2 ).
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 Case (iii).  Consider the combination of the second alternative in (B.3) and the first 
alternative in (B.4) that for n ∈ M0 ⋂Mt

g(n) = eiθ0 f̄ 0(N − n)µ̄0(N − n)/ν0(n)

= eiθt f t(n + m2)µ
0(n − t + m2)/ν

0(n − t)
 (B.11)

  provided that f 0(n) and f t(N + 2t − n + m2) are both zero or nonzero. Consider any 
n ∈ S′

0  (hence f̄ 0(N − n) �= 0) and assume f t(n + m2) �= 0. Otherwise (B.12) can be 
ruled out.

  Taking logarithm and rearranging terms in (B.11) we have

ln µ̄0(N − n) + lnµ0(n − t)− lnµ0(n − t + m2)− lnµ0(n)

= iθt − iθ0 − ln f̄ 0(N − n) + ln f t(n + m2) + lnα(n)− lnα(n − t)
+ iφ(n)− iφ(n − t).

 

(B.12)
  As before, we want to show that if |S′

0| is sufficiently large, then (B.12) holds with at most 
exponentially small probability.

  Since n ∈ M0 ∩Mt  and n + m2 ∈ Mt, the four points associated with the lefthand side 
of (B.12), N − n, n − t, n − t + m2, n, belong in M0. Hence the four random variables 
on the lefthand side of (B.12) are well-defined.

  The imaginary parts of the lefthand side of (B.12) given by

Θ3 := −θ(N − n) + θ(n − t)− θ(n − t + m2)− θ(n) (B.13)

  is the sum of two, three or four independent random variables unless

m2 = 0, n =
1
2

N, (B.14)

  in which case Θ3 = 2θ(N/2).
  Since S′

0 � 2, there exists some n ∈ S′
0  such that Θ2 is the sum of at least two independent 

random variables and hence the support of its probability density function contains 
(−2γπ, 2γπ].

  On the righthand side of (B.12), the phase fluctuation is determined by φ(n)− φ(n − t) 
which ranges over the interval (−2δπ, 2δπ] due to the MPC(γ) (14). So (B.12) holds true 
with probability at most

p3 := max
a∈

Pr{Θ3 ∈ (a − 2δπ, a + 2δπ]} < 1

  for each n, since δ < min(γ, 1
2 ).

  For all n ∈ S′
0  such that n �= N/2, there are at least (|S′

0| − 1)/4! statistically independent 
instances, corresponding to the number of non-intersecting {N − n, n − t, n − t + m2, n} 

Therefore, (B.12) holds true with probability at most p(|S′0|−1)/4!
3 .

 Case (iv).  Now consider the combination of the second alternatives in (B.3) and (B.4) 
that for n ∈ M0 ⋂Mt

g(n) = eiθ0 f̄ 0(N − n)µ̄0(N − n)/ν0(n)

= eiθt f̄ t(N + 2t − n + m2)µ̄
0(N + t − n + m2)/ν

0(n − t)
 

(B.15)

  provided that f̄ 0(N − n) and f̄ t(N + 2t − n + m2) are both zero or nonzero.
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  Consider any n ∈ S′
0  (hence f̄ 0(N − n) �= 0) and assume f̄ t(N + 2t − n + m2) �= 0. 

Otherwise (B.15) is ruled out.
  After taking logarithm and rearranging terms for n ∈ S′

0  (B.15) becomes

ln µ̄0(N − n) + lnµ0(n − t)− ln µ̄0(N + t − n + m2)− lnµ0(n)

= iθt − iθ0 − ln f̄ 0(N − n) + ln f̄ t(N + 2t − n + m2)

+ lnα(n)− lnα(n − t) + iφ(n)− iφ(n − t).
 

(B.16)

  The imaginary part of the lefthand side of (B.16)

Θ4 := −θ(N − n) + θ(n − t) + θ(N + t − n + m2)− θ(n) (B.17)

  is the sum of two, three or four independent random variables unless

N + t − n + m2 = n
N − n = n − t

  or equivalently

m2 = 0, n =
1
2
(N + t).

  Since |S′
0| � 2, the support of the probability density of Θ4 contains (−2γπ, 2γπ].

  The same analysis then implies that (B.16) holds true with probability at most p(|S′0|−1)/4!
4  

where

p4 := max
a∈

Pr{Θ4 ∈ (a − 2δπ, a + 2δπ]} < 1

  since δ < min(γ, 1
2 ).

  In summary, ambiguities (i)–(iv) are present with probability at most cs and hence the 
desired result (19) and (20) holds true with probability greater than 1  −  cs where the 
positive constant c  <  1 depends only on δ and the probability density function of the 
mask phase.

Appendix C. Proof of theorem 3.3

Without loss of generality, we may assume �0 = 0.
Let M�(k) denote an adjacent block of Mk  such that f �(k) and f k are s-connected. When 

the s-connected neighbor of Mk  is not unique, we make an arbitrary selection �(k) such that 
�(�(k)) = k . Let Lj = { f k, f �(k) : k = 0, . . . , j}.

We prove (25) by induction. Suppose that (25) holds for k = 0, . . . , j. We wish to show 
that there is another part, say f j+1 �∈ Lj, such that (25) holds for k = 0, . . . , j, j + 1, unless 
j   =  Q  −  1. Since { f k : k = 0, · · · , Q − 1} is s-connected, at least some f j +1 is s-connected to, 
say f l ∈ Lj if j   <  Q  −  1.

Denote S0 := Ml ∩M j+1 ∩ supp( f ). Applying corollary 2.4 to M j+1 we have the fol-
lowing alternatives: for some m ∈ , θ ∈ ,

g j+1(n) = eiθf j+1(n + m)µ j+1(n + m)/ν j+1(n)

or Twin(g j+1)(n) = e−iθf j+1(n + m)µ j+1(n + m)/Twin(ν j+1)(n), ∀n ∈ M j+1.
 

(C.1)

Let M j+1 = Ml + t for some shift t.
Consider the first alternative for n ∈ Ml ∩M j+1:
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eiθl f l(n)µl(n)/ν l(n) = eiθf j+1(n + m)µ j+1(n + m)/ν j+1(n)

= eiθf j+1(n + m)µl(n − t + m)/ν l(n − t)
 

(C.2)

provided that f l(n) and f j+1(n + m) are both zero or nonzero.
Suppose f l(n) · f j+1(n + m) �= 0. We obtain by taking logarithm on both sides of (C.2) 

that

lnµl(n − t)− lnµl(n − t + m)

= iθ − iθl − ln f l(n) + ln f j+1(n + m) + lnα(n)− lnα(n − t) + iφ(n)− iφ(n − t)
 

(C.3)

modulo i2π. We want to show that if s is sufficiently large then (C.3) holds with at most expo-
nentially small probability unless m = 0.

Since n ∈ Ml ∩M j+1 and n + m ∈ M j+1, n − t  and n + m − t belong in Ml. Hence the 
lefthand side of (C.3) is well-defined and has a finite value.

Unless m = 0, the imaginary part Θ1 of the lefthand side of (C.3)

Θ1 := θ(n − t)− θ(n − t + m)

is the sum of two independent random variables and hence the support set of its probability 
density contains (−2γπ, 2γπ].

On the righthand side of (C.3), however, as f l(n) and f j+1(n + m) are determinis-
tic, the phase fluctuation is determined by φ(n)− φ(n − t) which is limited to the interval 
(−2δπ, 2δπ] due to MPC(γ). Consequently (C.3) holds true with probability at most

p1 := max
a∈

Pr{Θ1 ∈ (a − 2δπ, a + 2δπ]} < 1,

for each n, since δ < min{γ, 1/2}.
For all n ∈ S0 , there are at least |S0|/2 statistically independent instances, corresponding 

to the number of non-intersecting {n − t, n + m − t}. Therefore (C.3) holds true with prob-

ability at most p|S0|/2
1  unless m = 0. On the other hand, for m = 0, the desired result (25) for 

k  =  j   +  1 follows directly from (C.1).
Consider the second alternative in (C.1) and note that

Twin(g j+1)(n) = ḡ j+1(N + 2tj+1 − n), Twin(ν j+1)(n) = ν̄ j+1(N + 2tj+1 − n).

Rewriting the second alternative we obtain for n ∈ Ml ⋂M j+1

eiθl f l(n)µl(n)/ν l(n)

= eiθ f̄ j+1(N + 2tj+1 − n + m)µ̄ j+1(N + 2tj+1 − n + m)/ν j+1(n),

= eiθ f̄ j+1(N + 2tj+1 − n + m)µ̄l(N + 2tl − t − n + m)/ν l(n − t),

 

(C.4)

provided that f l(n) and f̄ j+1(N + 2tj+1 − n + m) are both zero or nonzero.
Consider any n ∈ S0  (hence f l(n) �= 0) and assume f̄ j+1(N + 2tj+1 − n + m) �= 0. 

Otherwise (C.4) is false and can be ruled out.
Taking logarithm and rearranging terms in (C.4) we have

lnµl(n − t)− ln µ̄l(N + 2tl − t − n + m)

= iθ − iθl − ln f l(n) + ln f̄ j+1(N + 2tj+1 − n + m) + lnα(n)− lnα(n − t)
+ iφ(n)− iφ(n − t).

 
(C.5)
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The imaginary parts of the lefthand side of (C.5)

Θ2 := θ(n − t) + θ(N + 2tl − t − n + m)

is the sum of two independent random variables unless

n = tl +
1
2
(N + m)

in which case Θ2 = 2θ(n − t) is not a sum of two independent random variables. Hence the 
support of the probability density function of Θ2 contains (−2γπ, 2γπ]. By the same argument 

as above, (C.5) holds true with probability at most p|S0|/2
2  where

p2 := max
a∈

Pr{Θ2 ∈ (a − 2δπ, a + 2δπ]} < 1

since δ < min(γ, 1
2 ).

Combining the analysis of the two alternatives, (25) fails for k  =  j   +  1 with probability at 

most p|S0|/2
1 + p|S0|/2

2 � 2p|S0|/2 conditioned on the event that (25) holds true for k = 0, . . . , j 
where p  is as given in (23). Therefore, the desired result (25) holds with probability at least 
1 − 2Qp|S0|/2 after subtracting the failure probability for each additional block.
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