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Abstract
This paper presents an analysis of stability and resolution analysis of broadband
(passive or active) array imaging in the Rician fading media. The main
theoretical result is the stability condition KBN � M where K is the Rician
factor, B is the effective number of incoherent frequencies, N is the effective
number of array elements and M is the number of sufficiently separated targets.
The resolution performance of various imaging functionals is analyzed for
the parabolic Markovian model. The imaging method is tested numerically
with randomly distributed discrete scatterers. The numerical result with the
Foldy–Lax formulation can be matched to the prediction based on the effective
medium theory.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Imaging of obscured targets in random media is a difficult and important problem. One of
the central questions is that of stability which is particularly relevant to imaging in stochastic
media (see figure 1).

Stability of imaging performance can in principle be improved by increasing the bandwidth
of the probing signals and the number of antennas. If the number of targets is one, then counting
the degrees of freedom yields the stability condition B � 1 or N � 1 where B is the number of
independent frequencies and N is the number of independent antennas [2, 3]. In the presence of
M targets sufficiently separated in free space, it was shown in [17] that the target locations can
be estimated from the one-frequency response matrix when N � M and multiple scattering
among the targets is negligible (see also [6]). A main goal of the paper is to develop a more
general criterion for multiple-frequency array imaging of multiple targets in stochastic media.

An important feature of the cluttered medium considered here is that the mean or coherent
signals do not vanish. Such is the case for what is called in the wireless literature Rician fading
channel (medium) where in addition to incoherent signals there is a significant, coherent
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Figure 1. Imaging multiple targets, represented by rectangles, in random media.

component [18]. Typically a Rician channel arises when there is a line of sight between the
antennas and the targets. We analyze both passive and active array imaging. In the active
case, we focus on the technique of differential response which is usually used to detect the
changes in the media. With proper choices of filters we show that for a Rician fading channel
a sufficient condition for imaging stability is KBN � M where the Rician factor K is the
ratio of signal power in coherent component over the fluctuating power. Under this condition
the signal-to-interference ratio (SIR) of the imaging functionals tends to infinity.

The mean-zero case of the Rayleigh fading channels occurs in the diffuse regime which
is beyond the scope of the present work. However, it is noteworthy that the above stability
condition resembles the stability condition for time reversal communications through the
Rayleigh fading channels analyzed in [10, 11].

Resolution analysis for the exactly solvable parabolic Markovian model suggests the
mean-phase-matched filter which uses only the phase information of the mean transfer
function. We test the full imaging process for a discrete model of randomly distributed point
scatterers. The imaging result is consistent with the predicted statistical stability. Furthermore,
the simulated resolutions can be closely matched to the theoretical resolutions based on the
effective medium theory.

The paper is organized as follows. In section 2 we define the notation and the setup
of imaging with multiple frequencies and antenna elements, including the passive and active
arrays. In section 3 we sketch the argument for the generalized stability condition. As it turns
out, the question of stability cannot be separated from that of resolution. Hence in section 4
and appendix A we compare the resolution performances of various commonly used filters for
the parabolic Markovian model. This model is analytically most tractable and yields results
that may be a guide to more complicated models. In section 5, we discuss the discrete model of
randomly distributed point scatterers for which we numerically test the full imaging method.
We conclude in section 6.

2. Multi-frequency array imaging

Let H(x, y;ω) be the transfer function (a.k.a. propagator) of the medium at the frequency
ω from point y to x. Denote Hmn(ω) = H(xm, yn;ω). Let H(ω) = [Hmn(ω)] be the
transfer matrix between the antenna located at yn and the target located at xm. The reciprocity
implies that H(yn, xm;ω) = Hmn(ω). Therefore H(ω) is a symmetric matrix and the relation
H∗(ω) = H(−ω) holds where * stands for complex conjugation.

We decompose the random transfer function into the mean H̄ and the fluctuation
h, Eh = 0, as H(x, y;ω) = H̄ (x, y;ω)+h(x, y;ω). The mean and fluctuation are also known
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as coherent and diffuse fields, respectively. We write H̄(ω) = [H̄ nm(ω)] and h(ω) = [hmn(ω)]
with hnm(ω) = h(xm, yn;ω).

Our main assumptions are (i) hij ,∀ i, j , are circularly Gaussian random variables with
zero mean; (ii) the separations of the frequencies ωl, l = 1, 2, . . . , B used for imaging are
larger than the coherence bandwidth βc of the cluttered medium; (iii) the spacings of the
antennas are wider than the coherence length �c of the cluttered medium. As a result of these
assumptions we have

E{hij (ωk)h
∗
mn(ωl)} ≈ η2δimδjnδk,l, E{hij (ωk)hmn(ωl)} ≈ 0, ∀ i, j,m, n, k, l,

(1)

where η2 is the intensity of fluctuations. This is of course an idealized condition designed
to simplify the presentation (see section 4 and [11] for the discussion of the validity of this
approximation).

Let µ be the typical magnitude of the mean transfer function and let K be the Rician factor
defined as

K = µ2

η2
.

Let u(x) be the imaging wave field (to be specified later) which is supposed to exhibit the
location and the resolution of the hidden targets. We would like to derive the conditions under
which the normalized variance of the imaging wave field u

R(x) ≡ |Eu(x)|2
E(|u|2(x)) − |E(u(x))|2

tends to infinity at least in the neighborhood of the targets. This is the stability result alluded to
earlier. R(x) can be viewed as the signal-to-interference ratio (SIR) of the imaging functional
at the location x.

To make explicit the imaging field u(x) we divide the discussion into two cases: passive
array and active array. We assume that the multiple targets are point scatterers themselves and
the interactions among them are negligible (e.g., when they are far apart or their scattering
strength is weak compared to the clutter).

2.1. Passive array

First, we consider the case of a passive array in which the targets are sources of multi-
frequency signals. The signals are sampled by the antenna array and time reversed (or phase
conjugated). The imaging method consists of back-propagating the resulting signals in the
computation domain by using an imaging filter P(ω) which is to be specified later. Let τi be
the strength of the source i = 1, . . . , M which is a function of the frequency, i.e. τi = τi(ω).
The resulting wave field is given by

u(x) =
B∑

l=1

N∑
j=1

M∑
i=1

τi(ωl)P (x, yj ;ωl)Hij (ωl)

from which imaging functions can be formed. We write P(ω) = [Pij (ω)] with Pij (ω) =
P(xi , yj ;ω). For simplicity we assume identical sources, i.e. τi(ω) = τ(ω),∀ i.

2.2. Active array

In the case of an active array, we consider the method of the differential response. In this
approach, probing signals of various frequencies are first used to survey the random media
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in the absence of targets. Then in the presence of targets (with unknown locations) the same
set of probing signals is used again to survey the media which are assumed to be fixed. The
difference between these two responses is called the differential response which is then used
to image the targets. The advantage with differential response is that the medium uncertainty
is reduced by subtracting the clutter response (without the targets) as we are only interested in
the change (i.e., the inclusion of the targets) in the cluttered medium.

Let τi be the scattering strength (reflectivity) of the ith target, i = 1, . . . ,M . In general, τi

is a function of the frequency τi = τi(ω), see (23) below. We shall assume weakly scattering
targets so that the multiple scattering between the targets and the clutter is negligible and
the only multiple scattering effect is in the clutter. In this approximation, the differential
responses are given by

∑M
i=1 τi(ωl)Hij (ωl)Hin(ωl), j = 1, . . . , N, l = 1, . . . , B where the

index n = 1, . . . , N indicates the array elements emitting the probing signals. The imaging
field in this case is given by

u(x) =
B∑

l=1

M∑
i=1

N∑
j,n=1

τi(ωl)P (x, yj ;ωl)Hij (ωl)Hin(ωl)P (yn, x;ωl).

For simplicity, we assume identical targets, i.e. τi(ω) = τ(ω),∀ i.

3. Stability condition: proof of concept

In this section we derive for the Rician channels the stability condition KBN � M . Under
this stability condition the imaging field u(x) is approximately equal to its mean Eu(x).

3.1. Passive array

Let us calculate the mean. We have

Eu(x) =
M∑
i=1

B∑
l=1

N∑
j=1

τ(ωl)P (x, yj ;ωl)H̄ ij (ωl) = O(µBN). (2)

The apparent missing factor M in the above estimate is due to the choice of a suitable filter for
the purpose of resolution enhancement. Ideally, in the case of point targets, we would like to
have Eu(x) as a sum of delta-like functions centered at the M sufficiently separated targets. As
a consequence of the sharp localization of the delta-like functions, there are effectively only
O(1) terms in the summation over i independent of M. On the other hand, as we will see in
(3), the fluctuations increase with M. In other words, for large M � 1, the resolution comes
at the price of statistical stability.

Next, we calculate the variance of u. We have

E|u(x)|2 = E




B∑
l=1

N∑
j=1

M∑
i=1

τ(ωl)P (x, yj ;ωl)Hij (ωl)

×
B∑

l′=1

N∑
j ′=1

M∑
i ′=1

τ ∗(ωl′)P
∗(x, yj ′ ;ωl′)H

∗
i ′j ′(ωl′)




=
B∑

l,l′=1

M∑
i,i ′=1

N∑
j,j ′=1

τ(ωl)τ
∗(ωl′)P (x, yj ;ωl)H̄ ij (ωl)P

∗(x, yj ′ ;ωl′)H̄
∗
i ′j ′(ωl′)
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+
B∑

l=1

N∑
j=1

M∑
i=1

|τ(ωl)|2 E{P(x, yj ;ωl)hij (ωl)P
∗(x, yj ;ωl)h

∗
ij (ωl)}

≈ |Eu(x)|2 + η2M

B∑
l=1

N∑
j=1

|τ(ωl)|2|P(x, yj ;ωl)|2(ωl)

= |Eu(x)|2 + O(η2BMN). (3)

It follows from (2) and (3) that R → ∞ as KBN � M .

3.2. Active array

The expectation of u is then given by

Eu(x) =
B∑

l=1

M∑
i=1

N∑
j,n=1

τ(ωl)P (x, yj ;ωl)(H̄ ij H̄ in(ωl) + E[hijhin(ωl)])P (yn, x;ωl)

≈
B∑

l=1

M∑
i=1

N∑
j,n=1

τ(ωl)P (x, yj ;ωl)H̄ ij H̄ in(ωl)P (yn, x;ωl)

= O(µ2BN2). (4)

Again, the apparent missing factor M in the above estimate is due to the choice of suitable
filter P to achieve resolution so that we can only expect O(1) terms in the above summation
over i.

Note that here the expression for u contains a product of H, in contrast to the passive case.
As a result, the expectation of u involves the second order moments of h and the variance of u
involves the fourth order moments of h. In calculation of the fourth order moments we shall
adopt the rule of Gaussian statistics. The fourth order Gaussian model is widely used and
includes the Rician and Rayleigh fading channels in wireless modeling [8, 18].

Using the Gaussian rule for the fourth order moments we obtain

E|u(x)|2 ≈
∣∣∣∣∣∣

B∑
l=1

M∑
i=1

N∑
j,n=1

τ(ωl)P (x, yj ;ωl)H̄ ij H̄ in(ωl)P (yn, x;ωl)

∣∣∣∣∣∣
2

+ E




∣∣∣∣∣∣
B∑

l=1

M∑
i=1

N∑
j,n=1

τ(ωl)P (x, yj ;ωl)(H̄ ijhin(ωl) + hij H̄ in(ωl))P (yn, x;ωl)

∣∣∣∣∣∣
2



+ E




∣∣∣∣∣∣
B∑

l=1

M∑
i=1

N∑
j,n=1

τ(ωl)P (x, yj ;ωl)hijhin(ωl)P (yn, x;ωl)

∣∣∣∣∣∣
2



which becomes after applying (1)

E|u(x)|2 ≈ |Eu(x)|2 + 2η2
B∑

l=1

M∑
i=1

N∑
j,n,n′=1

|τ(ωl)|2|P(x, yj ;ωl)|2

× H̄ inP (yn, x;ωl)H̄
∗
in′P

∗(yn′ , x;ωl)

+ 2η2
B∑

l=1

M∑
i=1

N∑
j,n,n′=1

|τ(ωl)|2P(x, yj ;ωl)H̄ ij (ωl)
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×P(yn, x;ωl)P
∗(x, yn;ωl)H̄

∗
in′(ωl)P

∗(yn′ , x;ωl)

+ η4M

B∑
l=1

N∑
j,n=1

|τ(ωl)|2(|P(x, yj ;ωl)|2|P(yn, x;ωl)|2

+ P(x, yj ;ωl)P
∗(yj , x;ωl)P

∗(x, yn;ωl)P (yn, x;ωl)).

Note that the last term in (5) is O(η4BMN2). Hence

E|u(x)|2 ≈ |Eu(x)|2 + O(η2µ2BMN3 + η4BMN2). (5)

Therefore, for an active array and in the regime that KN is bounded away from zero we have
R → ∞ when KBN � M .

An useful result here for the subsequent analysis is (2), for the passive imaging, and
(4), for the active imaging, which are the theoretical foundation of resolution of our imaging
process.

4. Parabolic Markovian model

The principal ingredients of the clutter model in our approach are the coherence bandwidth βc

and length �c. Here we describe the parabolic Markovian model for which the coherent field,
βc and �c, can be estimated or numerically computed.

This model is for a random continuum widely used for light propagation in the atmospheric
turbulence where the refractive index n is a continuously varying random function in space
[14]. In the long-distance propagation regime, the index fluctuation ñ can be treated as a
white-noise process in the propagation direction

E(ñ(z, x⊥)ñ(z′, y⊥)) = δ(z − z′)C(z, x⊥, y⊥),

where z ∈ R and x⊥ ∈ R
d−1, d = 2, 3, are the longitudinal and transverse coordinates,

respectively, of the cluttered medium, and C is the correlation function. We shall write
ñ(z, x⊥) = dVz(x⊥) where Vz is a Wiener process in a suitable function space.

In the parabolic approximation the beam wave modulation �(z, x⊥) with the carrier
wavenumber k̄ is described by the following stochastic Schrödinger–Itô equation [14]:

dz�(z, x⊥) = i

2k̄
�⊥�(z, x⊥) dz − k̄2

2
C(z, x⊥, x⊥)�(z, x⊥) dz + ik̄�(z, x⊥) dVz(x⊥). (6)

Note that here k̄ is the effective wavenumber which is the effective index of refraction n̄

(usually larger than 1) times the free-space wavenumber k. In what follows we adopt the
space-time units so that the effective wave speed is unity and thus the effective wavenumber
k̄ equals the free-space frequency ω. It is clear from (6) that the mean propagator H̄ is eiωz

times the Green function of the operator
∂

∂z
− i

2ω
�⊥ + ω2C(z, x⊥, x⊥)/2. (7)

With the knowledge of C (from channel estimation) the mean propagator can be easily solved by
numerical methods. To simplify the discussion and presentation let us make the assumption of
statistical homogeneity of ñ such that C(z, x⊥, y⊥) = C(x⊥ −y⊥). Then the mean propagator
is given explicitly by

H̄ (z, x⊥, y⊥;ω) = ωd/2

(2π iz)d/2
e−ω2C(0)z/2 e−iωz ei ω|x⊥−y⊥|2

2z . (8)

The coherence length �c and bandwidth βc can be determined from the field-to-field
correlations. Let 
 be the two-frequency covariance function



(
z, x⊥

1 , x⊥
2 ;ω1, ω2

) = E
[
�

(
z, x⊥

1 ;ω1
)
�∗(z, x⊥

2 ;ω2
)] − E�

(
z, x⊥

1 ;ω1
)
E�∗(z, x⊥

2 ;ω2
)
,



Multi-frequency imaging of multiple targets in Rician fading channels 1807

which satisfies the equation [14]

∂

∂z

 = ı

(
1

2ω1
�⊥

1 − 1

2ω2
�⊥

2

)

 − |ω1 − ω2|2

2
C(0)
 − ω1ω2D

(
x⊥

2 − x⊥
1

)



+ ω1ω2C
(
x⊥

1 − x⊥
2

)
E�

(
z, x⊥

1 ;ω1
)
E�∗(z, x⊥

2 ;ω2
)
, (9)

where D(x⊥) = C(0) − C(x⊥) � 0 is the structure function of the media. The covariance
function is also known as the incoherent part of the mutual coherence function while
E�

(
z, x⊥

1 ;ω1
)
E�∗(z, x⊥

2 ;ω2
)

is the coherent part of the mutual coherence function [14].
Clearly from equation (9) it follows that as ω′ = ω1 −ω2 increases 
 decays at least as fast

as exp(−|ω′|2C(0)z/2) which would yield the upper bound βc � (C(0)z)−1/2. For the weak
fluctuation concerning us here, the equation can be solved approximately by the Rytov method
[14]. In the high-frequency, strong-fluctuation regime the sharp estimate βc ∼ |D′′(0)|−1z−2

can be obtained where D′′ is the second derivative of D in the isotropic case [9, 11]. Likewise,
�c can be determined from equation (9) with ω1 = ω2 = ω. This yields for the point source
located at y = 0 the following estimate [12]



(
z, x⊥

1 , x⊥
2 ;ω,ω

) ≈ H̄
(
z, x⊥

1 , 0;ω
)
H̄ ∗(z, x⊥

2 , 0;ω
)

×
[

exp

(
−ω2z

∫ 1

0
C

((
x⊥

2 − x⊥
1

)
s
)

ds

)
− 1

]

≈ H̄
(
z, x⊥

1 , 0;ω
)
H̄ ∗(z, x⊥

2 , 0;ω
)

×
[

exp

(
−ω2z

(
1 − 1

6
D′′(0)

∣∣x⊥
2 − x⊥

1

∣∣2
))

− 1

]
.

It follows that

�c ∼ 1

ω
√

D′′(0)z
.

We emphasize here that �c and βc can be determined from statistical quantities such as
C(0) and D′′(0) which can be reasonably measured.

Let us now consider four different filters and study the respective mean imaging field
Eu(x) in the passive mode:

(i) the mean-matched filter,

P(z, x⊥, y⊥;ωl) = ω
d/2
l

(2π iz)d/2
e−ω2

l C(0)z/2 eiωlz e−i ωl |x⊥−y⊥|2
2z , l = 1, . . . , B, (10)

(ii) the mean-phase-matched filter,

P(z, x⊥, y⊥;ωl) = eiωlz e−i ωl |x⊥−y⊥|2
2z , l = 1, . . . , B, (11)

(iii) the free-space parabolic propagator,

P(z, x⊥, y⊥;ωl) = ω
d/2
l

(2π iz)d/2
eiωlz e−i ωl |x⊥−y⊥|2

2z , l = 1, . . . , B, (12)

(iv) the mean inverse filter,

P(z, x⊥, y⊥;ωl) = ω
d/2
l

(2π iz)d/2
eω2

l C(0)z/2 eiωlz e−i ωl |x⊥−y⊥|2
2z , l = 1, . . . , B. (13)
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Figure 2. Longitudinal (left column) and transverse (right column) resolution of the parabolic
Markovian model with the matched and phase-matched filters with various extinction coefficients.
The blue (full), red (dashed), green (dotted) and black (chain) curves represent, respectively,
C(0) = 0.16, 0.08, 0.04, 0.02. The horizontal axis denotes the antenna spacing with five antennas.
The resolution is defined as the distance from the target where the value |Eu| has dropped to the
half of its target value.

All the above filters have the same phase function with the only differences being the range-
dependent factor and the frequency-weight function. Approximate calculations with these
filters are given in the appendix. As we see there, all four filters result in the order of
magnitude as given in (2). The transverse resolutions of all of the first three filters have the
same scaling behavior

√
C(0)z3

1 where z1 is the range. In contrast, the mean inverse filter
has a transverse resolution which is independent of C(0) but inversely depends on the total
bandwidth Bβc.

To compare them numerically (see figures 2 and 3), we use a linear array of five equally
spaced antennas, lying on the plane z = −5000, and 20 equally spaced wavelengths (to avoid
aliasing) in the range from 52 to 90. The center of the array is located at [2500, 0, −5000]
while the target is located at [4000, 0, 3000]. The resolution figure in figures 2–4 and 9 is
defined as the distance from the target where the value |Eu| has dropped to half of its target
value.

In summary, in the ideal case where the noise and uncertainty are absent, the mean
inverse filter has the best resolution performance which is independent of C(0). But the mean
inverse filter is not practical as it requires the accurate form of the mean transfer function (the
frequency dependence of amplitude attenuation, in particular). Hence the uncertainty in the
model and environment tends to spoil the performance due to the exponential growth factor
in (13).

Both the mean-phase-matched filter and the (phase-matched) free-space propagator have
similar resolution performance, require only the phase information of the mean transfer
function and thus appear to be practical choices for imaging. However, the proximity of
their resolutions is due to the parabolic nature of the cluttered medium and the scale of the
plots. As demonstrated for the discrete model below, without the parabolic approximation



Multi-frequency imaging of multiple targets in Rician fading channels 1809

100 200 300 400 500 600
0

100

200

300

400

500
Free–space propagator

100 200 300 400 500 600
0

500

1000

100 200 300 400 500 600
0

100

200

300

400
The mean inverse filter

100 200 300 400 500 600
0

500

1000

Figure 3. Longitudinal (left column) and transverse (right column) resolution of the parabolic
Markovian model with the phase-matched free-space propagator and inverse filter and various
extinction coefficients. The blue (full), red (dashed), green (dotted) and black (chain) curves
represent, respectively, C(0) = 0.16, 0.08, 0.04, 0.02. The horizontal axis denotes the antenna
spacing with five antennas.
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Figure 4. Longitudinal (left) and transverse (right) resolution with the free-space propagator as
filter (blue full curve) and the mean-phase-matched filter (red dashed curve). The effective medium
is defined by (20) with � = 5 × 10−5λ4. The horizontal axis is the antenna spacing.

the resolution with the mean-phase-matched filter is slightly, but consistently, superior to that
with the free-space propagator, see figure 4.

First let us digress to describe the mean transfer function of a random discrete model
which will be used for the full imaging simulation.
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5. Discrete model of randomly distributed point scatterers

We turn our attention to the discrete model for the following reasons: (i) the point scatterers are
the simplest object to analyze the scattering of the spherical wave; (ii) second, application of
point scatterers considerably simplifies multiple-scattering calculations needed, for instance,
for understanding the optical properties of dense cold gases and optical lattices [7]; (iii) in the
Inverse Synthetic Aperture Radar (ISAR) imaging, a point scatterer mechanism is frequently
invoked, implicitly or explicitly.

For simplicity we will follow Twersky’s theory as presented in [14] which is an effective
medium theory. Unlike the parabolic Markovian model of the previous section, it is not
mathematically rigorous.

Consider a plane wave incident on a single scatterer and let f (ô, î;ω) be the scattering
amplitude of the resulting scattered spherical wave with the incoming direction î and outgoing
direction ô. In Twersky’s theory the assumption of independent scattering is made and the
Dyson equation for the coherent field reduces to the Foldy–Twersky integral equation

H̄ (x, ym;ω) = G0(x, ym;ω) +
∫

f (ô, î;ω)G0(x, y;ω)H̄ (y, ym;ω)ρ(y) dy,

where G0 is the free-space propagator and ρ is the number density of scatterers. The modulus
square of the scattering amplitude is the differential scattering cross section such that the
scattering cross section σs is given by

σs =
∫

|f (ô, î;ω)|2 d�(ô). (14)

The total (extinction) cross section σt is the sum of σs and the absorption cross section σa which
is assumed zero. In the case of a plane wave incident on a scatterer, the forward-scattering
theorem yields

σt =




4π

k
Im[f (î, î;ω)], d = 3

4 Im[f (î, î;ω)], d = 2

2k Im[f (î, î;ω)], d = 1

(15)

[4, 13].
For uniformly distributed scatterers, with a constant density ρ, the coherent field in the

high-frequency, forward-scattering approximation satisfies the effective equation(∇2 + K2
eff

)
H̄ = 0

with the effective wavenumber

Keff = k + 2πf (î, î; k)ρ/k. (16)

The consequence of (15) and (16) is that the coherent field decays exponentially like (8)

H̄ (x, y; k) = −e−ρσt r/2 ei Re[Keff ]r

4πr
, r = |x − y|. (17)

In most practical applications, the forward-scattering amplitude is nearly purely imaginary
and the real part of the effective wave number is nearly the same as k. When the particle size
a is much greater than the wavelength λ [19]

f (θ) = ia

sin θ
J1(ka sin θ) (18)



Multi-frequency imaging of multiple targets in Rician fading channels 1811

where θ is the scattering angle between the incoming and outgoing directions. The forward-
scattering amplitude is given by

lim
θ→0

f (θ) = i
ka2

2
(19)

which yields σt ≈ 2πa2, according to the forward-scattering theorem (15). We then have

H̄ (x, y; k) = −e− r
2�

eikr

4πr
, r = |x − y|, (20)

where

� = 1

ρσt

is the scattering mean-free path. In this case the total extinction cross section σt ≈ 2πa2 is
independent of frequency, unlike in (8).

On the other hand, when the particle size is much smaller than the wavelength, the
extinction cross section usually depends on the frequency as well. In the case of Rayleigh
scattering without absorption, the scattering mean-free path scales like

� ∼ ρ−1k−4a−6 (21)

[16]. Similarly, in the case of the spatial white-noise refractive index fluctuation the mean-free
path is given by

� = 4π

γ 2k4
, (22)

where γ 2 is the intensity of the white-noise field, see, e.g. [1].
Now for the cluttered medium with the mean transfer function given by (20) the passive

mode resolution performances of the mean-phase-matched filter and the free-space propagator
are shown in figure 4. As before we calculate the resolutions in the noise-free case with (2),
using the same 5-element array, same 20 frequencies and the same target location as in the
parabolic model. The performance of the mean-phase-matched filter is consistently better
than that of the free-space propagator, albeit the difference is small.

5.1. Numerical simulation with the Foldy–Lax formulation

We present the simulations of the discrete model of many point scatterers randomly distributed
throughout the space.

This clutter model can be conveniently simulated in the Foldy–Lax formulation. Let the
randomly distributed point scatterers of refractive index nj be located at xj , j = 1, 2, 3, . . . , J

and let �(x;ωl) be the resulting wave field with the incident field �(in). Then the Lippmann–
Schwinger equation becomes in this case [16]

�(x;ωl) = �(in)(x;ωl) +
J∑

j=1

τj (ωl)G0(x, xj ;ωl)�(xj ;ωl)

where G0 is the Green function for the Helmholtz equation in the free space and the scattering
strength τj of the j th scatterer is given by [7]

τj (ωl) = ω2
l

(
n2

j − 1
)
. (23)

Once �(xi;ωl) are determined, they can be substituted in the Lippmann–Schwinger equation
for the wave field at any location.
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Figure 5. Passive array imaging |u(x)| with 1, 5, 10 and 20 frequencies. The relative scattering
strengths n2 − 1 of each of the 3000 point scatterers and the target equal 70 and 1, respectively.
The imaging result in the passive mode is, however, independent of the relative scattering strength
of the target.

The Lippmann–Schwinger equation is valid for all x except at the actual scatterer locations
x = xi . So to determine �(xj ;ωl) we replace the Lippmann–Schwinger equation by the
Foldy–Lax equation

�(xi;ωl) = �(in)(xi;ωl) +
∑
j �=i

τj (ωl)G0(xi , xj ;ωl)�(xj ;ωl), (24)

where the divergent self-field term has been removed. Finding the field �(xi;ωl) is then
reduced to inverting a matrix with entries

δij − (1 − δij )τj (ωl)G0(xi , xj ;ωl), i, j = 1, 2, . . . , J.

From �(xj ;ωl) and the Lippmann–Schwinger equation we calculate the response matrix
without the target(s). Similarly, the response matrix with the intrusion of target(s) can be
calculated. We then apply the filter to the difference of the two response matrices, with and
without the target(s).

For simplicity, we consider the case of identical point particles with nj = n,∀ j . By
the effective medium theory discussed in section 5 the mean transfer function decays with
an increasing relative scattering strength n2 − 1 and the density ρ of the particles. On the
other hand, the magnitude of the fluctuations η, cf (1), increases with n2 − 1 and ρ as can
be seen from small τ asymptotic of the Foldy–Lax equation. In other words, the Rician
factor decreases and the statistical stability deteriorates as n2 − 1 and ρ increase. As a result,
we expect the imaging performance to worsen accordingly. This is illustrated in figures 7
and 8.

In the simulations, either 1000 or 3000 point scatterers are uniformly randomly
distributed in the domain [2000, 4000] × [0, 5000], while the whole computation domain is
[−5000, 5000]× [0, 5000]. The array of 11 antennas equally spaced is located on x = −5000
centered at y = 2500 with total aperture 2000. We use 1, 5, 10 and 20 equally spaced
wavelengths from 52 to 90. In figures 5, 6, one point target is located at [3000, 4000] and
in figures 7 and 8, there are seven targets located at [3100, 100], [2800, 1000], [4000, 1600],
[3300, 2100], [4500, 3000], [3000, 4000] and [3500, 4800].
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Figure 6. Active array imaging |u(x)| with 1, 5, 10 and 20 frequencies. The relative scattering
strengths n2 − 1 of each of the 3000 point scatterers and the target equal 70 and 1, respectively.

Figure 7. Active array imaging |u(x)| of seven identical point targets with 20 frequencies. The
relative scattering strengths n2 − 1 of the scatterers and the targets equal 70 and 1, respectively.
For the top and bottom plots, 1000 and 3000 particles are used, respectively.

When the contrast (ratio) between the scattering strength of the scatterers and the target
is less than or equal to 70 (figures 5, 6), we see the improvement of stability and resolution as
number of frequencies increases in both the passive and the active case. With one frequency,
the imaging field exhibits spurious fluctuations which completely overshadow the target.
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Figure 8. The same setting as in figure 7 except that the ω−1-weighted mean-phase-matched filter
is used. Compared to figure 7, the resolution worsens but the stability is improved.

With 10 or more frequencies the imaging field is relatively stable and the target shows up
with good resolution. Comparing with the bottom right plot of figure 6 and the bottom plot of
figure 7 we also see that the stability deteriorates as the number of targets increases.

When the clutter strength increases as the clutter scattering strength and the particle
density increase, the imaging performance deteriorates accordingly, see figure 7. When the
contrast (ratio) between the scatterers and the target increases to 100, the imaging performance
deteriorates to the point that increasing the number of frequencies does not improve either
stability or resolution (not shown here).

In figure 8 we experiment with the frequency-weight function ω−1, namely we use the
ω−1-weighted mean-phase-matched filter

ω−1 e−ikr ,

cf (20). Compared to figure 7, this results in a slight deterioration of resolution but a significant
improvement in stability, especially when the clutter strength is large. This can be explained
by the fact that the ω−1 weight amplifies the influence of longer wavelengths and hence tends
to stabilize but also smear the imaging result.

In figure 9, we compare the numerical resolution with the theoretical prediction based on
the effective medium theory. We calculate the theoretical resolutions using (4) with (20) and
the scattering mean-free-path

� = 0.01λ4.

This particular � is chosen to match the result of Foldy–Lax simulation. We see that the
theoretical curves (red dashed) track closely those of the Foldy–Lax simulations (blue full).
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Figure 9. Resolutions with the mean-phase-matched filter. Longitudinal (left) and transverse
(right) resolutions of active array imaging in the clutter (blue full curve) with 1000 particles and
in the effective medium defined by (20) with � = 0.01λ4 (red dashed curve) as a function of the
aperture. The relative scattering strength n2 − 1 of the scatterers and the targets equals 70 and 1,
respectively. Note that the apparent ‘choppiness’ in the longitudinal resolution is due to the small
range of the vertical scale.

6. Conclusions

In this paper we have derived a general condition KBN � M under which the signal-to-
interference ratio of the imaging functionals tends to infinity. This stability condition is valid
in the Rician fading channels with sufficiently separated B frequencies, N antennas and M
targets. In the case of the Rayleigh fading channel (K ≈ 0) the imaging process should
involve the cross correlation of responses and will be analyzed in a forthcoming paper.

We have used the theoretical results for the exactly solvable parabolic Markovian model
to help identify reasonable filters. The mean-phase-matched filter is a practical choice and is
subsequently used in the full imaging process with a discrete model of randomly distributed
particles.

The effective medium theory for such a model provides an independent way of verifying
our imaging theory: formulae (20) and (21) define an effective, noise-less medium for which
the imaging resolution can be calculated in accordance with (2) or (4). Comparison with the
simulation with the Foldy–Lax simulation shows consistent behavior to the k−4-scaling of the
mean-free path which characterizes the effective medium.
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Appendix A. Resolution analysis for the parabolic Markovian model

To facilitate explicit calculation let us assume that d = 1, z1 = · · · = zm, that the frequency
separation equals the coherence bandwidth βc and the spacing of array elements equals the
coherence length �c. We assume both βc and �c are sufficiently small that the summation over
ωl and y⊥

n can be approximated by integrals. We consider the transverse resolution and set
z = z1. Note that the effective number of coherence bands B ∼ β−1

c and N ∼ �−1
c .

A.1. The mean-matched filter

The spatial matched filter is basic to all imaging methods [15]. Since the exact matched filter
is not known we consider the mean-matched filter (10).

Then the imaging field u has the mean

Eu(z, x⊥) = 1

z1/22π

M∑
m=1

B∑
l=1

N∑
n=1

e−ω2
l C(0)(z+z1)/2ωd

l z
−d/2
1 e−iωl(z1−z) e−i

ωl

∣∣
x⊥−y⊥

n

∣∣2

2z ei
ωl

∣∣
x⊥
m−y⊥

n

∣∣2

2z1 .

Let us write

ξm,n = 1

2z1

(∣∣x⊥ − y⊥
n

∣∣2 − ∣∣x⊥
m − y⊥

n

∣∣2)

= 1

2z1

(|x⊥|2 − ∣∣x⊥
m

∣∣2)
+

1

z1

(
x⊥

m − x⊥) · yn

so that
N∑

n=1

e−i
ωl

∣∣
x⊥−y⊥

n

∣∣2

2z1 ei
ωl

∣∣
x⊥
m−y⊥

n

∣∣2

2z1 ≈ iz1

�cωl

(
x⊥

m − x⊥) e−i ωl
2z1

(|x⊥|2−|x⊥
m |2)

× (
e−i ωl

z1
(x⊥

m−x⊥)·yN+1 − e−i ωl
z1

(x⊥
m−x⊥)·y1

)
for sufficiently small �c. Assuming the bandwidth is sufficiently large (including negative
frequencies) we then approximate the summation over ωl by integration over ω ∈ (0,∞) and
obtain the approximation

Eu(z1, x
⊥) ≈ i

�c2π

M∑
m=1

B∑
l=1

e−ω2
l C(0)z1 e−i ωl

2z1
(|x⊥|2−|x⊥

m |2) 1

x⊥
m − x⊥

× (
e− iωl

z1
(x⊥

m−x⊥)·yN+1 − e− iωl
z1

(x⊥
m−x⊥)·y1

)

≈ i

�cβc2π

M∑
m=1

1

x⊥
m − x⊥

∫ ∞

0
dω e−ω2C(0)z1 e− iω

2z1
(|x⊥|2−|x⊥

m |2)

× (
e− iω

z1
(x⊥

m−x⊥)·yN+1 − e− iω
z1

(x⊥
m−x⊥)·y1

)

≈ i

�cβc2π

M∑
m=1

1

x⊥
m − x⊥

∫ ∞

0
dω e−ω2C(0)z1(e−iωξm,N+1 − e−iωξm,1). (A.2)

In view of (A.1) the mean imaging function is a sum of localized functions centered at the M
point targets. Provided that the targets are far apart so that the above summation over m is
uniformly bounded with respect to M the above calculation shows that Eu is of the order µBN

since B ∼ β−1
c and N ∼ �−1

c . Moreover the transverse resolution has the scaling behavior√
C(0)z3

1 as can be determined from the Fourier cosine and sine integrals in (A.2) by rescaling
the integrating variable ω and the value Eu

(
z1, x

⊥
j

)
at the j th target is roughly proportional
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to the total aperture |yN+1 − y1|. The same analysis is also applicable to the next two filters
discussed below.

A.2. The mean-phase-matched filter

Next we consider the phase-matched filter (11) which only incorporates the phase information
of the mean propagator.

Then the imaging field u has the mean

Eu(z, x⊥) = 1

(2π)1/2

M∑
m=1

B∑
l=1

N∑
n=1

ω
d/2
l z

−d/2
1 e−ω2

l C(0)z1/2 e−iωl(z1−z) e−i ωl |x⊥−y⊥
n |2

2z ei ωl |x⊥
m−y⊥

n |2
2z1

which, for d = 1, becomes approximately

Eu(z1, x
⊥) ≈ i

�cβc2π

M∑
m=1

1

x⊥
m − x⊥

∫ ∞

0
dω ω−1/2 e−ω2C(0)z1/2(e−iωξm,N+1 − e−iωξm,1).

The same remark following (A.2) applies here as well.

A.3. The phase-matched free-space propagator

Consider the free-space parabolic propagator (12). The imaging field u has the mean

Eu(z, x⊥) = 1

z1/22π

M∑
m=1

B∑
l=1

N∑
n=1

ωlz
−1/2
1 e−ω2

l C(0)z1/2 eiωl(z1−z) ei ωl |x⊥−y⊥
n |2

2z e−i ωl |x⊥
m−y⊥

n |2
2z1 (A.3)

and hence for d = 1

Eu(z1, x
⊥) = 1

z12π

M∑
m=1

B∑
l=1

N∑
n=1

ωl e−ω2
l C(0)z1/2 ei ωl |x⊥−y⊥

n |2
2z1 e−i ωl |x⊥

m−y⊥
n |2

2z1

≈ 1

z12π

M∑
m=1

1

x⊥
m − x⊥

∫ ∞

0
dω e−ω2C(0)z1/2(eiωξm,N+1 − eiωξm,1).

As before, the same remark following (A.2) applies here.

A.4. The mean inverse filter

For the mean inverse filter (13) the imaging field u has the mean

Eu(z, x⊥) =
M∑

m=1

B∑
l=1

N∑
n=1

ωl

z1/2z
1/2
1

eω2
l C(0)(z−z1)/2 e−iωl(z1−z) e−i ωl |x⊥−y⊥

n |2
2z ei ωl |x⊥

m−y⊥
n |2

2z1 . (A.4)

Setting z = z1 and approximating the summation over y⊥
n by integration we obtain

Eu(z1, x
⊥) ≈ i

�c2π

M∑
m=1

1

x⊥
m − x⊥

B∑
l=1

e− iωl
2z1

(|x⊥|2−|x⊥
m |2)(e− iωl

z1
(x⊥

m−x⊥)·yN+1 − e− iωl
z1

(x⊥
m−x⊥)·y1

)

= i

�c2π

M∑
m=1

1

x⊥
m − x⊥

(
e−iω1ξm,N+1 − e−i(ωB +βc)ξm,N+1

1 − e−iβcξm,N+1
− e−iω1ξm,1 − e−i(ωB +βc)ξm,1

1 − e−iβcξm,1

)

≈ 1

βc�c2π

M∑
m=1

1

x⊥
m − x⊥

(
e−iω1ξm,N+1(1 − e−iBβcξm,N+1)

ξm,N+1
− e−iω1ξm,1(1 − e−iBβcξm,1)

ξm,1

)
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with ξm,n given by (A.1). Note here we do not approximate the summation over ωl by an
integral as in the other cases.

For sufficiently separated target locations x⊥
m the summation over x⊥

m is uniformly bounded
with respect to M but the summand, unlike the previous cases, is oscillatory and decays slowly.
Nevertheless, Eu again is of the order µBN . The resolution is independent of C(0) but
inversely depends on the total bandwidth Bβc. This implies that the resolution with the mean
inverse filter can be indefinitely improved by increasing the bandwidth whereas in the other
cases the resolution saturates as the bandwidth tends to infinity. The caveat is that the mean
inverse filter (13), containing the exponential growth factor, is sensitive to the presence of
noise.

A.5. Kolmogorov–Wiener filter

In the presence of additive white-Gaussian noise (AWGN), the optimum filter is the
Kolmogorov–Wiener filter

P(z, x⊥, y⊥;ωl) = H̄ ∗(z, x⊥, y⊥;ωl)

|H̄ |2(z, x⊥, y⊥;ωl) + SSNR−1(ωl)
, (A.5)

where SSNR(ω) is the spectral signal-to-noise ratio (SSNR), defined as the ratio of signal
power to noise power at frequency ω.

Let σ be the noise power for all ω. Since the signal power is e−ω2
l C(0)z, the Kolmogorov–

Wiener filter can be written as

P(z, x⊥, y⊥;ωl) = ω1/2

(2π iz)1/2

(
e−ω2

l C(0)z/2 + e3ω2
l C(0)z/2σ

)−1
eiωlz e−i ωl |x⊥−y⊥|2

2z .

The Kolmogorov–Wiener filter is an ideal filter and it is difficult to realize in practice
because first we must know the exact SSNR(ω) and second slight changes in the noise or
signal level could change the output signal drastically. A more stable alternative is to replace
SSNR in (A.5) by a number that is considerably smaller than the minimum value of SSNR in
the passband of interest. Such a filter is called a pseudo-inverse filter [15]. The pseudo-inverse
filter with overestimated uncertainty eventually compromises the resolution performance.
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