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Vignette – Measurement of position

Single measurement: For a state ψ ∈ L2(Rd ) what is the probability of finding the

particle in a box E?

P(x ∈ E) =

∫
E
|ψ(x)|2x. .

Repeated Measurement: Consider a protocol:

1. Measure the position (record x)

2. Evolve freely by H = p2 for time t

3. Measure the position again (record xt)

What is the probability P(x ∈ E , xt ∈ F )?

There is no (unique) answer to the question. We need a formalism that conveniently

encodes all the answers.
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Kraus Operator Formalism

Objects:

• Set Ω of possible measurement results ζ.

• Prior measure µ (and sigma algebra F) on Ω.

• Hilbert space H of the system.

Definition (Kraus operators Vζ)

A measurable function ζ ∈ Ω→ Vζ ∈ B(H) satisfying∫
Ω
V ∗ζ Vζdµ(ζ) = 1.

Meaning: Given a measurement result ζ the state jumps as ψ → Vζψ:

1. P(ζ ∈ E) = ‖Vζψ‖2 = (ψ,V ∗ζ Vζψ),

2. The normalized state after the measurement is
Vζψ

‖Vζψ‖
.
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Textbook Examples

Example (Projection Measurements)

Ω = {1, . . . k}, Vj = Pj , projections Pj form an orthogonal decomposition of identity,

P1 + · · ·+ Pk = 1.

Example (Unitary Evolution)

Ω = {1} and V1 is unitary.
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Measurement of Position II

Example (A measurement of position)

Ω = R, Vx = 1

(σ
√

2π)
d
2

exp(− 1
2

(Q−x)2

2σ2 ), Q is the position operator. For the average

measurement result and the variance we get:∫
Rd

x‖Vxψ‖2dx = (ψ,Qψ),

∫
R
x2‖Vxψ‖2dx = (ψ,Q2ψ) + σ2.

Example (General Measurement of Position)

Ω = Rd, Vx =
√

p(Q − x) where p is a probability distribution.

What is the probability P(x ∈ E , xt ∈ F )?

P(x ∈ E , xt ∈ F ) =

∫
x∈E ,xt∈F

‖Vxt e
−itp2

Vxψ‖2dxdxt .
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Quantum Trajectories

Given Kraus operators Vζ , the map

(ζ1, . . . , ζn)→ Vζn . . .Vζ1
ψ

is the quantum trajectory.

Basic Objects:

1. Pψ(ζ1 ∈ E1, . . . , ζn ∈ En) =
∫
E1×···×En

‖Vζn . . .Vζ1
ψ‖2 defines a probability

measure on ΩN.

2. Process ψn :=
Vζn ...Vζ1

ψ

‖Vζn ...Vζ1
ψ‖ is a Markov process on (ΩN,Pψ).

Quantum trajectories theory studies limit properties of Pψ and ψn.
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A bit of history and an example

Quantum trajetories defined an derived from the end of the 70’s to the 90’s by Davies,

Kraus, Barchielli, Lanz, Prosperi, Lupieri, Holevo, Belavkin on the mathematical

physics side.

Physics pioneer are Gisin and Diosi, and Dalibard, Castin and Molmer in the eighties

and nineties. They used trajectories respectively as model for wave function collapse

or as numerical tools.

A first basic example: Radioactive decay.

ρt ∈ M2(C) with Pe the excited state and Pg the ground state:

dρt = λ(σ−ρt−σ+ −
1

2
{Pe , ρt−})dt +

(
σ−ρt−σ+

tr(Peρt−)
− ρt−

)
[dNt − λ tr(Peρt−)dt]

with ρ0 = Pe .

Then prob.(ρt = Pg ) = 1− e−λt .
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Continuous time quantum trajectories

Evolution:

dρt =L(ρt−)dt

+ (D(ρt−)− tr(D(ρt−))ρt−)dBt

+ (J(ρt−)− ρt−)(dNt − tr(C∗Cρt−)dt).

Signal:

Currents: dYt = dBt + tr(D(ρt−))dt

Particle counting: dNt .

(ρt) is a Markov process.
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“[...] It is fair to state that we are not experimenting with single particles, any more

than we can raise Ichthyosauria in the zoo. We are scrutinising records of events long

after they have happened.”

– E. Schrödinger, 1952.
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Quantum trajectories experiments: B. Huard’s group (ENS Lyon)
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Quantum trajectories experiments: S. Haroche’s group (LKB)
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Discrete time quantum trajectories

U

ρn

Probes

jn; jn−1; : : : ; j2; j1

Measures

State: density matrix ρn
Evolution: Matrices {Vj}kj=1,

∑
j V
∗
j Vj = Id.

Measurement results distribution: Pρ(j1, . . . , jn) = tr(Vjn · · ·Vj1ρ0V ∗j1 · · ·V
∗
jn

).

Pρ is a measure over a one-sided shift of finite type.

System evolution:

In mean: ρn = Φ(ρn−1), Φ(ρ) =
∑

j VjρV
∗
j .

Knowing j1, . . . , jn−1 : ρn =
Vjρn−1V

∗
j

tr(Vjρn−1V
∗
j )

with prob. tr(Vjρn−1V ∗j ).

The quantum trajectory (ρn) is a Markov chain.
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Measurement results: ergodicity

Theorem (Kümmerer, Maassen 2000)

If ∃!ρ such that Φ(ρ) = ρ, then, Pρ is ergodic with respect to the left shift. Namely,

for any i1, . . . , im, im+1, . . . , im+`

lim
n→∞

1

n

n∑
k=1

Pρ(j1 = i1, . . . , jm = im; jk+1 = im+1, . . . , jk+` = im+`)

= Pρ(j1 = i1, . . . , jm = im)Pρ(j1 = im+1, . . . , j` = im+`).

13 / 29



Measurement results: Entropy production and detailed balance

[B., Cuneo, Jaksic, Pautrat, Pillet, Shirikyan ’17–’19]

Let P̂n(j1, . . . , jn) = Pn(θ(jn), . . . , θ(j1)). Then,

• ep = limn
1
n
S(Pn|P̂n) exists;

• σn = 1
n

log Pn(j1,...,jn)

P̂n(j1,...,jn)
verifies a LDP and fluctuation relation;

• ep = 0 is essentially equivalent to Φ verifying (KMS) Quantum Detailed Balance.
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Trajectory: Purification

Definition (Dark subspace)

K is a dark subspace of H if dimK ≥ 2 and for any j1, . . . , j`, there exists a unitary

matrix U ∈ B(H) and λ ∈ R such that

∀Ψ ∈ K,VjnVjn−1
· · ·Vj1 Ψ = λUΨ.

Theorem (Purification (Maassen, Kümerer ’06))

The family of matricies {Vj}kj=1 does not have dark subspaces iff for any ρ0,

lim
n→∞

S(ρn) = 0

with S the von Neumann entropy (S(ρ) = − tr(ρ log ρ)).
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Trajectory: Purification

Refining this result, the trajectory state can be estimated using only the measurement

results:

Similar results hold for continuous time trajectories (Barchielli, Paganoni ’03).
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Trajectory: Linear law of large numbers

Theorem (Kümerer, Maassen ’04)

ρ∞ = lim
n→∞

1

n

n∑
k=1

ρk

exists almost surely and Φ(ρ∞) = ρ∞.

Similar result in continuous time. Using Poisson equation techniques, one can also

derive a CLT and a LIL.
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Trajectory: Uniqueness of the invariant measure

Theorem (B., F., Pautrat, Pellegrini ’17)

If {Vj}kj=1 has no dark subspaces, then (ρn) accepts a unique invariant measure νinv.
iff there exists a unique ρ∞ such that Φ(ρ∞) = ρ∞.

Moreover, there exists C > 0 and λ < 1 such that for any %,

W1(νn, νinv.) ≤ Cλn

with νn the law of ρn knowing ρ0 = % and W1 the Wasserstein distance.

The LLN for any continuous function and the CLT and LIL for any Hölder continuous

function can be deduced from the proof.

Similar result in continuous time.
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Trajectory: Invariant measure example
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Perturbation Theory, the non-demolition case

Let Vζ(φ) be a family of Kraus operators.

General Question: How quantum trajectories depend on the parameter φ?

Some results:

• Graf et. al. 2018

• Bauer, Bernard, et. al. 2015 –

• Bernardin, Chetrite, Chhaibi, Najnudel, Pellegrini 2018

• Ballesteros, Crawford, F, Frohlich, Schubnel 2017

• Benoist et. al. 2019
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Example: Perturbation of Non-demolition

For two by two matrices and Ω = {1, 2} put V1,2(φ)

V1 = e−iφσx

( √
p 0

0
√
q

)
, V2 = e−iφσx

( √
1− p 0

0
√

1− q

)
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Population Nn := Tr(ρnσz ) + 1/2 seems to approach after rescaling a jump process

Ys , 0 ≤ s ≤ 1.

Negative result [Bauer, Bernard]: Nφ−2s does not approach Ys in Skorokhod topology

as φ goes to zero.

Positive result [Ballesteros, Crawford, F, Fröhlich, Schubnel]: An average over log φ

time interval does.
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Semiclassical Limit Problem, Intro

Infinite Dimensions: Little is known,

1. Non-demolition trajectories ([Vζ ,Vζ′ ] = 0) [BCFFS, 2018] by mapping to a limit

problem for a maximum likelihood estimator.

2. Classification of Stationary Subspaces of Kρ =
∑
ζ VζρV

∗
ζ . [Carbone, Pautrat

2016]

3. Quantum Stochastic Diff. Eq. [Holevo’s book]

Open Problems: For example,

1. Purification

2. Classification of Invariant Measures
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Semiclassical Limit Problem

Describe a motion of continuously observed particle (particle detector): H = L2(Rd ),

Q is the position operator,

Vζ = e i~t( p2

2M
+V (Q))Ṽζ , Ṽζ =

1

(σ
√

2π)
d
2

exp(−
1

2

(Q − ζ)2

2σ2
).

or a continuous version

dψ = −
i

~
Hψdt −

γ2

2
(Q − 〈Q〉t)2ψdt + γ(Q − 〈Q〉t)ψdWt ,

with H = − ~2

2m
4+ V (Q).

For quadratic V [Belavkin, Kolokoltsov 90’s, Bassi et. al. 20’s, Bauer, Bernard, Jin

2018]:

1. Construction of semiclassical wave-packets

2. Any initial state approaches a semiclassical wave-packet
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Semiclassical Limit Problem

dψ = −
i

~
Hψdt −

γ2

2
(Q − 〈Q〉t)2ψdt + γ(Q − 〈Q〉t)ψdWt ,

• H = − ~2

2m
4+ V (Q),

• Purification time scale τ = γ−1
√

m
~ ,

• Purification lenght scale l = ( ~
mγ2 )

1
4 .

Conjecture: [Bauer, Bernard, Jin 2018] Assume V smooth. In the limit γ →∞,

~/m→ 0 with ε = ~γ/m fixed, solution of the equation localizes at a position xt that

solves Langevin equations

dxt = vtdt, dvt = −
1

m
∇V (xt)dt + εdWt .
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An open problem in perturbation theory

Let Vζ(φ) be a family of Kraus operators and Pφ the corresponding distribution of

measurement results (for the unique invariant ρ).

Question: Does Fisher information

lim
n→∞

Fn(φ)

n
:= lim

n→∞

1

n
Eφ[(∂φ log Pφ(ζ1, . . . , ζn))2]

exists? If it exists, is it strictly positive?
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Some open questions: Trajectory LDP

Does sn(f ) = 1
n

∑n
k=1 f (ρk ) verify an LDP?

Issue with Gartner–Ellis Theorem: There is some example where the spectral radius of

the twisted kernel Πα defined by

Παg(ρ) =
∑
j

eαf (ρ(j))g(ρ(j)) tr(VjρV
∗
j ) with ρ(j) =

VjρV
∗
j

tr(VjρV
∗
j )

is not differentiable at some α for a smooth f .
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Some open questions: Canonical invariant measures

Most random indirect measurement: j → ψ, ψ à priori uniform.

ρn+1 =
trprobe [(|ψ〉〈ψ| ⊗ Id)U(|e0〉〈e0| ⊗ ρn)U∗(|ψ〉〈ψ| ⊗ Id)]

tr[(|ψ〉〈ψ| ⊗ Id)U(|e0〉〈e0| ⊗ ρn)U∗]
.

with

prob.(|ψ〉 ∈ A|ρn) =

∫
1w|e0〉∈A tr[(w |e0〉〈e0|w∗ ⊗ Id)U(|e0〉〈e0| ⊗ ρn)U∗]dHaar(w).

• Can there exist dark subspaces?

• Does this measure has a thermodynamic limit when ρ∞ has one?

• Is the Markov chain reversible when Φ verifies (KMS) QDB?
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Some open questions: Maximal entropy measures and quantum trajectories

Given a state ρ, the maximal entropy measure over pure states is given by a measure

with gaussian density with respect to the uniform measure over the 1-sphere.

• Finer characterization of this measure (high temperature limit, . . . )?

• Does this measure has a thermodynamic limit when Φ and ρ have one?

• Can we construct a quantum trajectory whose unique invariant measure is the

maximal entropy measure?
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