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Summary. In recent years, order-reduction techniques based on Krylov subspaces
have become the methods of choice for generating macromodels of large multi-port
RLC circuits. Despite the success of these techniques and the extensive research
efforts in this area, for general RCL circuits, the existing Krylov subspace-based
reduction algorithms do not fully preserve all essential structures of the given large
RCL circuit. In this paper, we describe the problem of structure-preserving model
order reduction of general RCL circuits, and we discuss two state-of-the-art algo-
rithms, PRIMA and SPRIM, for the solution of this problem. Numerical results are
reported that illustrate the higher accuracy of SPRIM vs. PRIMA. We also mention
some open problems.

1 Introduction

Electronic circuits often contain large linear subnetworks of passive compo-
nents. Such subnetworks may represent interconnect (IC) automatically ex-
tracted from layout as large RCL networks, models of IC packages, or models
of wireless propagation channels. Often these subnetworks are so large that
they need to be replaced by much smaller reduced-order models, before any
numerical simulation becomes feasible. Ideally, these models would produce a
good approximation of the input-output behavior of the original subnetwork,
at least in a limited domain of interest, e.g., a frequency range.

In recent years, reduced-order modeling techniques based on Padé or Padé-
type approximation have been recognized to be powerful tools for various cir-
cuit simulation tasks. The first such technique was asymptotic waveform eval-
uation (AWE) [31], which uses explicit moment matching. More recently, the
attention has moved to reduced-order models generated by means of Krylov-
subspace algorithms, which avoid the typical numerical instabilities of explicit
moment matching; see, e.g., the survey papers [14, 15, 16].

PVL [9, 10] and its multi-port version MPVL [11] use variants of the Lanc-
zos process [26] to stably compute reduced-order models that represent Padé
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or matrix-Padé approximations [5] of the circuit transfer function. SyPVL [21]
and its multi-port version SyMPVL [12, 23, 24] are versions of PVL and
MPVL, respectively, that are tailored to RCL circuits. By exploiting the sym-
metry of RCL transfer functions, the computational costs of SyPVL and SyM-
PVL are only half of those of general PVL and MPVL.

Reduced-order modeling techniques based on the Arnoldi process [3],
which is another popular Krylov-subspace algorithm, were first proposed
in [33, 28, 8, 29, 30]. Arnoldi-based reduced-order models are defined by a
certain Padé-type approximation property, rather than Padé approximation,
and as a result, in general, they are not as accurate as a Padé-based model of
the same size. In fact, Arnoldi-based models are known to match only half as
many moments as Lanczos-based models; see [33, 28, 29, 15].

In many applications, in particular those related to VLSI interconnect,
the reduced-order model is used as a substitute for the full-blown original
model in higher-level simulations. In such applications, it is very important
for the reduced-order model to maintain the passivity properties of the orig-
inal circuit. In [23, 24, 4], it is shown that SyMPVL is passive for RC, RL,
and LC circuits. However, the Padé-based reduced-order model that charac-
terizes SyMPVL cannot be guaranteed to be passive for general RCL circuits.
On the other hand, in [28, 29, 30], it was proved that the Arnoldi-based re-
duction technique PRIMA produces passive reduced-order for general RCL
circuits. PRIMA employs a block version of the Arnoldi process and then
obtains reduced-order models by projecting the matrices defining the RCL
transfer function onto the Arnoldi basis vectors. While PRIMA generates
provably passive reduced-order models, it does not preserve other structures,
such as reciprocity or the block structure of the circuit matrices, inherent
to RCL circuits. This has motivated the development of the reduction tech-
nique SPRIM [17, 18], which overcomes these disadvantages of PRIMA. In
particular, SPRIM generates provably passive and reciprocal macromodels of
multi-port RCL circuits. Furthermore, SPRIM models match twice as many
moments as the corresponding PRIMA models obtained with identical compu-
tational work. In this paper, we describe the problem of structure-preserving
model order reduction of general RCL circuits, and we discuss the PRIMA
and SPRIM algorithms for the solution of this problem.

The remainder of this article is organized as follows. In Section 2, we re-
view the formulation of general RCL circuits as systems of integro-differential-
algebraic equations (integro-DAEs). In Section 3, we describe the problem of
structure-preserving model order reduction of systems of integro-DAEs. In
Section 4, we present an equivalent formulation of such systems as time-
invariant linear dynamical systems. In Section 5, we review oder reduction
based on projection onto Krylov subspaces and the PRIMA algorithm. In Sec-
tion 6, we describe the SPRIM algorithm for order reduction of general RCL
circuits, and in Section 7, we present some theoretical properties of SPRIM. In
Section 8, we report the results of some numerical experiments with SPRIM



Structure-Preserving Model Order Reduction 3

and PRIMA. Finally, in Section 9, we mention some open problems and make
some concluding remarks.

Throughout this article the following notation is used. The set of real and
complex numbers is denoted by R and C, respectively. Unless stated otherwise,
all vectors and matrices are allowed to have real or complex entries. For (real
or complex) matrices M = [ mjk ], we denote by MT = [ mkj ] the transpose

of M , and by M∗ := [ mkj ] the Hermitian (or complex conjugate) of M .
The identity matrix is denoted by I and the zero matrix by 0; the actual
dimensions of I and 0 will always be apparent from the context. The notation
M � 0 (M ≻ 0) is used to indicate that a real or complex square matrix M is
Hermitian positive semidefinite (positive definite). If all entries of the matrix
M � 0 (M ≻ 0) are real, then M is said to be symmetric positive semidefinite

(positive definite). The kernel (or null space) of a matrix M is denoted by
kerM .

2 Formulation of general RCL circuits as integro-DAEs

In this section, we review the formulation of general RCL circuits as systems
of integro-DAEs.

2.1 Electronic circuits as directed graphs

We use the standard lumped-element approach that models general electronic
circuits as directed graphs; see, e.g., [7, 34]. More precisely, a given circuit is
described as a directed graph G = (N , E) whose edges e ∈ E correspond to the
circuit elements and whose nodes n ∈ N correspond to the interconnections of
the circuit elements. For each element for which the direction of the current
flow through the element is known beforehand, the corresponding edge is
oriented in the direction of the current flow; for example, current sources and
voltage sources are elements with known direction of current flow. For all
other elements, arbitrary directions are assigned to the edges corresponding
to these elements. Each edge e ∈ E can be written as an ordered pair of nodes,
e = (n1, n2), where the direction of e is from node n1 to node n2. We say that
the edge e = (n1, n2) leaves node n1 and enters node n2.

The directed graph G = (N , E) can be described by its incidence matrix

A = [ ajk ]. The rows and columns of A correspond to the nodes and edges
of the directed graph, respectively, and the entries ajk of A are defined as
follows:

ajk =















1 if edge ek leaves node nj,

−1 if edge ek enters node nj ,

0 otherwise.

In order to avoid redundancy, any one of the nodes can be selected as the
datum (or ground) node of the circuit. We denote by n0 the datum node,
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by N0 = N \ {n0 } the remaining non-datum nodes, and by A0 the matrix
obtained by deleting from A the row corresponding to n0. Note that A0 is
called the reduced incidence matrix of the directed graph G. We remark that
A0 has full row rank, i.e.,

rankA0 = |N0| ,

provided the graph G is connected; see, e.g., [7, Theorem 9-6].
We denote by v = v(t) the vector of nodal voltages at the non-datum

nodes N0, i.e., the k-th entry of v is the voltage at node nk ∈ N0. We denote
by vE = vE (t) and iE = iE(t) the vectors of edge voltages and currents,
respectively, i.e., the j-th entry of vE is the voltage across the circuit element
corresponding to edge ej ∈ E , and the j-th entry of iE is the current through
the circuit element corresponding to edge ej ∈ E .

Any general electronic circuit is described completely by three types of
equations: Kirchhoff’s current laws (KCLs), Kirchhoff’s voltage laws (KVLs),
and the branch constitutive relations (BCRs); see, e.g., [34]. The KCLs state
that at each node n ∈ N , the currents along all edges leaving and entering
the node n sum up to zero. In terms of the reduced incidence matrix A0 of G
and the vector iE , the KCLs can be expressed in the following compact form:

A0 iE = 0. (1)

Similarly, the KCVs state that for any closed (undirected) loop in the graph
G, the voltages along the edges of the loop sum up to zero. The KCLs can be
expressed in the following compact form:

AT
0 v = vE . (2)

The BCRs are the equations that describe the physical behavior of the circuit
elements.

2.2 RCL circuit equations

We now restrict ourselves to general linear RCL circuits. The possible element
types of such circuits are resistors, capacitors, inductors, independent voltage
sources, and independent current sources. We use subscripts r, c, l, v, and
i to denote edge quantities corresponding to resistors, capacitors, inductors,
voltage sources, and current sources of the RCL circuit, respectively. Moreover,
we assume that the edges E are ordered such that we have the following
partitionings of the reduced incidence matrix and the vectors of edge voltages
and currents:

A0 = [Ar Ac Al Av Ai ] , vE =











vr

vc

vl

vv

vi











, iE =











ir
ic
il
iv
ii











. (3)
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The BCRs for the resistors, capacitors, and inductors can be expressed in the
following compact form:

vr(t) = R ir(t), ic(t) = C
d

dt
vc(t), vl(t) = L

d

dt
il(t). (4)

Here,
R ≻ 0, C ≻ 0, and L ≻ 0 (5)

are symmetric positive definite matrices. Furthermore, R and C are diagonal
matrices whose diagonal entries are the resistances and capacitances of the
resistors and capacitors, respectively. The diagonal entries of L are the induc-
tances of the inductors. Often L is also diagonal, but in general, when mutual
inductances are included, L is not diagonal. The BCRs for the voltage sources
simply state that vv(t) is a given input vector, the entries of which are the
voltages provided by the voltages sources. Similarly, the BCRs for the current
sources state that ii(t) is a given input vector, the entries of which are the
currents provided by the current sources.

The KCLs (1), the KVLs (2), and the BCRs (4), together with initial
conditions for the nodal voltages v(t0) at some initial time t0, describe the
behavior of a given RCL circuit. Without loss of generality, we set t0 = 0. The
initial condition then reads

v(0) = v(0), (6)

where v(0) is a given vector. Moreover, for simplicity, we also assume that

il(0) = 0.

Then, the BCRs for the inductors in (4) can be equivalently stated as follows:

il(t) = L−1

∫ t

0

vl(τ) dτ. (7)

The resulting set of equations describing a given RCL circuit can be simplified
considerably by eliminating the edge quantities corresponding to the resistors,
capacitors, and inductors. To this end, we first use the partitionings (3) to
rewrite the KCLs (1) as follows:

Ar ir + Ac ic + Al il + Av iv + Ai ii = 0. (8)

Similarly, the KCVs (2) can be expressed as follows:

AT
r v = vr, AT

c v = vc, AT
l v = vl, AT

v v = vv, AT
i v = vi. (9)

From (4), (7), and (9), it follows that

ir(t) = R−1AT
r v(t), ic(t) = C AT

c

d

dt
v(t),

il(t) = L−1AT
l

∫ t

0

v(τ) dτ .

(10)
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Inserting (10) into (8), and using (9), we obtain

M11
d

dt
v(t) + D11 v(t) + Av iv(t) + K11

∫ t

0

v(τ) dτ = −Ai ii(t),

−AT
v v(t) = −vv(t),

vi(t) = AT
i v(t),

(11)

where

M11 := Ac C AT
c , D11 := Ar R−1AT

r , K11 := Al L−1AT
l . (12)

The equations (11) can be viewed as a linear dynamical system for the un-
known state-space vector

z(t) :=

[

v(t)

iv(t)

]

, (13)

with given input vector and unknown output vector

u(t) :=

[

−ii(t)

vv(t)

]

and y(t) :=

[

vi(t)

−iv(t)

]

, (14)

respectively. Indeed, setting

M :=

[

M11 0

0 0

]

, D :=

[

D11 Av

−AT
v 0

]

,

K :=

[

K11 0

0 0

]

, F :=

[

Ai 0

0 −I

]

, z(0) :=

[

v(0)

iv(0)

]

,

(15)

and using (13), (14), and (9), the equations (11) can be rewritten in the form

M
d

dt
z(t) + D z(t) + K

∫ t

0

z(τ) dτ = F u(t),

y(t) = FT z(t),

(16)

and the initial conditions (6) can be stated in the form

z(0) = z(0).

Note that, in (16), M , D, and K are N0 × N0 matrices and F is an N0 × m

matrix. Here, N0 is the sum of the number of non-datum nodes in the circuit
and the number of voltage sources, and m denotes the number of all voltage
and current sources. We remark that N0 is the state-space dimension of the
linear dynamical system (16), and m is the number of inputs (and outputs)
of (16). In general, the matrix M is singular, and thus the first equation of (16)
is a system of integro-differential-algebraic equations (integro-DAEs). Finally,
note that the matrices (15), M , D, K, and F , exhibit certain structures. In
particular, from (5), (12), and (15), it follows that

M =

[

M11 0

0 0

]

� 0, D + DT =

[

2D11 0

0 0

]

� 0, and K � 0. (17)
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3 Structure-preserving model order reduction

In this section, we formulate the problems of model order reduction and struc-
ture preservation.

3.1 Model order reduction

A reduced-order model of the linear dynamical system (16) is a system of the
same form as (16), but with smaller state-space dimension n0 (< N0). More
precisely, a reduced-order model of (16) with state-space dimension n0 is a
system of the form

M̃
d

dt
z̃(t) + D̃ z̃(t) + K̃

∫ t

0

z̃(τ) dτ = F̃ u(t),

ỹ(t) = F̃T z̃(t),

(18)

with initial conditions
z̃(0) = z̃(0),

where
M̃, D̃, K̃ ∈ R

n0×n0 , F̃ ∈ R
n0×m, and z̃(0) ∈ R

n0 . (19)

The general problem of order reduction of a given linear dynamical system (16)
is to determine a reduced state-space dimension n0 and data (19) such that
the corresponding reduced-order model (18) is a sufficiently accurate approx-
imation of (16).

A practical way of assessing the accuracy of reduced-order models is based
on the concept of Laplace-domain transfer functions of linear dynamical sys-
tems. The transfer function of the original linear dynamical system (16) is
given by

H(s) = FT
(

s M + D +
1

s
K

)−1

F. (20)

Here, we assume that the matrix s M + D + 1
s

K is singular only for finitely
many values of s ∈ C. Conditions that guarantee this assumption are given in
Section 4 below.

In analogy to (20), the transfer function of a reduced-order model (18)
of (16) is given by

H̃(s) = F̃T
(

s M̃ + D̃ +
1

s
K̃

)−1

F̃ . (21)

Note that both

H : C 7→ (C ∪∞)
m×m

and H̃ : C 7→ (C ∪∞)
m×m

are m × m-matrix-valued rational functions.
In terms of transfer functions, the problem of order reduction of the original

system (16) is equivalent to the problem of constructing the matrices M̃ , D̃,
K̃, and F̃ in (18) such that the transfer function (21), H̃(s), is a ‘sufficiently
accurate’ approximation to the original transfer function (20), H(s).
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3.2 Structure preservation

Recall that the linear dynamical system (16) with data matrices given in (15)
describes the behavior of a given RCL circuit. Therefore, the reduced-order
model (18) should be constructed such that it corresponds to an actual RCL
circuit. This is the problem of structure-preserving model order reduction of
RCL circuits: Generate matrices M̃ , D̃, K̃, and F̃ such that the reduced-order
model (18) can be synthesized as an RCL circuit. Obviously, (18) corresponds
to an actual RCL circuit if the matrices M̃ , D̃, K̃, and F̃ are constructed
such that they have analogous structures as the matrices M , D, K, and F

of the original given RCL circuit. Unfortunately, for general RCL circuits,
no order reduction method is known that is guaranteed to preserve all these
‘RCL structures’. However, the SPRIM algorithm described in Section 6 below
does generate reduced-order models (18) with matrices M̃ , D̃, K̃, and F̃ that
preserve the block structure (15) of the original matrices M , D, K, and F , as
well as the semidefiniteness properties (17) of M , D, and K.

For the special cases of RC, RL, and LC circuits, there are variants of
the general MPVL (Matrix-Padeé Via Lanczos) method [11] that do preserve
the RC, RL, and LC structures, respectively. In particular, the SyPVL and
SyMPVL algorithms are procedures for for generating reduced-order models
that can be synthesized as RC, RL, and LC circuits, respectively; see [22, 23,
24].

3.3 Passivity

An important property of general RCL circuits is passivity. Roughly speaking,
a system is passive if it does not generate energy. In particular, any RCL
circuit is passive. For linear dynamical systems of the form (16), passivity is
equivalent to positive realness of the associated transfer function (20), H(s);
see, e.g., [2, 30]. The general definition of positive realness is as follows.

Definition 1. An m × m-matrix-valued function H : C 7→ (C ∪∞)
m×m

is

called positive real if the following three conditions are satisfied :

(i) H is analytic in C+ := { s ∈ C | Re s > 0 };

(ii) H(s) = H(s) for all s ∈ C;

(iii) H(s) + (H(s))∗ � 0 for all s ∈ C+.

Since any RCL circuit is passive, positive realness of the reduced-order
transfer function (21), H̃(s), is a necessary condition for the associated
reduced-order model (18) to be synthesizable as an actual RCL circuit. How-
ever, in general, positive realness of H̃(s) is not a sufficient condition. Nev-
ertheless, any reduced-order model (18) with a positive real transfer func-
tion (21) can be synthesized as an actual physical electronic circuit, but it
may contain other electronic devices besides resistors, capacitors, and induc-
tors. We refer the reader to [2] for a discussion of the problem of synthesis of
positive real transfer functions.
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4 Equivalent first-order form of integro-DAEs

The system of integro-DAEs (16) can also be formulated as an equivalent
first-order system. In this section, we discuss such a first-order formulation
and some of its properties.

4.1 First-order formulation

Consider equations (11) and their equivalent statement (16) as a system of
integro-DAEs. It turns out that (11) (and thus (16)) can be rewritten as a
first-order time-invariant linear dynamical system of the form

E
d

dt
x(t) = Ax(t) + B u(t),

y(t) = BT x(t),

(22)

with initial conditions
x(0) = x(0).

Indeed, by adding the vector of inductance currents, il(t), to the original state-
space vector (13), z(t), and using the last relation of (10), one readily verifies
that the equations (11) can be stated in the form (22) with data matrices,
state-space vector, and initial vector given by

A := −





D11 Al Av

−AT
l 0 0

−AT
v 0 0



 , E :=





M11 0 0

0 L 0

0 0 0



 ,

B :=





Ai 0

0 0

0 −I



 , x(t) :=





v(t)

il(t)

iv(t)



 , and x(0) :=





v(0)

0

iv(0)



 .

(23)

Here, M11 and D11 are the matrices defined in (12). Moreover, A, E ∈ RN×N ,
B ∈ RN×m, and x(0) ∈ RN×m, where N denotes the state-space dimension of
the system (22). We remark that N is the sum of the state-space dimension
N0 of the equivalent system of integro-DAEs (16) and the number of inductors
of the RCL circuit. Note that, in (22), the input vector u(t) and the output
vector y(t) are the same as in (16), namely the vectors defined in (14). In
particular, both systems (16) and (22) have m inputs and m outputs.

4.2 Regularity of the first-order matrix pencil

Next, we consider the matrix pencil

s E − A, s ∈ C, (24)
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where A and E are the matrices defined in (23). The pencil (24) is said to be
regular if the matrix sE−A is singular only for finitely many values of s ∈ C.
In this subsection, we present conditions for regularity of (24).

In view of the definitions of A and E in (23), we have

s E − A =





s M11 + D11 Al Av

−AT
l s L 0

−AT
v 0 0



 for all s ∈ C. (25)

Now assume that s 6= 0, and set

U1(s) =





I − 1
s
AlL

−1 0

0 I 0

0 0 I



 and U2(s) =





I 0 0
1
s
L−1AT

l I 0

0 0 I



 . (26)

Then, one readily verifies that, for all s 6= 0,

U1(s)
(

s E − A
)

U2(s) =





s M11 + D11 + 1
s

K11 0 Av

0 s L 0

−AT
v 0 0



 , (27)

where K11 is the matrix defined in (12).
We now use the relation (27) to establish a necessary and sufficient con-

dition for regularity of (24). Recall from (3) that Ar, Ac, Al, and Av are the
submatrices of the reduced incidence matrix A0 corresponding to the resistors,
capacitors, inductors, and voltage sources of the RCL circuit, respectively.

Theorem 1. (Regularity of the matrix pencil (24).)

(a) The pencil (24) is regular if, and only if, the matrix-valued function

F (s) :=

[

F11(s) Av

−AT
v 0

]

, where F11(s) := s M11 + D11 +
1

s
K11, (28)

is regular, i.e., the matrix F (s) is singular only for finitely many values

of s ∈ C, s 6= 0.

(b) The pencil (24) is regular if, and only if, the matrix Av has full column

rank and the matrix

A1 := [Ar Ac Al Av ] (29)

has full row rank.

Proof. Part (a) readily follows from (27) and the fact that, in view of (5),
the matrix L ≻ 0 is nonsingular. Indeed, since the matrices (26), U1(s) and
U2(s), are nonsingular for all s 6= 0, it follows from (27) that the pencil (24)
is regular if, and only if, the matrix-valued function on the right-hand side
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of (27) is regular. Since L is nonsingular, it follows that for the matrix-valued
function (27) is regular if, and only if, F (s), is regular.

To prove part (b), we make use of part (a). and we show that F (s) is
regular if, and only if Av has full column rank and the matrix A1 has full row
rank. Suppose Av does not have full column rank, and let c 6= 0 a nontrivial
vector in kerAv. Then

F (s)

[

0

c

]

= 0,

[

0

c

]

6= 0,

and thus F (s) is singular for all s. Therefore, we can assume that

kerAv = { 0 }. (30)

Next, note that the function s detF (s) is a polynomial in s, and thus F (s) is
regular unless detF (s) = 0 for all s. Therefore, it is sufficient to consider the
matrix (28), F (s), for s > 0 only. Using (12) and the definition (29) of A1,
the submatrix F11(s) of F (s) can be expressed as follows:

F11(s) = [Ar Ac Al ]





s C 0 0

0 R−1 0

0 0 1
s
L−1



 [Ar Ac Al ]
T

. (31)

In view of (5), the 3 × 3 block diagonal matrix in (31) is symmetric positive
definite for s > 0. It follows that for all s > 0, we have

F11(s) � 0 and ker
(

F11(s)
)

= ker
(

[Ar Ac Al ]
T
)

. (32)

Finally, we apply Theorem 3.2 from [6], which gives a necessary and sufficient
condition for the nonsingularity of 2× 2 block matrices of the form (28) with
subblocks satisfying (30) and the first condition in (32). By [6, Theorem 3.2],
it follows that for s > 0, the matrix F (s) is nonsingular if, and only if,

ker
(

F11(s)
)

∩ ker
(

AT
v

)

= { 0 }. (33)

Using the second relation in (32), we can rewrite (33) as follows:
(

ker
(

AT
1

)

=
)

ker
(

[Ar Ac Al Av ]
T
)

= { 0 }.

This condition is equivalent to the matrix (29), A1, having full row rank, and
thus the proof of part (b) is complete. ⊓⊔

Remark 1. In terms of the given RCL circuit, the rank conditions in part (b)
of Theorem 1 have the following meaning. In view of (3), the matrix (29), A1,
is the reduced incidence matrix of the subcircuit obtained from the given RCL
circuit by deleting all independent current sources. This matrix has full row
rank if this subcircuit is connected; see, e.g., [7, Theorem 9-6]. The matrix Av

is the reduced incidence matrix of the subcircuit consisting of only the inde-
pendent voltage sources. This matrix has full column rank if this subcircuit
does not contain any closed (undirected) loops; see, e.g., [7, Section 9-8].
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Since the two circuit conditions in Remark 1 are satisfied for any practical
RCL circuit, from now on, we assume that the matrix pencil (24) is regular.

4.3 First-order transfer function

In analogy to (20), the transfer function of the first-order formulation (22) is
the matrix-valued rational function given by

H : C 7→ (C ∪∞)m×m
, H(s) = BT

(

s E − A
)−1

B. (34)

We remark that (34) is a well-defined rational function since the matrix pencil
s E−A is assumed to be regular. Recall that the system of integro-DAEs (16)
and its first-order formulation (22) have the same input and output vectors.
Since transfer functions only depend on the input-output behavior of the
system, it follows that the transfer functions (20) and (34) are identical, i.e.,

H(s) = BT
(

s E − A
)−1

B

= FT
(

s M + D +
1

s
K

)−1

F for all s ∈ C.
(35)

Here, A, E, B and M , D, K, F are the matrices given in (23) and (15),
respectively. In particular, the regularity of the matrix pencil s E − A also
guarantees the existence of the transfer function (20) of the system of integro-
DAEs (16).

Remark 2. The relation (35) can also be verified directly using the iden-
tity (27), (26), the definition of the matrix B in (23), and the definitions
of the matrices M , D, K, and F in (15).

Remark 3. The definitions of A and E in (23), together with (5) and (17),
imply that

−A − A∗ � 0 and E � 0. (36)

The matrix properties (36) in turn guarantee that the transfer function (34),
H satisfies all conditions of Definition 1, and thus H is positive real.

4.4 Reduced-oder models

A reduced-order model of the linear dynamical system (22) is a system of the
same form as (22), but with smaller state-space dimension n (< N). More
precisely, a reduced-order model of (22) with state-space dimension n is a
system of the form

En

d

dt
x̃(t) = Anx̃(t) + Bnu(t),

ỹ(t) = BT
n x̃(t),

(37)
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with initial conditions
x̃(0) = x̃(0), (38)

where An and En are n × n matrices, Bn is an n × m matrix, and x̃(0) is a
vector of length n.

Provided that the reduced-order matrix pencil

s En − An, s ∈ C, (39)

is regular, the transfer function of the reduced-order model (37) is given by

Hn : C 7→ (C ∪∞)m×m
, Hn(s) = BT

n

(

s En − An

)−1
Bn. (40)

5 Krylov-subspace projection and PRIMA

In this section, we review the generation of reduced-order models (37) via
projection, in particular onto block Krylov subspaces.

5.1 Order reduction via projection

A simple approach to model order reduction is to use projection. Let

Vn ∈ C
N×n, rankVn = n, (41)

be any given matrix with full column rank. Then, by setting

An := V ∗

n AVn, En := V ∗

n EVn, Bn := V ∗

n B (42)

one obtains reduced data matrices that define a reduced-order model (37).
From (36) and (42), it readily follow that

−An − A∗

n � 0 and En � 0. (43)

If in addition, the matrix Vn is chosen as a real matrix and the matrix pencil
(39) is assumed to be regular, then the reduced-order transfer function (40),
Hn, satisfies all conditions of Definition 1, and thus Hn is positive real; see
[15, Theorem 13].

5.2 Block Krylov subspaces

The simple projection approach (42) yields powerful model-order reduction
techniques when the columns of the matrix (41), Vn, are chosen as basis vectors
of certain block Krylov subspaces.

To this end, let s0 ∈ C be a suitably chosen expansion point such that
the matrix s0 E −A is nonsingular. Note that, in view of the regularity of the
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matrix pencil (24), there are only finitely many values of s0 for which s0 E−A

is singular. We can then rewrite the transfer function (34), H , as follows:

H(s) = BT
(

s0 E − A + (s − s0)E
)−1

B

= BT
(

I + (s − s0)M
)−1

R,
(44)

where
M :=

(

s0 E − A
)−1

E, R :=
(

s0 E − A
)−1

B. (45)

We will use block Krylov subspaces induced by the matrices M and R in (45)
to generate reduced-order models.

Next, we briefly review the notion of block Krylov subspaces; see [1] for a
more detailed discussion. The matrix sequence

R, MR, M2R, . . . , M j−1R, . . .

is called a block Krylov sequence. The columns of the matrices in this sequence
are vectors of length N , and thus at most N of these columns are linearly
independent. By scanning the columns of the matrices in the block Krylov
sequence from left to right and deleting each column that is linearly dependent
on earlier columns, we obtain the deflated block Krylov sequence

R1, MR2, M
2R3, . . . , M

j−1R, . . . , M jmax−1Rjmax
. (46)

This process of deleting linearly dependent vectors is called deflation. In (46),
each Rj is a submatrix of Rj−1. Denoting by mj the number of columns of
Rj , we thus have

m ≥ m1 ≥ m2 ≥ · · · ≥ mj ≥ · · · ≥ mjmax
≥ 1. (47)

By construction, the columns of the matrices (46) are linearly independent,
and for each n, the subspace spanned by the first n of these columns is
called the n-th block Krylov subspace (induced by M and R) and denoted
by Kn(M, R) in the sequel.

For j = 1, 2, . . . , jmax, we set

n(j) := m1 + m2 + · · · + mj . (48)

For n = n(j), the n-th block Krylov subspace is given by

Kn(M, R) = colspan [R1 MR2 M2R3 · · · M jRj ] .

Here and in the sequel, we use colspanV to denote the subspace spanned by
the columns of the matrix V . Finally, we remark that, by (47), n(j) ≤ m · j
with n(j) = m · j if no deflation has occurred.
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5.3 Projection onto block Krylov subspaces and PRIMA

PRIMA [28, 29, 30] combines projection with block Krylov subspaces. More
precisely, the n-th PRIMA reduced-order model is defined by (37) and (42),
where the matrix (41), Vn, is chosen such that its columns span the n-th block
Krylov subspace Kn(M, R), i.e., colspanVn = Kn(M, R). We refer to any such
matrix Vn as a basis matrix of the n-th Krylov subspace Kn(M, R).

Although the PRIMA reduced-order models are defined by simple pro-
jection, the combination with block Krylov subspaces guarantees that the
PRIMA reduced-order models satisfy a Padé-type approximation property.
For the special case s0 = 0 and basis vectors generated by a block Arnoldi
process without deflation, this Padé-type approximation property was first
observed in [28]. In [13], this result was extended to the most general case
where possibly nonzero expansion points s0 are allowed and where the under-
lying block Krylov method allows the necessary deflation of linearly dependent
vectors. The result can be stated as follows; for a proof, we refer the reader
to [15, Theorem 7].

Theorem 2. Let n = n(j) be of the form (48) for some 1 ≤ j ≤ jmax, and

let Vn ∈ C
N×n be any matrix such that

colspanVn = Kn(M, R). (49)

Then the transfer function (40), Hn, of the reduced-order model (37) defined

by the projected data matrices (42) satisfies:

Hn(s) = H(s) + O
(

(s − s0)
j
)

. (50)

If in addition, the expansion point s0 is chosen to be real,

s0 ∈ R, (51)

then the matrices (45), M and R, are real and the basis matrix Vn in (49) can
be constructed to be real. In fact, any of the usual Krylov subspace algorithms
for constructing basis vectors for Kn(M, R), such as the band Lanczos method
or the band Arnoldi process [16], generate a real basis matrix Vn. In this case,
as mentioned at the end of Section 5.1, the transfer function Hn is positive
real, and thus the PRIMA reduced-order models are passive.

On the other hand, the data matrices (42) of the PRIMA reduced-order
models are full in general, and thus, PRIMA does not preserve the special
block structure of the original data matrices (23).

6 The SPRIM algorithm

In this section, we describe the SPRIM algorithm [17, 20], which unlike
PRIMA, preserves the block structure of the data matrices (23).
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6.1 The projection theorem

It turns out that in order to guarantee a Padé-type property (50) of the
reduced-order transfer function, the condition (49) on the matrix Vn can be
relaxed. In fact, let V̂ ∈ CN×n̂ be any matrix with the property

Kn(M, R) ⊆ colspan V̂ . (52)

Then the statement of Theorem 2 remains correct when (49) is replaced by
the weaker condition (52). This result, which is sometimes referred to as the
projection theorem, was derived by Grimme in [25]. A different proof of the
projection theorem is given in [18, Theorem 8.6.1]. Note that, in view of (52),
V̂ must have at least as many columns as any matrix Vn satisfying (49).

The projection theorem can be used to devise an order reduction algorithm
that in the Padé-type sense (50), is at least as accurate as PRIMA, but un-
like PRIMA preserves the block structure of the original data matrices (23).
Indeed, let Vn be any basis matrix of the n-th Krylov subspace Kn(M, R). Let

Vn =





V̂1

V̂2

V̂3





be the partitioning of Vn corresponding to the block sizes of the matrices A

and E in (23), and formally set

V̂ =





V̂1 0 0

0 V̂2 0

0 0 V̂3



 . (53)

Since Vn is a basis matrix of Kn(M, R), the matrix (53) satisfies (52). Thus,
we can replace Vn by V̂ in (42) and still obtain a reduced-order model (37)
that satisfies a Padé-type property (50). In view of the block structures of the
original data matrices (23) and of the matrix (53), the reduced-order matrices
are of the form

An = −





D̃11 Ãl Ãv

−ÃT
l 0 0

−ÃT
v 0 0



 , En =





M̃11 0 0

0 L̃ 0

0 0 0



 , Bn =





Ãi 0

0 0

0 −V̂ T
3



 ,

and thus the block structure of the original data matrices (23) is now pre-
served. The resulting order reduction procedure is the most basic form of the
SPRIM algorithm.

We remark that in this most basic form of SPRIM, the relative sizes of the
blocks in (23) are not preserved. Recall that the sizes of the three diagonal
blocks of A and E in (23) are the number of interconnections, the number of
inductors, and the number of voltage sources, respectively, of the given RCL
circuit. These numbers are very different in general. Typically, there are only
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very few voltage sources. Similarly, the number of inductors is typically sig-
nificantly smaller than the number of interconnections. Consequently, unless
n is smaller than the number of voltage sources, the subblock V̂3 does not
have full column rank. The sizes of the subblocks in the third block rows and
columns of the reduced-order data matrices can thus be reduced further by
replacing V̂3 with a matrix whose columns span the same subspace as V̂3, but
which has full column rank, before the projection is performed. Similar size
reductions are possible if V̂2 or V̂1 do not have full column rank.

6.2 SPRIM

The basic form of SPRIM, with possible size reduction of the subblocks V̂l,
l = 1, 2, 3, as an optional step, can be summarized as follows.

Algorithm 1 (SPRIM for general RCL circuits)

• Input: matrices of the form

A = −





D11 Al Av

−AT
l 0 0

−AT
v 0 0



 , E =





M11 0 0

0 L 0

0 0 0



 , B =





Ai 0

0 0

0 −I



 ,

where D11, M11 � 0;
an expansion point s0 ∈ R.

• Formally set

M = (s0 E − A)
−1

E, R = (s0 E − A)
−1

B.

• Until n is large enough, run your favorite block Krylov subspace method

(applied to M and R) to construct the columns of the basis matrix

Vn = [ v1 v2 · · · vn ]

of the n-th block Krylov subspace Kn(M, R), i.e.,

colspanVn = Kn(M, R).

• Let

Vn =





V̂1

V̂2

V̂3





be the partitioning of Vn corresponding to the block sizes of A and E.

• (Optional step) For l = 1, 2, 3 do:

If rl := rank V̂l < n, determine an N × rl matrix Ṽl with

colspan V̂l = colspan Ṽl, rank Ṽl = rl,

and set V̂l := Ṽl.
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• Set
D̃11 = V̂ ∗

1 D11V̂1, Ãl = V̂ ∗
1 AlV̂2, Ãv = V̂ ∗

1 AvV̂3,

M̃11 = V̂ ∗
1 M11V̂1, L̃ = V̂ ∗

2 LV̂2, Ãi = V̂ ∗
1 Ai.

• Output: the data matrices

An = −





D̃11 Ãl Ãv

−ÃT
l 0 0

−ÃT
v 0 0



 , En =





M̃11 0 0

0 L̃ 0

0 0 0



 ,

Bn =





Ãi 0

0 0

0 −V̂ T
3





(54)

of the SPRIM reduced-order model

En

d

dt
x̃(t) = Anx̃(t) + Bnu(t),

ỹ(t) = BT
n x̃(t),

We remark that the main computational cost of the SPRIM algorithm is
running the block Krylov subspace method to obtain V̂n. This is the same
as for PRIMA. Thus generating the PRIMA reduced-order model and the
SPRIM reduced-order model Hn involves the same computational costs. Im-
plementation details of the SPRIM algorithm can be found in [20].

7 Padé-type approximation property of SPRIM

While PRIMA and SPRIM generate different reduced-order models, the pro-
jection theorem suggests that both models have comparable accuracy in the
sense of the Padé-type approximation property (50). However, as long as the
expansion point s0 is chosen to be real, cf. (51), numerical experiments show
that SPRIM is significantly more accurate than PRIMA; see the numerical
results in Section 8. This higher accuracy is a consequence of the structure
preservation of the SPRIM reduced-order data matrices (54). We stress that
the restriction (51) of the expansion point s0 to real values is needed anyway
for both PRIMA and SPRIM, in order to guarantee that the PRIMA and
SPRIM reduced-order models are passive.

For the special case of RCL circuits with current sources only, which means
that the third block rows and columns in (54) are not present, it was proven
in [18, Theorem 8.7.2] that the SPRIM reduced-order transfer function satis-
fies (50) with j replaced by 2j.

A recent result [19] shows that the higher accuracy of SPRIM holds true in
the more general context of Padé-type model order reduction of J-Hermitian
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linear dynamical systems. A square matrix A is said to be J-Hermitian with
respect to a given nonsingular matrix J of the same size as A if

JA = A∗J.

Clearly, for RCL circuits, in view of (23), the original data matrices A and E

are J-Hermitian with respect to the indefinite matrix

J =





I 0 0
0 −I 0
0 0 −I



 .

Furthermore, due to the structure preservation of SPRIM, the reduced-order
data matrices An and En in (54) are Jn-Hermitian with respect to a matrix
Jn of the same form as J , but with correspondingly smaller blocks. Finally,
the matrix (53),V̂ , which is used to generate the SPRIM models, satisfies the
compatibility condition

JV̂ = V̂ Jn.

The result in [19] shows that for J-Hermitian data matrices and Jn-Hermitian
reduced-order data matrices, the compatibility condition implies the higher
accuracy of Padé-type reduced-order models. In particular, as a special case
of this more general result, we have the following theorem.

Theorem 3. Let n = n(j) be of the form (48) for some 1 ≤ j ≤ jmax, and

assume that s0 ∈ R. Then the transfer function (40), Hn, of the SPRIM
reduced-order model (37) defined by the projected data matrices (54) satisfies:

Hn(s) = H(s) + O
(

(s − s0)
2j

)

. (55)

8 Numerical examples

In this section, we present results of some numerical experiments with the
SPRIM algorithm. These results were first reported in [17]. The results in this
section illustrate the higher accuracy of the SPRIM reduced-order models vs.
the PRIMA reduced-order models.

8.1 A PEEC circuit

The first example is a circuit resulting from the so-called PEEC discretiza-
tion [32] of an electromagnetic problem. The circuit is an RCL network con-
sisting of 2100 capacitors, 172 inductors, 6990 inductive couplings, and a single
resistive source that drives the circuit. The circuit is formulated as a 2-port.
We compare the PRIMA and SPRIM models corresponding to the same di-
mension n of the underlying block Krylov subspace. The expansion point
s0 = 2π × 109 was used. In Figure 1, we plot the absolute value of the (2, 1)
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component of the 2 × 2-matrix-valued transfer function over the frequency
range of interest. The dimension n = 120 was sufficient for SPRIM to match
the exact transfer function. The corresponding PRIMA model of the same
dimension, however, has not yet converged to the exact transfer function in
large parts of the frequency range of interest. Figure 1 clearly illustrates the
better approximation properties of SPRIM due to matching of twice as many
moments as PRIMA.
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Fig. 1. |H2,1| for PEEC circuit

8.2 A package model

The second example is a 64-pin package model used for an RF integrated cir-
cuit. Only eight of the package pins carry signals, the rest being either unused
or carrying supply voltages. The package is characterized as a 16-port com-
ponent (8 exterior and 8 interior terminals). The package model is described
by approximately 4000 circuit elements, resistors, capacitors, inductors, and
inductive couplings. We again compare the PRIMA and SPRIM models cor-
responding to the same dimension n of the underlying block Krylov subspace.
The expansion point s0 = 5π×109 was used. In Figure 2, we plot the absolute
value of one of the components of the 16× 16-matrix-valued transfer function
over the frequency range of interest. The state-space dimension n = 80 was
sufficient for SPRIM to match the exact transfer function. The corresponding
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PRIMA model of the same dimension, however, does not match the exact
transfer function very well near the high frequencies; see Figure 3.
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Fig. 2. The package model

8.3 A mechanical system

Exploiting the equivalence (see, e.g., [27]) between RCL circuits and mechan-
ical systems, both PRIMA and SPRIM can also be applied to reduced-order
modeling of mechanical systems. Such systems arise for example in the mod-
eling and simulation of MEMS devices. In Figure 4, we show a comparison
of PRIMA and SPRIM for a finite-element model of a shaft. The expansion
point s0 = π × 103 was used. The dimension n = 15 was sufficient for SPRIM
to match the exact transfer function in the frequency range of interest. The
corresponding PRIMA model of the same dimension, however, has not con-
verged to the exact transfer function in large parts of the frequency range
of interest. Figure 4 again illustrates the better approximation properties of
SPRIM due to the matching of twice as many moments as PRIMA.

9 Concluding remarks

In this paper, we reviewed the formulation of general RCL circuits as linear
dynamical systems and discussed the problem of structure-preserving model
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Fig. 3. The package model, high frequencies
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reduction of such systems. We described the general framework of order reduc-
tion via projection and discussed two state-of-the-art projection algorithms,
namely PRIMA and SPRIM.

While there has been a lot of progress in Krylov subspace-based structure-
preserving model reduction of large-scale linear dynamical systems in re-
cent years, there are still many open problems. All state-of-the-art structure-
preserving methods, such as SPRIM, first generate a basis matrix of the under-
lying Krylov subspace and then employ explicit projection using some suitable
partitioning of the basis matrix to obtain a structure-preserving reduced-order
model. In particular, there are two major problems with the use of such ex-
plicit projections. First, it requires the storage of the basis matrix, which
becomes prohibitive in the case of truly large-scale linear dynamical systems.
Second, the approximation properties of the resulting structure-preserving
reduced-order models are far from optimal, and they show that the available
degrees of freedom are not fully used. It would be highly desirable to have
structure-preserving reduction method that do no involve explicit projection
and would thus be applicable in the truly large-scale case. Other unresolved
issues include the automatic and adaptive choice of suitable expansion points
s0 and robust and reliable stopping criteria and error bounds.
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