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Abstract – Two-frequency radiative transfer (2f-RT) theory is developed for geometrical optics
in random media. The space-frequency correlation is described by the two-frequency Wigner
distribution (2f-WD) which satisfies a closed-form equation, the two-frequency Wigner-Moyal
equation. In the RT regime it is proved rigorously that 2f-WD satisfies a Fokker-Planck–like
equation with complex-valued coefficients. By dimensional analysis 2f-RT equation yields
the scaling behavior of three physical parameters: the spatial spread, the coherence length
and the coherence bandwidth. The sub-transport mean-free-path behavior is obtained in a closed
form by analytically solving a paraxial 2f-RT equation.

Copyright c© EPLA, 2007

Introduction. – Correlation functions of fields arise
naturally in the description of fluctuations and are ubi-
quitous objects in statistical physics. The most basic
of those are the second-order correlations in the space-
time or space-frequency domain; the two are equivalent
to each other via the Fourier transform. When the field
fluctuations can be described as a Gaussian stochastic
process, all the correlation functions of the field can then
be expressed in term of the second-order ones, by the
use of the moment theorem for Gaussian processes. The
second-order space-frequency correlation then emerges as
an indispensable tool for studying fluctuations of fields and
is equivalent to the mutual coherence function describing
the field correlation at two space-time points [1].

Spatial and temporal structures of ultrawide-band high-
frequency fields can be appreciably affected by small
random changes of the medium parameters characteris-
tic of almost all astro- and geophysical environments. An
important step toward the analytical understanding of
pulse propagation in multiply scattering media is then
to derive the equation for the space-frequency correla-
tion, obtain the qualitative information about its behavior
and, if possible, find its (asymptotic) solutions. This prob-
lem has been extensively studied in the literature, see,
e.g., [2–6]. The main distinction of our approach from
previous works is that our approach to space-frequency
correlation is carried out in terms of the two-frequency
Wigner distribution (2f-WD) for which we will derive

rigorously equations of relatively simple form in the radia-
tive transfer (RT) regime and obtain an exact solution for
the small-scale behavior below the transport mean-free-
path [1,7].
The standard (equal-time or -frequency) Wigner distri-

bution (WD) is a quasi-probability density function in
phase space and was first introduced by Wigner [8] in
connection to quantum thermodynamics and later found
wide-ranging applications in classical [9,10], as well as in
quantum optics [1,11]. In classical optics, a main use of
the Wigner distribution is connected to high-frequency
asymptotic and radiative transfer, both of which can be
most naturally worked out from the first principle in phase
space (see the reviews [12,13] and references therein).
The main advantage of 2f-RT over the traditional equal-

time radiative transfer theory is that it describes not just
the energetic transport but also the two space-time point
mutual coherence in the following way.

Let the scalar wave field Uj , j = 1, 2, of wave number
kj , j = 1, 2 be governed by the reduced wave equation

∆Uj(r)+ k
2
j (ν+V (r))Uj(r) = 0, r∈R3, j = 1, 2,

(1)

where ν and V are, respectively, the mean and fluctuation
of the refractive index associated are assumed to be real-
valued, corresponding to a lossless medium. For simplicity,
we restrict our attention to dispersionless media (see [14]
for discussion on dispersive media). Here and below the
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background wave speed is set to be unity so that kj = ωj .
Let u(tj ,xj), j = 1, 2 be the time-dependent wave field at
two space-time points (tj ,xj), j = 1, 2. Let x= (ω1x1+
ω2x2)/2 and y= ω1x1−ω2x2. Then we have

〈u(t1,x1)u∗(t2,x2)〉=∫
eip·yei(ω2t2−ω1t1) 〈W (x,p;ω1, ω2)〉dω1dω2dp (2)

where W (x,p;ω1, ω2) is the 2f-WD defined by

W (x,p;ω1, ω2) =

1

(2π)3

∫
e−ip·yU1

(
x

ω1
+
y

2ω1

)
U∗2

(
x

ω2
− y

2ω2

)
dy=

(
ω1ω2

)3
∫
eix·qÛ1

(
ω1p+

ω1q

2

)
Û∗2

(
ω2p−

ω2q

2

)
dq.

Here and below 〈·〉 denotes the ensemble average. For
temporally stationary signals, wave fields of different
frequencies are uncorrelated and only the equal-frequency
WD is necessary to describe the two-time correlation. In
comparison, the single-time correlations with t1 = t2 = t
gives rise to the expression

〈u(t,x1)u∗(t,x2)〉=
∫
dω′dp eip·yeiω

′t

×
∫
dω 〈W (x,p;ω−ω′/2, ω+ω′/2)〉

which is equivalent to the central-frequency-integrated
2f-WD. For ease of notation, we will drop the frequency
arguments when writing the 2f-WD below.

Weak-coupling limit. – The radiative transfer regime
sets in when the scale of medium fluctuation is much
smaller than the propagation distance but is comparable
or much larger than the wavelength. Based on the general
principle of central limit theorem, RT corresponds to the
scaling limit which replaces ν+V in eq. (1) with

1

θ2ε2

(
ν+
√
εV
(r
ε

))
, θ > 0, ε≪ 1, (3)

where ε > 0 and θ−1 > 0 are, respectively, the ratio of the
scale of medium fluctuation to the propagation distance
and the wavelength. Thus, εθ is the ratio of the wavelength
to the propagation distance and as a result we rescale the
wave number as k→ k/(εθ), giving rise to the prefactor
(θε)−2. This is the so-called weak-coupling (or disorder)
limit in kinetic theory [15] under which the localization
cannot take place.
We assume that V (x) is an ergodic, mean-zero, statis-

tically homogeneous random field. As a consequence, V
admits the spectral representation V (x) =

∫
eix·pV̂ (dp),

where the spectral measure V̂ satisfies 〈V̂ (dp)V̂ (dq)〉=
δ(p+q)Φ(p)dpdq with Φ the power spectral density.
Since V is real-valued, Φ(p) is real-valued, non-negative
and possesses the symmetry Φ(p) =Φ(−p),∀p.

Physically speaking radiative transfer belongs to the
diffusive wave regime under the condition of a large dimen-
sionless conductance g≫ 1. Let A be the illuminated area,
λ the wavelength of radiation and L the distance of prop-
agation. Let Nf = λL/A be the inverse Fresnel number
and ℓ∗ the transport mean-free-path. The dimensionless
conductance can then be expressed simply as g= kℓ∗/Nf .
With the scaling (3), kℓ∗ ∼N−1f ∼ θ−1ε−1 and hence g∼
θ−2ε−2≫ 1 for θε≪ 1.
To adapt to the weak coupling and the geometrical

optics (see below) scalings we introduce the two parame-
ters ε, θ into the 2f-WD and redefine it as

W ε(x,p) =

1

(2π)3

∫
e−ip·yU1

(
x

k1
+
θεy

2k1

)
U∗2

(
x

k2
− θεy
2k2

)
dy (4)

In view of the definition, we see that both x and p
are dimensionless. The particular scaling factors are
introduced in (4) so that W ε satisfies the following
Wigner-Moyal equation exactly [14]:

p ·∇W ε = 1√
ε
LW ε, (5)

where the operator L is defined by

LW ε(x,p) = i

2θ

∫
V̂ (dq)ei

q·x
εk1W ε

(
x,p− θq

2k1

)

− i
2θ

∫
V̂ (dq)ei

q·x
εk2W ε

(
x,p+

θq

2k2

)
.

In contrast, the Sudarshan equations for the mutual
coherence function are first order in time but nonlocal in
space even in the case of free field [1].

High-frequency regime. – Before we consider the
radiative transfer limit ε ↓ 0, further let us take the
high-frequency limit θ ↓ 0 while maintaining the following
relationships:

limθ→0 k1 = limθ→0 k2 = k,

k2− k1
θεk

= β,
(6)

where β > 0 is independent of θ and ε, representing the
normalized difference in wave number. Frequencies within
the range described by (6) remain coherent with one
another.
In this regime, we see from (4) that to leading order

the center of two field points is x/k and the difference is
θε(y+βx)/k. Passing to the limit θ ↓ 0 in (5) we obtain
the first-order partial differential equation

p ·∇xW ε(x,p) =

− 1

2k
√
ε
(∇V )

( x
εk

)
· [∇p− iβx]W ε(x,p). (7)

For β = 0, eq. (7) is the static Liouville equation. For β > 0,
eq. (7) retains the wave character and is the focus of the

14005-p2



Space-frequency correlations

subsequent analysis. We shall refer to eq. (7) as the two-
frequency Liouville equation (2f-LE).
Consider, for instance, the WKB ansatz

Uj(r) =Aj(r) exp
( ikj
θε
Sj(r)

)
, j = 1, 2,

where the phase Sj and the amplitude Aj depend on the
frequency differentiably. In the first case, assume S1 =
S2 = S. Then in the high-frequency limit 2f-WD becomes

W ε(x,p) = eiβx·pe−iβkS(
x

k )|A|2
(x
k

)
δ
(
p−∇S

(x
k

))
(8)

which satisfies 2f-LE. In the second case, assume Sj(r) =

k̂j · r, |k̂j |= 1, with the additional conditions

lim
θ→0
k̂1 = lim

θ→0
k̂2 = k̂, (9)

k̂2− k̂1
θε

=∆k̂, (10)

where ∆k̂ is independent of θ, ε. Then the 2f-WD becomes

|A|2
(x
k

)
ei∆k̂·xδ(p− k̂), (11)

where β is absent due to the linear phase profile Sj .
Given, say, the Dirichlet boundary condition F imposed

on the boundary ∂D of a phase-space domain D, 2f-LE can
be solved by the method of characteristics as shown below.
The form of 2f-LE suggests the “gauge transformation” of
2f-WD

Wε(x,p) = e−iβx·pW ε(x,p) (12)

which then satisfies the following more convenient
equation:

p ·∇xWε+ iβ|p|2Wε =−
1

2k
√
ε
(∇V )

( x
εk

)
·∇pWε (13)

with the boundary condition that Wε(x,p) =
exp [−iβx ·p]F (x,p)≡ F(x,p) on ∂D. In view of (12)
Wε is the Fourier transform of the two-point function
U1⊗U∗2 in the location difference (i.e. y+βx measured
in the unit of the central wavelength).
Consider the Hamiltonian system of time-reversed char-

acteristic curves

d

dt
xε(t) =−pε(t), (14)

d

dt
pε(t) =− 1

2k
√
ε
(∇V )

(xε(t)
kε

)
(15)

with xε(0) = x,pε(0) = p. Let τε = τε(x,p) be the first
passage time when the trajectory (xε(·),pε(·)) hits the
boundary of the phase-space domain D. We then have

Wε(x,p) =

e−iβ
∫ τε

0
|pε(s)|2ds−iβxε(τε)·pε(τε)F (xε(τε),pε(τε)).

Convergence to diffusion in momentum. – If V
decorrelates sufficiently rapidly (see [16] for a precise
formulation), the probability distribution of (xε(·),pε(·))
defined by (14), (15), converges weakly, as ε→ 0, to that
of the Markov process (x(·),p(·)) where

x(t) = x−
∫ t

0

p(s)ds (16)

and p(·),p(0) = p, is a diffusion process generated by the
operator

A= 1
4k
∇p ·D ·∇p

with the (momentum) diffusion coefficient

D(p) = π

∫
Φ(q)δ(p ·q)q⊗qdq. (17)

Writing D as

D(p) = π

∫
Φ(q)δ(p ·q)Π(p)q⊗Π(p)qdq, (18)

where Π(p) is the orthogonal projection onto the hyper-
plane perpendicular to p we see that the momentum diffu-
sion process is concentrated on the sphere of radius |p|.
In other words, the limiting kinetic energy |p(t)|2/2 is
preserved by the elastic scattering process. This observa-
tion will be useful for the subsequent calculation. To be
consistent with the unity of the phase speed, we restrict p
to the unit sphere |p|= 1.
The consequence is the convergence of the ensemble

average 〈Wε(x,p)〉 to

W(x,p)≡Ex,p
{
e−iβ|p|

2τ−iβx(τ)·p(τ)F (x(τ),p(τ))
}
, (19)

where τ = τ(x,p) is the first passage time of the Markov
process (x(t),p(t)) with x(0) = x,p(0) = p and Ex,p the
corresponding average.
Now let W (x,p) be the solution of the following

boundary value problem:

p ·∇xW =
1

4k
(∇p− iβx) ·D · (∇p− iβx)W (20)

with W = F on ∂D and we will show that the solution
of 2f-RT is the pointwise limit of the average 2f-WD.
Equation (20) is our two-frequency radiative transfer
(2f-RT) equation. Because we have considered the high-
frequency asymptotics the scattering term takes the form
of a second-order differential operator rather than the
more familiar integral operator.
Let p(t) be the diffusion process generated by the

generator A and define

W̃ (t,x,p) = exp [−iβt|p|2− iβx ·p]W (x,p). (21)

By Dynkin’s formula [17] we have that

Ex,p

{
W̃ (τ,x(τ),p(τ))

}
= W̃ (0,x,p)

+ Ex,p

{∫ τ

0

[
∂

∂s
−p ·∇x+A

]
W̃ (s,x(s),p(s))ds

}
.
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From (20), (21) it follows that

[
∂

∂t
−p ·∇x+A

]
W̃ = 0

and

W(x,p) =Ex,p

{
W̃ (τ,x(τ),p(τ))

}
= e−iβx·pW (x,p).

(22)

Therefore, in view of (12), W (x,p) is the pointwise limit
of 〈W ε(x,p)〉. It is straightforward to check thatW is the
solution to the equation

p ·∇xW+ iβ|p|2W=AW. (23)

From (19) and (22) we obtain the probabilistic repre-
sentation for W

W (x,p) =Ex,p

{
e−iβ

∫ τ
0
x(s)dp(s)F (x(τ),p(τ))

}
, (24)

see ref. [17]. Expression (24) suggests a numerical solution
procedure for 2f-RT by Monte Carlo simulation.

Isotropic medium. – Equation (23) clearly is trans-
lationally invariant in x due to the stationarity of the
medium. If the medium is also statistically isotropic, then
eq. (23) is rotationally invariant. To see this let us consider
an isotropic spectral density Φ(p) =Φ(|p|). Then we have
D=C|p|−1Π(p), where

C =
π

3

∫
δ

(
p

|p| ·
q

|q|

)
Φ(|q|)|q|dq (25)

is a constant. The coefficient C (andD) has the dimension
of inverse length while the variables x and p are dimen-
sionless.
The resulting A is invariant with respect to rotation

in p. Hence if W(x,p) is a solution to (23) then
W(Rx, Rp) is also a solution where R is any orthogonal
matrix.

Spatial (frequency) spread and coherence band-
width. – Through dimensional analysis, eq. (20) yields
qualitative information about important physical parame-
ters of the disordered medium. For this, let us assume for
simplicity the isotropy of the medium as above.
Now consider the following change of variables:

x= σxkx̃, p= σpp̃/k, β = βcβ̃, (26)

where σx and σp are, respectively, the position spread
and the spatial frequency spread, and βc is the coherence
bandwidth, also known as the Thouless frequency. Let us
substitute (26) into eq. (20) and aim for the normalized
form

p̃ ·∇x̃W =
(
∇p̃− iβ̃x̃

)
· Π(p̃)|p̃|

(
∇p̃− iβ̃x̃

)
W. (27)

The 1st term on the left side yields the first duality relation
σx/σp ∼ 1/k2. The balance of the terms in each pair of
the parentheses yields the second duality relation σxσp ∼
1/βc whose left-hand side is the space-spread-bandwidth
product. Finally, the removal of the constant C determines
σp from which σx and βc can be determined by using the
duality relations. We obtain

σp ∼ k2/3C1/3, σx ∼ k−4/3C1/3, βc ∼ k2/3C−2/3.
(28)

Spatially anisotropic media. – Forward-scattering
approximation, also called paraxial approximation, is valid
when back-scattering is negligible and, as we show below,
this is the case for spatially anisotropic media fluctuating
slowly in the (longitudinal) direction of propagation.
Let z denote the longitudinal coordinate and x⊥ the

transverse coordinates. Let p and p⊥ denote the longitu-
dinal and transverse components of p∈R3, respectively.
Let q= (q,q⊥)∈R3 be likewise defined. Consider now
a highly anisotropic spectral density for a medium fluc-
tuating much more slowly in the longitudinal direction,
i.e. replacing Φ

(
q
)
in (17) by η−1Φ

(
η−1q,q⊥

)
, η≪ 1,

which, in the limit η→ 0, tends to

δ(q)

∫
dwΦ(w,q⊥) . (29)

We then obtain the transverse diffusion coefficient

D⊥(p⊥) = π

∫
dq⊥

∫
dwΦ(w,q⊥)δ(p⊥ ·q⊥)q⊥⊗q⊥,

whereas the longitudinal diffusion coefficient now vanishes.
In other words, the longitudinal momentum is decoupled
from the transverse momentum and is not directly affected
by the multiple scattering process.
For simplicity we assume the transverse isotropy, i.e.

Φ(w,p⊥) =Φ(w, |p⊥|), so that D⊥ =C⊥|p⊥|−1Π⊥(p⊥),
where

C⊥ =
π

2

∫
δ

(
p⊥
|p⊥|

· q⊥|q⊥|

)
Φ(w, |q⊥|)|q⊥|dwdq⊥

is a constant and Π⊥(p⊥) is the orthogonal projection
onto the line perpendicular to p⊥. Hence eq. (20)
reduces to

[p∂z +p⊥ ·∇x⊥ ]W̄ =
C⊥
4k
(∇p⊥ − iβx⊥) ·

Π⊥(p⊥)

|p⊥|
(∇p⊥ − iβx⊥) W̄ . (30)

Note that the longitudinal momentum p plays the role of
a parameter in eq. (30) which then can be solved in the
direction of increasing z as an evolution equation with
initial data given at a fixed z.
As before we can obtain the scaling behaviors of spatial

spread, coherence length and coherence bandwidth by
dimensional analysis. Let σ∗ be the spatial spread in the
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transverse coordinates x⊥, ℓc the coherence length in the
transverse dimensions, βc the coherence bandwidth and L
the distance of propagation. We then seek the following
change of variables:

x̃⊥ =
x⊥
σ∗k
, p̃⊥ = p⊥kℓc, z̃ =

z

Lk
, β̃ =

β

βc
(31)

to remove all the physical parameters from (30).
Following the same line of reasoning, we obtain that

ℓcσ∗ ∼L/k, σ∗/ℓc ∼ 1/βc, ℓc ∼C−1/3⊥ L−1/3k−1 and hence

σ∗ ∼C1/3⊥ L4/3, βc ∼C
−2/3
⊥ L−5/3k−1.

Small-scale asymptotic. – On the scale below the
transport mean-free-path ℓ∗ the scattering is extremely
anisotropic and the scattering amplitude is highly peaked
in the forward direction. This observation leads to a
paraxial approximation of 2f-RT which turns out to be
analytically solvable.
Let z be the direction of propagation of a collimated

beam. On the scale below ℓ∗ the 2f-WD near the source
point would be highly concentrated at the longitudinal
momentum, say, p= 1. Hence we may assume that the
projection Π(p) in (18) is effectively just the projection
onto the transverse plane coordinated by x⊥ and we can
approximate eq. (20) by

[∂z +p⊥ ·∇x⊥ ]W =
C⊥
4k
(∇p⊥ − iβx⊥)

2
W, (32)

where

C⊥ =
π

2

∫
Φ(0,q⊥)|q⊥|2dq⊥.

Equation (32) is another form of paraxial approximation
for which only the one-sided (incoming) boundary condi-
tion (at z = const) is needed.

We use the change of variables (31) with L= ℓ∗
and obtain ℓc ∼ k−1ℓ−1/2∗ C

−1/2
⊥ , σ∗ ∼ ℓ3/2∗ C1/2⊥ , βc ∼

k−1C−1⊥ ℓ
−2
∗ from eq. (32). The transport mean-free-path

ℓ∗ can be determined by setting ℓc ∼ 1, i.e. ℓ∗ ∼ k−2C−1⊥ .
Performing the inverse Fourier transform in p̃ on the
rescaled equation we obtain

∂z̃Γ− i∇ỹ⊥ ·∇x̃⊥Γ=−
∣∣ỹ⊥+ β̃x̃⊥

∣∣2Γ, (33)

which is the governing equation for the two-frequency
coherence Γ. By a simple change of coordinates, eq. (33)
can be converted into a form similar to the time-dependent
Schrödinger equation with a (purely imaginary) quadratic
potential and then solved analytically. Let ∆r= y⊥+ β̃x⊥
and ∆r′ = y′⊥+ β̃x

′
⊥ be the field point offset and the

source point offset, respectively, measured in the unit of
central wavelength. The propagator for the initial value
problem from the source point (x̃⊥,∆r) to the field point

Fig. 1: The absolute value of (34) as a function of z̃ ∈ [0.5, 1] for
∆r=∆r′ = 1, β̃ = 0.3, 1, 3.3 in solid, dashed and dotted lines,
respectively.

(x′⊥,∆r
′) is given by [14]

(i4β̃)1/2

(2π)2z̃ sinh
[
(i4β̃)1/2z̃

]e
1

i4β̃z̃
|∆r−2β̃x̃⊥−∆r′+2β̃x′⊥|2

× e
−
coth [(i4β̃)1/2z̃]

(i4β̃)1/2

∣

∣

∣

∣

∣

∆r− ∆r′

cosh [(i4β̃)1/2z̃]

∣

∣

∣

∣

∣

2

× e−
tanh [(i4β̃)1/2z̃]

(i4β̃)1/2
|∆r′|2

(34)

which converges, in the limit β̃ ↓ 0, to the propagator for
β̃ = 0

(2πz̃)−2e
i
z̃ (x̃⊥−x

′
⊥)·(∆r−∆r′)e−

z̃
3 (|∆r|

2+∆r·∆r′+|∆r′|2).
(35)

The quadratic-in-∆r nature of the exponents appearing
in (34)-(35) is the consequence of the paraxial approxima-
tion. Expression (35) is related to the asymptotic solution
of the Schwarzschild-Milne equation in the case of very
anisotropic scattering [18].

In view of (9)-(11), to get the correlation of two incident
plane waves we simply express (34) in the variables x̃⊥,x′⊥
and ỹ⊥,y′⊥ and integrate it with e

i∆k̂·x′⊥eik̂·y
′
⊥ .

The functional form of (34) in its dependence on β̃ and
z̃ is the main characteristic of the sub-ℓ∗-scale behavior
(see fig. 1).

Conclusion and discussion. – The main contribution
of the present letter is the rigorous derivation of the 2f-RT
equation (20) governing 2f-WD in disordered media and
the probabilistic representation (24). As a result, by (2)
we can express the two-space-time correlation as

〈u(t1,x1)u∗(t2,x2)〉 ∼
∫

|p|=1
eip·(y+βx)eik(t2−t1)/(εθ)

×eikβ(t1+t2)/2W(x,p)dkdβdΩ(p)

with x= k(x1+x2)/2, y= k(x1−x2)/(θε) where W
is the solution to eq. (23). The medium characteristic
enters the Fokker-Planck–like equation (20) only through
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the momentum diffusion coefficient (17). By dimensional
analysis with (20) and its variants we obtain the scal-
ing behavior of spatial spread, coherence length and
coherence bandwidth for isotropic and anisotropic media.
We also show that the paraxial regime is valid for
anisotropic scattering, giving rise to two forms of paraxial
2f-RT equations. Finally, by solving one of the paraxial
equation (32) we obtain the precise profile of the space-
frequency correlation on the scale below the transport
mean-free-path.
Let us compare our results, especially (34), with the

existing results in the literature which mostly concern with
the bulk behavior of the space-frequency correlations.
Since the bulk behavior concerns the scales larger

than the transport mean-free-path the existing results
are mostly based on the diffusion approximation to the
displacement process x(t) or the random-matrix method
(see, e.g., [4,19] and references therein). The diffusion
regime represents an isotropic scattering under the
condition of equipartition of energy while the small-scale
asymptotic (34) describes an extremely anisotropic
scattering.
Clearly, the diffusion approximation is unsuitable for

evaluating (24) because of the presence of the integral with
respect to the momentum process p(t). Therefore to get
the two-frequency coherence, the notion of the interference
of diffusions is invoked via diagrammatic techniques, see
the review [4].
In the diffusion approximation for isotropic media, the

(dimentionless) x-diffusion coefficient D∗ can be derived
from (20) with β = 0

D∗ =
4k|p|5
3C

. (36)

With (36) and (28) we can rewrite the scaling behaviors
of the spatial spread, the spatial frequency spread and

the coherence bandwidth as σx ∼ k−1D−1/3∗ , σp ∼ kD−1/3∗ ,

βc ∼D2/3∗ .
The short-range correlation C1 of wave intensities

propagating through disordered media is manifest in the
speckle pattern. C1 can be obtained by squaring the
two-frequency coherence of the wave fields [20] and

the commonly accepted form is exp [−2
√
2β̃] which

is just the large β̃ asymptotic of the squared factor
| sinh [(i4β̃)1/2z̃]|−2 at z̃ = 1 (see, e.g., [21–23]).
More precisely, the squared absolute value of (34) for
z̃ = 1 and median to large β̃ is approximately given by

4β̃

(2π)4
e−2
√
2β̃e

− |∆r|
2√

2β̃ e
−|∆r

′|2√
2β̃ . (37)

Expression (37) is essentially the same as the paraxial
approximation of the short-range correlation C1 reviewed
in [4]. The multiplicative nature of (37)’s functional
form in ∆r and ∆r′ is consistent with the same

structure in the short-range intensity correlation
C1 =A(∆k)F (∆r)F (∆r

′) discovered in [24]. Again,
the Gaussian form in (37) is different from the form
factor F in [24] due to the paraxial approximation made
in obtaining (37).
The long- and infinite-range correlations, represented

by C2 and C3 respectively, can also be obtained by our
method [4,24–27]. The calculation is much more involved
and will be presented elsewhere.
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Sáenz J. J., Phys. Rev. E, 75 (2007) 031113.
[20] Pnini R. and Shapiro B., Phys. Rev. B, 39 (1989)

6986.
[21] Shapiro B., Phys. Rev. Lett., 57 (1986) 2168.
[22] Feng S., Kane C., Lee P. A. and Stone A. D., Phys.

Rev. Lett., 61 (1988) 834.
[23] Genack A. Z., Phys. Rev. Lett., 58 (1987) 2043.
[24] Sebbah P., Hu P. B., Genack A. Z., Pnini R. and

Shapiro B., Phys. Rev. Lett., 88 (2002) 123901.
[25] Shapiro B., Phys. Rev. Lett., 83 (1999) 4733.
[26] Skipetrov S. E. and Maynard R., Phys. Rev. B, 62

(2000) 886.
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