A little more about linear systems/equations

We can apply what we have learned about homogeneous second-order equations to the (damped) harmonic oscillator

$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = 0.$$

In this case, we are assuming that the parameters m and k are positive and that $b \ge 0$. The characteristic equation $m\lambda^2 + b\lambda + k = 0$ has eigenvalues

$$\frac{-b \pm \sqrt{b^2 - 4mk}}{2m}.$$

There are three cases based on the value of the discriminant $b^2 - 4mk$.

1.
$$b^2 - 4mk < 0$$
:

2.
$$b^2 - 4mk = 0$$
:

3. $b^2 - 4mk > 0$:

Example. Consider the one-parameter family of equations

$$\frac{d^2y}{dt^2} + b\frac{dy}{dt} + y = 0.$$

The trace-determinant plane

There is a nice geometric object called the trace-determinant plane that organizes the various types of 2×2 linear systems.

Consider the 2×2 matrix

$$\mathbf{A} = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right).$$

Let's calculate the characteristic polynomial of **A**:

Conclusion: The eigenvalues of any 2×2 matrix are determined by the trace and the determinant of **A**. We have

$$\lambda = \frac{(\operatorname{tr} \mathbf{A}) \pm \sqrt{(\operatorname{tr} \mathbf{A})^2 - 4(\det \mathbf{A})}}{2}.$$

Summary of Phase Portraits

Assume det $\mathbf{A} \neq 0$. Then zero is not an eigenvalue of \mathbf{A} .

1. Real and distinct eigenvalues

- (a) sink
- (b) saddle
- (c) source

2. Complex eigenvalues

- (a) spiral sink
- (b) center
- (c) spiral source

3. Real and repeated eigenvalues

- (a) sink with one eigenline in the phase portrait
- (b) source with one eigenline in the phase portrait
- (c) sink where every solution is a straight-line solution
- (d) source where every solution is a straight-line solution

What if $\det \mathbf{A} = 0$?

We can organize these different types using a plane with unusual coordinate axes.

You can turn on the trace-determinant plane in the LinearPhasePortraits tool.

Example. Consider the one-parameter family of linear systems

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} -1 & 1\\ 0 & d \end{pmatrix} \mathbf{Y}.$$

