Parameters, Qualitative Equivalence, and Bifurcations

Let's return to the logistic model of population growth

$$\frac{dP}{dt} = kP \left(1 - \frac{P}{N}\right)$$

and modify this model to account for constant harvesting:

Before we tackle this modification of the logistic model, let's consider an example in which the algebra is simpler.

Example. \(\frac{dy}{dt} = y(1 - y) - a \)

There is a tool in DETools called PhaseLines, and it helps us analyze phase lines and various graphs as we vary certain parameters (the parameter \(a \) in this case).
We can summarize the behavior of this one-parameter family of differential equations using a bifurcation diagram.
Now let’s sketch and interpret the bifurcation diagram for the logistic population model with constant harvesting
\[
\frac{dP}{dt} = kP \left(1 - \frac{P}{N}\right) - C.
\]
First, let’s compute the bifurcation value.

Now we sketch the bifurcation diagram.

What does this diagram say about how we must act if we want fish populations to return to sustainable levels?