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Abstract In recent years, model order reduction techniques based on Krylov sub-
spaces have become the methods of choice for generating small-scale macromodels
of the large-scale multi-port RCL networks that arise in VLSI interconnect analysis.
A difficult and not yet completely resolved issue is how to ensure that the resulting
macromodels preserve all the relevant structures of the original large-scale RCL net-
works. In this paper, we present a brief review of how Krylov subspace techniques
emerged as the algorithms of choice in VLSI circuit simulation, describe the current
state-of-art of structure preservation, discuss some recent advances, and mention
open problems.

1 Introduction

In 1990,Asymptotic Waveform Evaluation(AWE) was introduced as a generaliza-
tion of the classical Elmore delay to obtain more accurate timing estimates for the
increasingly larger RCL networks arising in VLSI interconnect modeling. It was
quickly realized that the mathematical concept behind AWE is equivalent to model
order reduction based on Padé approximation. The connection between Krylov
subspaces and Padé approximation then provided the basis for devising Krylov
subspace-based methods for generating macromodels of large-scale multi-port RCL
networks. These algorithms satisfy some of the same key properties as AWE, such
as moment matching, but they avoid AWE’s unstable numericalbehavior due to
round-off errors and explicit moment computations.

Generating small-scale macromodels of large-scale RCL networks is a special
instance of the problem ofModel Order Reduction(MOR) of large-scale systems,
which is a classical and well-studied subject of the area ofControl Theoryin mathe-
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matics. However, in control theory, the systems to be reduced are of relatively small
or at most moderate size, and the methods developed in this area typically are too
computationally expensive to be viable for large-scale systems. The need to effi-
ciently reduce the ever-increasing sizes of the RCL networks used to model VLSI
interconnect led to a renewed interest in MOR and especiallyin the development of
algorithms that are applicable to large-scale systems.

Generally, Krylov subspace-based MOR algorithms have emerged as powerful
and versatile tools for model order reduction of large-scale systems. Even though
many of these algorithms were originally proposed in the context of VLSI intercon-
nect analysis, they have found applications in many other areas, such as structural
analysis and computational acoustics. On the other hand, the problem of MOR of
large-scale RCL networks has brought the issue of structurepreservation to promi-
nence. The ideal MOR algorithm for large-scale RCL networkswould generate
small-scale macromodels in the form of RCL networks. Krylovsubspace-based
MOR algorithms, however, are linear algebra techniques, and they produce macro-
models described by data matrices, rather than networks. A more modest goal then
is to generate macromodels that preserve essential properties of RCL networks, such
as passivity and reciprocity.

The Passive Reduced-order Interconnect Macromodeling Algorithm (PRIMA)
was the first Krylov subspace-based method that produces passive macromodels of
RCL networks. The key insight behind PRIMA is that passivitycan be preserved by
using explicit projection of the data matrices describing the original RCL network
onto Krylov subspaces and by giving up about half the moment matching satisfied
by MOR based on Padé approximation. On the other hand, PRIMAdoes not pre-
serve other structures inherent to RCL networks, such as reciprocity, which makes
it harder to synthesize the PRIMA macromodels as actual electrical networks.

TheStructure-Preserving Reduced-order Interconnect Macromodeling(SPRIM)
algorithm was introduced as a structure-preserving variant of PRIMA that over-
comes many of the shortcomings of PRIMA and at the same time, is more accu-
rate than PRIMA. The purpose of this paper is twofold. First,we review PRIMA
and SPRIM and their basic properties. Second, we discuss some recent advances
in structure-preserving MOR. In particular, we describe a thick-restart Krylov sub-
space approach that allows the use of complex and multiple expansion points for the
underlying moment-matching property, and we discuss some techniques designed
for the efficient implementation of this approach.

This paper is organized as follows. In Section 2, we summarize the standard de-
scription of general RCL networks and some of their key properties. In Section 3,
we present a brief review of the evolution of Krylov subspace-based model order
reduction from moment matching to the currently dominatingparadigm of projec-
tion onto Krylov subspaces. In Sections 4 and 5, we describe PRIMA and SPRIM,
respectively. In Section 5, we discuss some recent advancesin adapting thick-restart
Krylov subspace techniques to the problem of model order reduction. Section 6 ad-
dresses some issues arising in moment matching with complexexpansion points.
Finally, we make some concluding remarks in Section 7.
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Throughout this paper the following notation is used. The set of real and com-
plex numbers is denoted byR andC, respectively. For general (real or complex)
matricesM =

[

mjk

]

, MT :=
[

mkj

]

is thetransposeof M , andMH :=
[

mkj

]

is
theHermitian (or complex conjugate) of M . Then×n identity matrix is denoted
by In, or simplyI if its size is apparent from the context. The zero matrix is denoted
by 0; its actual size will always be apparent from the context. The notationM � 0
(M ≻ 0) is used to indicate that a real or complex square matrixM is Hermitian
positive semidefinite(positive definite). If all entries of the matrixM � 0 (M ≻ 0)
are real, thenM is said to besymmetric positive semidefinite(positive definite). Fi-
nally, for a matrixV ∈ RN×n, we denote bycolspan V the linear subspace ofRN

spanned by the columns ofV . Note thatcolspan V has dimensionn if, and only if,
rank V = n.

2 Description of RCL Networks

An RCL networkis an electronic circuit with linear resistors, capacitors, inductors,
and independent voltage and current sources as its only elements. In this section,
we briefly review the standard description and some key properties of such RCL
networks.

2.1 RCL Network Equations

A system of equations describing any electronic circuit canbe obtained by com-
bining Kirchhoff ’s current laws(KCLs), Kirchhoff ’s voltage laws(KVLs), and the
branch constitutive relations(BCRs). The BCRs are the equations that describe the
electronic behavior of each of the circuit elements. For example, the BCR of a re-
sistor is Ohm’s law.

An elegant approach to formulating KCLs and KVLs for a given electronic cir-
cuit is based on the representation of the circuit topology as a directed graph; see,
e.g., [9, 33, 35, 32]. The edges of such a graph correspond to the elements of the
circuit, and the nodes correspond to the nodes of the circuit, which represent the in-
terconnections of the circuit elements. Each edgee can be expressed as an ordered
paire = (n1,n2) of nodesn1 andn2, where the direction ofe is fromn1 to n2. For
circuit elements for which the direction of the electric current through the element
is known beforehand, the direction of the associated edge ischosen accordingly. For
any other circuit element, an arbitrary direction is assigned to the associated edge.
If the computed electric current through an element is nonnegative, then the cur-
rent flow is in the direction of the edge; otherwise, the actual current flow is against
the direction of the edge. Such a directed graph can be described by itsincidence
matrix the rows and columns of which correspond to the nodes and edges, respec-
tively, and the entries of which are defined as follows. The column associated with
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edgee = (n1,n2) contains the entry “1” in the row position corresponding to node
n1, the entry “−1” in the row position corresponding to noden2, and zero entries
otherwise. Since the resulting matrix is always rank deficient, one deletes the row
associated with theground nodeof the circuit. We refer to the matrix obtained af-
ter this deletion as the incidence matrixA of the circuit. In terms ofA, all of the
circuit’s KCLs and KVLs can be stated compactly as follows:

A iE = 0 and AT v = vE . (1)

Here,iE is the vector the entries of which are the currents through all the circuit
elements,vE is the vector the entries of which are the voltages across allthe circuit
elements, andv is the vector the entries of which are the voltages at the nodes of the
circuit, except for the ground node at which the voltage is zero.

We now assume that the given electronic circuit is an RCL network. We use
subscriptsr, c, l, v, andi, to refer to edge quantities corresponding to the resistors,
capacitors, inductors, voltage sources, and current sources, respectively, of the given
RCL network. Moreover, we assume that the edges of the associated directed graph
are ordered according to element type. Consequently, the graph’s incidence matrix
A and the vectorsiE andvE can be partitioned as follows:

A =
[

Ar Ac Al Av Ai

]

, iE =













ir
ic
il
iv
ii













, vE =













vr

vc

vl

vv

vi













.

Furthermore, the BCRs for the resistors, capacitors, and inductors can be stated in
the following compact form:

vr(t) = Rir(t), ic(t) = C
d

dt
vc(t), vl(t) = L

d

dt
il(t). (2)

Here,R andC are diagonal matrices, the diagonal entries of which are theresis-
tances of the resistors and the capacitances of the capacitors, respectively, and in
particular,R ≻ 0 andC ≻ 0. The matrixL contains the inductances between the
inductors as its entries. If mutual inductances are included, thenL is a full matrix;
otherwise,L is also a diagonal matrix. In both cases,L ≻ 0. Therefore, the matrices
in (2) always satisfy

R ≻ 0, C ≻ 0, and L ≻ 0. (3)

Finally, the BCRs for the independent voltage and current sources of the RCL net-
work simply state that

vv(t) and ii(t) (4)

are given functions that can be chosen as inputs to the network, whereas

vi(t) and iv(t) (5)
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are unknown output functions that need to be determined as part of the problem of
solving the system of equations describing the given RCL network.

The KCLs and KVLs(1) together with the BCRs(2) yield a system of equations
for the unknown circuit quantitiesv(t), vE , andiE . The size of this system can be
reduced significantly by using some of the relations in(1) and(2) to eliminatevr,
vc, vl, ir, andic. This process is known as modified nodal analysis and resultsin
the system of equations

Ac CAT
c

d

dt
v(t)+Ar R−1AT

r v(t)+Al il(t)+Av iv(t) = −Ai ii(t),

L
d

dt
il(t)−AT

l v(t) = 0,

AT
v v(t) = vv(t)

(6)

for the remaining unknown quantitiesv(t), il(t), andiv(t); see, e.g., [6, Section 5.2]
or [21]. Recall from(4) that the functionsii(t) andvv(t) appearing on the right-
hand side of(6) are given. Furthermore, the unknown output functionvi(t) in (5)
can be easily obtained fromv(t) via the relation

vi(t) = AT
i v(t), (7)

which follows from the KVLs(1).
For the purpose of model order reduction, it is convenient tostate the equa-

tions(6) and(7) as adescriptor systemof the form

E
d

dt
x(t) = Ax(t)+Bu(t),

y(t) = BT x(t).

(8)

Here, we have set

u(t) :=

[−ii(t)

vv(t)

]

, y(t) :=

[

vi(t)

−iv(t)

]

, x(t) :=







v(t)

il(t)

iv(t)






, (9)

and

A :=







A11 −Al −Av

AT
l 0 0

AT
v 0 0






, E :=







E11 0 0

0 L 0

0 0 0






, B :=







Ai 0

0 0

0 −I






, (10)

where
A11 := −Ar R−1AT

r and E11 := Ac CAT
c . (11)

The vector-valued functionsu(t), y(t), andx(t) are calledinput vector, output vec-
tor, andstate-space vectorof the descriptor system(8). We denote bym the length
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of the input and output vectors and byN the length of the state-space vector. The
integerN is called thestate-space dimensionof (8). In view of (9), m is the to-
tal number of voltage and current sources of the given RCL network, andN is the
sum of the number of nodes (excluding the ground node), the number of inductors,
and the number of voltage sources. Note thatA, E ∈ RN×N , B ∈ RN×m, and
the matrixE is singular in general. Finally, we remark thatA andE satisfy the
semidefiniteness conditions

A+AT =







2A11 0 0

0 0 0

0 0 0






� 0 and E = ET � 0, (12)

which readily follow from(3), (10), and(11).

2.2 RCL Transfer Functions

The first relation of the descriptor system(8) represents a linear system of differ-
ential-algebraic equations. In Laplace domain, this relation is transformed into a
purely algebraic linear system that can be used to formally eliminate the state-space
vector. To this end, we denote bŷx(s), û(s), and ŷ(s) the Laplace transform of
x(t), u(t), andy(t), respectively. Application of the Laplace transform to thetime-
domain system(8) results in the Laplace-domain system

sE x̂(s) = Ax̂(s)+Bû(s),

ŷ(s) = BT x̂(s),
(13)

wheres ∈ C.
From now on, we assume that thematrix pencilsE−A is regular, i.e., the matrix

sE −A is singular only for finitely many values ofs ∈ C. We can then eliminate
x̂(s) from (13) to obtain the input-output relation

ŷ(s) = H(s) û(s), where H(s) := BT
(

sE−A
)−1

B. (14)

The functionH is called thetransfer functionof the descriptor system(8). We
remark thatH is a rationalm×m-matrix-valued function and that the potential
poles ofH are the values ofs ∈ C for which the matrixsE −A is singular. For
RCL networks with only current sources,û(s) andŷ(s) are the input currents and
output voltages of these sources, and thusH(s) is theimpedance matrixof the net-
work. Similarly,H(s) is theadmittance matrixfor RCL networks with only voltage
sources. For RCL networks with both voltage and current sources,H(s) is called a
hybrid matrixof the network; see, e.g., [1, Section 2.4].

Finally, we remark that the regularity assumption for the matrix pencilsE−A is
satisfied for any realistic RCL network. Indeed,sE−A is regular if, and only if, the
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subnetwork consisting of only the voltage sources of the RCLnetwork has no closed
(undirected) loops and the (undirected) graph corresponding to the subnetwork ob-
tained from the RCL network by deleting all its current sources is connected; see,
e.g., [20, Theorem 1].

2.3 Passivity

A physical system is said to bepassiveif it only consumes energy. Clearly, any RCL
network is passive.

It is well known [1] that passivity of a descriptor system(8) is equivalent to
positive realness of its associated transfer function(14), H . Here, a transfer function
H is said to bepositive realif it has no poles in the right half

C+ :=
{

s ∈ C
∣

∣ Re s > 0
}

of the complex plane and

H(s)+
(

H(s)
)H � 0 for all s ∈ C+.

Since RCL networks are passive, the associated transfer function H in (14) is
positive real. This fact can also be deduced directly from the semidefiniteness con-
ditions(12) by employing the following result, which can be found as Theorem 13
in [16].

Theorem 1. Let A, E ∈ RN×N and B ∈ RN×m be given matrices, and assume
thatA+AT � 0, E = ET � 0, and that the matrix pencilsE−A is regular. Then,
the function

H(s) := BT
(

sE−A
)−1

B

is positive real.

2.4 Reciprocity

A second important property of RCL networks isreciprocity, which represents a
certain symmetry of the input-output behavior of the network; see, e.g., [36] and [1,
Section 2.8]. For RCL networks with only current sources, reciprocity is equivalent
to the symmetry of the impedance matrixH(s), i.e.,H(s) = H(s)T for all s ∈ C.
Similarly, reciprocity is equivalent to the symmetry of theadmittance matrixH(s)
for RCL networks with only voltage sources.

For general RCL networks withmi current andmv voltages sources, reciprocity
is equivalent to the transfer functionH(s) being symmetric with respect to thesig-
nature matrix
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Σ :=

[

Imi
0

0 −Imv

]

∈ R
m×m, m = mi +mv. (15)

Here,H is said to besymmetric with respect toΣ if H(s)Σ = Σ (H(s))T for all
s ∈ C. Note that the definition(15) of the signature matrix assumes the ordering(9)
of the input and output vectorsu andy. If a different ordering foru andy is used,
then the diagonal entries ofΣ need to be permuted accordingly.

It turns out that reciprocity follows easily from the block structure of the matrices
A, E, andB defined in(10) and from the symmetry of the diagonal blocks ofA and
E. In fact, we have the following theorem the proof of which is straightforward and
left as an exercise to the reader.

Theorem 2. Let A, E ∈ RN×N andB ∈ RN×m be matrices with block structures
of the form

A =







A11 −A12 −A13

AT
12 0 0

AT
13 0 0






, E =







E11 0 0

0 E22 0

0 0 0






, B =







B11 0

0 0

0 B32






,

where the sizes of the blocks are the same as in(10) and

A11 = AT
11, E11 = ET

11, E22 = ET
22.

Then, the function
H(s) := BT

(

sE−A
)−1

B

is symmetric with respect to the signature matrixΣ defined in(15).

3 A Brief Review of Krylov Subspace-Based Model Order
Reduction

In this section, we present a brief review of the evolution ofKrylov subspace-based
model order reduction from moment matching to the currentlydominating paradigm
of projection onto Krylov subspaces.

3.1 Moment Matching and Pad́e Approximation

The Elmore delay [11] is a classical, simple metric for estimating signal delays in
electronic networks. In 1990,Asymptotic Waveform Evaluation(AWE) [31] was
introduced as a generalization of the Elmore delay to obtainmore accurate timing
estimates for the large RCL networks arising in VLSI interconnect modeling; see,
e.g., [6].
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To illustrate the AWE approach, we consider the special caseof RC networks
driven by a single voltage source. The transfer functionH is then scalar-valued and
represents the admittance of the RC network. The Taylor expansion of H about
s0 = 0 is given by

H(s) = µ0 +µ1s+µ2s
2 + · · ·+µjs

j + · · · , (16)

where theµj ’s are the so-calledmoments. Suppose we are trying to approximateH
by a rational functionH1 of the form

H1(s) =
a1

s− b1
, where a1, b1 ∈ R. (17)

Given the first two moments,µ0 andµ1, of the transfer function(16), H , we can
determine values of the parametersa1, b1 in (17) such that the Taylor expansions of
H1 andH abouts0 = 0 agree in the first two moments, i.e.,

H1(s) = H(s)+O
(

s2
)

. (18)

The last condition is satisfied if, and only if,a1 = −µ2
0/µ1 andb1 = µ0/µ1. More-

over, one can show thatµ0 > 0 andµ1 < 0, and thusa1 > 0 andb1 < 0. It follows
that

R := − b1
a1

> 0 and C :=
a1

b21
> 0.

Furthermore, it is easy to verify that for these values ofR andC, the approximate
transfer function(17), H1, is the admittance of the simple RC network shown in
Figure 1. The impulse response of this network is given byi(t) = i(0)exp(−t/τ),
whereτ := RC is the Elmore delay of the original given RC network. Note that the

Fig. 1 Synthesis of the
approximate transfer func-
tion (17), H1, as an RC
network

v(t)

i(t) R

C

RC network in Figure 1 represents a synthesis of the approximation defined by the
moment-matching property(18).

AWE generalizes the‘one-pole’ approximation(17) of the transfer function(16),
H , of the given RC network to a general approximationHn with n poles. More
precisely,Hn is of the form

Hn(s) =
a1

s− b1
+

a2

s− b2
+ · · ·+ an

s− bn

, (19)
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where the2n free parametersa1,a2, . . . ,an andb1, b2, . . . , bn are now chosen such
that the Taylor expansions ofHn andH abouts0 = 0 agree in the first2n moments,
i.e.,

Hn(s) = H(s)+O
(

s2n
)

. (20)

The property(20) is often referred to asmoment matching. The corresponding trans-
fer functionHn is an optimal approximation to the original transfer functionH in
the sense that among all functions of the form(19), Hn matches the maximum
possible number of moments. Such optimal approximations are calledPad́e approx-
imants[5].

There are two major issues with the original AWE approach. First, the computa-
tion of Hn via explicitly generating the2n momentsµ0,µ1, . . . ,µ2n−1 is extremely
sensitive to numerical round-off errors and thus is viable only for very small val-
ues ofn, typically n ≤ 10; we refer the reader to [12, 13] for a discussion of this
issue and for numerical examples. The problem can be resolved by generating the
necessary moment information implicitly, by exploiting the connection of moment
matching and Krylov subspace methods; see Section 3.3.

The second, more fundamental issue is that for general RCL networks, reduced-
order transfer functions defined via Padé approximation donot preserve essential
properties, such as passivity and reciprocity, of the original network. In fact, preser-
vation of these properties can only be guaranteed for the special cases of RC, RL,
and LC networks; see [22, 4, 23]. For general RCL networks, this issue can be
resolved by relaxing the moment-matching property and using certainPad́e-type
approximants, instead of Padé approximants; see Section 3.5.

3.2 Reduced-Order Models

We now return to the case of general RCL networks with a total number ofm inde-
pendent current and voltage sources. Recall that in time domain, the RCL network
equations can be stated as a descriptor system(8) with data matricesA, E ∈RN×N

and B ∈ R
N×m of the form (10), whereN is the state-space dimension of the

system(8). In Laplace domain, the RCL network is described by its transfer func-
tion (14), H .

A generalreduced-order modelof (8) is a descriptor system of the same form
as(8), but with state-space dimensionn (< N), instead ofN . Thus a reduced-order
model is of the form

En
d

dt
xn(t) = An xn(t)+Bn u(t),

yn(t) = BT
n xn(t),

(21)

whereAn, En ∈ Rn×n andBn ∈ Rn×m. Note that the input vectoru(t) in (21) is
the same as in(8). In particular, the numberm is unchanged from(8). The output
vectoryn(t) of (21), however, is only an approximation to the original output vector
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y(t) of (8). In fact, the problem of model order reduction is to find a sufficiently
large reduced state-space dimensionn and matricesAn, En, andBn such that the
output vector of the reduced-order model(21) is a ‘sufficiently good’ approximation
to the output vector of the original system(8).

Provided that the matrix pencil

sEn −An, s ∈ C, (22)

associated with the reduced-order model(21) is regular, we have, in analogy to(14),
the Laplace-domain input-output relation

ŷn(s) = Hn(s) û(s), where Hn(s) := BT
n

(

sEn −An

)−1
Bn, (23)

for the reduced-order model(21). Together with(14), it follows that

ŷn(s)− ŷ(s) =
(

Hn(s)−H(s)
)

û(s).

This relation shows that in terms of transfer functions, theproblem of model order
reduction is to find a sufficiently large reduced state-spacedimensionn and matrices
An, En, andBn such that the transfer function(23), Hn, of the reduced-order
model is a ‘sufficiently good’ approximation to the transferfunction(14), H , of the
original system:

Hn(s) ≈ H(s) in ‘some sense’.

There are many general-purpose methods for constructing suitable approximations
Hn; see, e.g., [3, 2]. For the special case of systems describing RCL networks,
techniques based on moment matching are the most widely usedand in fact, for
very largeN , are often the only computationally viable approaches.

3.3 Moment Matching Via Krylov Subspace Methods

Recall that for general RCL networks with a total number ofm independent current
and voltage sources, the transfer functionsH andHn arem×m-matrix-valued.
We now consider the extension of the moment-matching property (20) to the case
of such general RCL networks. Furthermore, instead of the expansion points0 = 0
in (20), we allow general expansion pointss0 subject to the constraint that the ma-
trix s0 E −A is nonsingular. This condition guarantees thats0 is not a pole of the
transfer function(14), H . For now, we restrict ourselves to real expansion points
s0 ∈ R; the case of general complex expansion pointss0 ∈ C is discussed in Sec-
tion 7.

In this general setting, moment matching takes on the following form:

Hn(s) = H(s)+O
(

(s− s0)
q
)

. (24)
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Here,q = q(n,m) is an integer that depends on the reduced state-space dimension
n, on m, and on the particular method for constructing the reduced-order model
associated withHn. In this setting, the AWE approach is obtained by choosing a
method that gives the maximum value ofq in (24). The corresponding functionHn

is then called ann-th Pad́e approximantof H and the system(21) a Pad́e reduced-
order modelof (8). We denote bỹq(n.m) the maximum value ofq in (24). It is well
known (see, e.g., [14, 15]) that

q̃(n.m) ≥ 2
⌊ n

m

⌋

, (25)

where equality holds true in the generic case.
As mentioned before, generating Padé reduced-order models directly from the

first q̃ = q̃(n,m) momentsµj , j = 0,1, . . . , q̃−1, in the expansion

H(s) = µ0 +µ1(s− s0)+µ2(s− s0)
2 + · · ·+µq̃−1(s− s0)

q̃−1 + · · · (26)

is extremely sensitive to numerical round-off errors. The remedy is to avoid the
computation of the moments and instead, to generate the information contained in
the moments via Krylov subspace techniques. To this end, we rewrite the transfer
function(14), H , as follows:

H(s) = BT
(

s0 E−A+(s− s0)E
)−1

B = BT
(

I − (s− s0)M
)−1

R

=

∞
∑

j=0

BT M jR (s− s0)
j ,

(27)

where
M := −

(

s0 E−A
)−1

E and R :=
(

s0 E−A
)−1

B. (28)

Comparing(26) and(27), it follows that

µj = BT M jR =
(

(MT )jB
)T

R, j = 0,1, . . . . (29)

The representation(29) shows that the leading coefficients in the expansion(26) of
H can be obtained by computing suitable inner products of the leading columns of
the matrices

[

R MR M2R · · · M j−1R · · ·
]

(30)

and
[

B MT B (MT )2B · · · (MT )j−1B · · ·
]

. (31)

Working directly with the columns of these matrices would result in a procedure
that is still sensitive to numerical round-off errors. Instead, Krylov subspace meth-
ods generate more suitable basis vectors for the subspaces spanned by the leading
columns of these matrices. Computing moment information via inner products of
these basis vectors then avoids the numerical issues of moment matching and leads
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to algorithms that generate Padé reduced-order models in anumerically stable and
reliable way; see [12, 13, 14, 25, 17] for more details.

For later use, we give a formal definition of the Krylov subspaces associated with
the matrices(30) and(31). Let Nmax (≤ N) denote the rank of the matrix(30).
Then, forn̂ = 1,2, . . . ,Nmax, then̂-th (right) Krylov subspace(induced byM and
R) is defined as thên-dimensional subspace ofRN spanned by the first̂n linearly
independent columns of the matrix(30). In the following,Kn̂(M,R) denotes this
n̂-th Krylov subspace. Similarly, thên-th (left) Krylov subspace,Kn̂(MT ,B), is
spanned by the first̂n linearly independent columns of the matrix(31).

An important issue in moment matching is the choice of the expansion points0

in (24). Typically, the goal is to construct a reduced-order model(21) such that its
transfer functionHn approximates the original transfer functionH well enough in
some given frequency range of interest of the form

s = iω, ωmin ≤ ω ≤ ωmax,

where0 ≤ ωmin < ωmax are given andi =
√
−1. Moreover, the state-space di-

mensionn of the reduced-order model should be as small as possible, The general
convergence theory of Padé approximation suggests to place s0 close to the fre-
quency range of interest, yet at a safe distance from the poles of the original transfer
functionH . Recall from Section 2.3 that the poles ofH are to the left of or on the
imaginary axis. Therefore, the expansion points0 is placed in the right halfC+ of
the complex plane. The ideal placement ofs0 would be on a horizontal line through
the midpoint of the frequency range of interest, resulting in a non-reals0. This in
turn would result in complex matricesM andR in (28) and thus the need for com-
plex rather than real arithmetic, which would increase the computational work by
roughly a factor of4. This is the reason for the usual restriction to positives0 > 0;
see, e.g., the discussion in [13]. A typical placement ofs0 > 0 relative to the fre-
quency range of interest is shown in Figure 2.

Fig. 2 Typical placement
of expansion points0 for
the moment-matching prop-
erty (24)

Im s

s−plane
 Re s 

poles

frequency range
of interest

s0
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3.4 Passive Models Via Projection

While Padé reduced-order models are optimal in terms of moment matching, they
do not preserve the passivity of general RCL networks.

A very basic, general approach to constructing passive reduced-order models is
to employprojection. Let

Vn ∈ R
N×n with rank Vn = n (32)

be given. Then, by simply setting

An := V T
n AVn, En := V T

n EVn, and Bn := V T
n B, (33)

one obtains a reduced-order model(21) that can be viewed as a projection of the
N -dimensional state space of the original system onto then-dimensional subspace
spanned by the columns of the matrixVn. In particular, projection employs an ansatz
of the form

xn(t) = Vnx(t)

for the state-space vectorxn(t) of the reduced-order model(21). Recall from(9)
thatx(t) denotes the state-space vector of the original descriptor system(8).

Reduced-order models obtained by means of this simple projection approach
trivially preserve passivity of the original system; see, e.g., [28, 29, 30, 16]. Indeed,
the only additional condition on the matrix(32), Vn, is that the resulting matrix pen-
cil (22) is regular. Recall thatA andE satisfy the semidefiniteness properties(12).
The definitions ofAn andEn in (33) readily imply that these matrices satisfy the
very same semidefiniteness conditions. Therefore, by Theorem 1, the transfer func-
tion (23), Hn is positive real, and thus the corresponding reduced-ordermodel(21)
is passive.

3.5 Projection Combined With Krylov Subspaces

The projection approach described in Section 3.4 can be combined with the use of
Krylov subspaces to obtain reduced-order models that are passive and at the same
time satisfy a moment-matching property, albeit a weaker one than Padé models.

To this end, we choose the projection matrix(32), Vn, such that

Kn̂(M,R) ⊆ colspan Vn. (34)

Recall thatKn̂(M,R) is the n̂-th (right) Krylov subspace defined in Section 3.3.
SinceKn̂(M,R) has dimension̂n and, by(32), Vn is assumed to have rankn, the
condition(34) implies that̂n≤ n. Note that̂n = n if, and only if, equality holds true
in (34). In this case, the projection matrix(32), Vn̂, is abasis matrixfor Kn̂(M,R),
i.e., the columns ofVn̂ form a basis for the linear subspaceKn̂(M,R). We will use
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the notationV̂n̂, instead ofVn̂, to indicate that̂Vn̂ is a basis matrix. We remark that
there are standard Krylov subspace techniques, such as the band Arnoldi process
[16, Algorithm 1], to construct the columns of̂Vn̂.

We now return to the general case(34). Let An, En, andBn be the matrices
defined by the projection approach(33), and letHn be the transfer function(23) of
the corresponding reduced-order model(21). The main result of Krylov subspace-
based projection then states thatHn satisfies the moment-matching property

Hn(s) = H(s)+O
(

(s− s0)
q̂(n̂,m)

)

, where q̂(n̂,m) ≥
⌊

n̂

m

⌋

. (35)

Moreover, in the generic case,q̂(n̂,m) = ⌊n̂/m⌋ in (35). Recall from(24) and(25)
that Padé reduced-order models matchq̃(n,m) moments, where

q̃(n,m) ≥ 2
⌊ n

m

⌋

≥ 2

⌊

n̂

m

⌋

.

Thus, Krylov subspace-based projection results in reduced-order models that, in the
generic case, match only half as many moments as Padé modelsif n̂ = n and even
less ifn̂ < n. Reduced-order transfer functionsHn that match fewer moments than
n-th Padé approximants are calledn-th Pad́e-type approximantsand the system(21)
is aPad́e-type reduced-order modelof (8).

The Padé-type moment matching property(35) of Krylov subspace-based pro-
jection is well known. For example, it was established for various special cases in
[8, 28, 25]. Proofs for the general case can be found in [16, 19].

4 PRIMA

The simplest way to satisfy condition(34) is to choose the projection matrix(32)
as a basis matrix forKn̂(M,R). In this casên = n, and the moment-matching prop-
erty (35) takes on the following form:

Hn̂(s) = H(s)+O
(

(s− s0)
q̂(n̂,m)

)

, where q̂(n̂,m) ≥
⌊

n̂

m

⌋

. (36)

Moreover, in the generic case,q̂(n̂,m) = ⌊n̂/m⌋. The corresponding reduced-order
models(21) given by the reduced data matrices(33) (wheren = n̂) are then the
ones produced by PRIMA (Passive Reduced-order Interconnect Macromodeling Al-
gorithm) [29, 30].

Next, we present an algorithmic statement of the basic stepsof PRIMA.

Algorithm 3 (PRIMA for general RCL networks)

• Input: Matrices of the form
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A =







A11 −Al −Av

AT
l 0 0

AT
v 0 0






, E =







E11 0 0

0 L 0

0 0 0






, B =







Ai 0

0 0

0 −I






,

whereA11 � 0, E11 � 0, andL ≻ 0.
An expansion points0 ∈R such that the matrixs0 E−A is nonsingular; this last
condition is satisfied for anys0 > 0.

• Formally set

M = −(s0 E−A)−1 E, R = (s0 E−A)−1 B.

• Until n̂ is large enough, run your favorite Krylov subspace method(applied toM
andR) to construct a matrix

V̂n̂ =
[

v1 v2 · · · vn̂

]

the columns of which span thên-th Krylov subspaceKn̂(M,R), i.e.,

colspan V̂n̂ = Kn̂(M,R).

• Set
An̂ = V̂ T

n̂ AV̂n̂, En̂ = V̂ T
n̂ EV̂n̂, and Bn̂ = V̂ T

n̂ B.

• Output: The data matricesAn̂, En̂, andBn̂ of the PRIMA reduced-order model

En̂

d

dt
xn̂(t) = An̂ xn̂(t)+Bn̂u(t),

yn̂(t) = BT
n̂ xn̂(t).

(37)

Since the PRIMA reduced-order models(37) are generated via projection onto
Krylov subspaces, they satisfy the moment-matching property (36) and they are
guaranteed to be passive. In general, however, the PRIMA models do not satisfy
reciprocity [34] and thus cannot be synthesized as RCL networks. Furthermore, the
reduced-order data matricesAn̂, En̂, andBn̂ are dense in general and thus do not
preserve the block structures of the original data matricesA, E, andB.

5 SPRIM

In this section, we describe the SPRIM (Structure-Preserving Reduced-order Inter-
connect Macromodeling) algorithm [18, 21], which remediesthe lack of structure
preservation of PRIMA.
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5.1 Preserving Block Structures

As in PRIMA, the main computational step of SPRIM is the generation of a basis
matrix V̂n̂ for the n̂-th block Krylov subspaceKn̂(M,R). In contrast to PRIMA,
however, SPRIM does not use the matrixV̂n̂ directly for the projection of the orig-
inal data matrices. Instead, SPRIM employs a modified version of this matrix that
trivially leads to structure preservation. To this end,V̂n̂ is first partitioned as follows:

V̂n̂ =







V (1)

V (2)

V (3)






. (38)

Here, the block sizes correspond to the block sizes of the original data matricesA
andE in (10). While V̂n̂ has full column rank̂n, the same is not necessarily true
for the three subblocksV (l), l = 1,2,3, in (38). In particular, the third block,V (3),
is of sizemv × n̂, wheremv denotes the number of voltage sources of the given
RCL circuit. Usually, the numbermv is very small andmv < n̂. Therefore,V (3)

typically does not have full column rank. In the actual implementation of SPRIM,
we run a Gram-Schmidt algorithm on the rows ofV (3) to determine a matrix̃V (3)

the columns of which span the same space as the columns ofV (3), but which has
full column rank. The other two blocks usually have many morerows than columns,
and these blocks are unlikely not to have full column rank. Inthe implementation
of SPRIM, there is also the option to check the column ranks ofthe first two blocks
and replace them by matrices̃V (1) andṼ (2) of full column rank. Next, we set up
the actual projection matrixVn as follows:

Vn :=







Ṽ (1) 0 0

0 Ṽ (2) 0

0 0 Ṽ (3)






. (39)

By construction, we have

Kn̂(M,R) = colspan V̂n̂ ⊆ colspan Vn. (40)

Thus the matrix(39), Vn, satisfies condition(34), which in turn guarantees the
moment-matching property(35). Furthermore, in view of the block structure ofVn,
the data matrices(33) of the resulting reduced-order model obtained via projection
with Vn have the same block structure as the original data matricesA, E, andB.

5.2 The Algorithm

An algorithmic statement of the basic steps of SPRIM is as follows.
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Algorithm 4 (SPRIM for general RCL networks)

• Input: Matrices of the form

A =







A11 −Al −Av

AT
l 0 0

AT
v 0 0






, E =







E11 0 0

0 L 0

0 0 0






, B =







Ai 0

0 0

0 −I






,

whereA11 � 0, E11 � 0, andL ≻ 0.
An expansion points0 ∈R such that the matrixs0 E−A is nonsingular; this last
condition is satisfied for anys0 > 0.

• Formally set

M = −(s0 E−A)−1 E, R = (s0 E−A)−1 B.

• Until n̂ is large enough, run your favorite Krylov subspace method(applied toM
andR) to construct a matrix

Vn̂ =
[

v1 v2 · · · vn̂

]

the columns of which span thên-th Krylov subspaceKn̂(M,R), i.e.,

colspan V̂n̂ = Kn̂(M,R).

• Let

V̂n̂ =







V (1)

V (2)

V (3)







be the partitioning ofV̂n̂ corresponding to the block sizes ofA andE.
• For l = 1,2,3 do:

If rl := rank V (l) < n̂, determine anN × rl matrix Ṽ (l) with

colspan Ṽ (l) = colspan V (l) and rank Ṽ (l) = rl.

• Set

Ã11 =
(

Ṽ (1)
)T

A11Ṽ
(1), Ãl =

(

Ṽ (1)
)TAlṼ

(2), Ãv =
(

Ṽ (1)
)TAvṼ (3),

Ẽ11 =
(

Ṽ (1)
)T

E11Ṽ
(1), L̃ =

(

Ṽ (2)
)T

LṼ (2), Ãi =
(

Ṽ (1)
)TAi.

• Output: The data matrices
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An =







Ã11 −Ãl −Ãv

ÃT
l 0 0

ÃT
v 0 0






, En =







Ẽ11 0 0

0 L̃ 0

0 0 0






,

and Bn =







Ãi 0

0 0

0 −
(

Ṽ (3)
)T







of the SPRIM reduced-order model

En
d

dt
xn(t) = An xn(t)+Bnu(t),

yn(t) = BT
n xn(t).

(41)

5.3 Some Properties

In this subsection, we list some of the properties of the SPRIM Algorithm 4.
Since the SPRIM reduced-order models(41) are generated via projection onto

Krylov subspaces, they are guaranteed to be passive and theysatisfy the moment-
matching property(35). In contrast to the PRIMA models, the data matricesAn,
En, andBn of the SPRIM reduced-order models exhibit the same block structures
as the original data matricesA, E, andB. In particular, the conditions of Theo-
rem 2 hold true for the matricesAn, En, andBn, and consequently, the SPRIM
reduced-order models are guaranteed to satisfy reciprocity. While reciprocity is not
sufficient to ensure the synthesizability of reduced-ordermodels as RCL networks,
it significantly simplifies the synthesis of the models as simple electronic networks;
see [1].

Preservation of the block structures of the data matrices also increases the accu-
racy of the moment-matching property of the SPRIM models. While the theory of
projection onto Krylov subspace guarantees(35), the SPRIM reduced-order models
satisfy the following stronger moment-matching property:

Hn(s) = H(s)+O
(

(s− s0)
2q̂(n̂,m)

)

, where q̂(n̂,m) ≥
⌊

n̂

m

⌋

. (42)

The integerq̂(n̂,m) is the same as in(35) and (36), and in the generic case,
q̂(n̂,m) = ⌊n̂/m⌋ in (42). The property means that at the expansion points0, the
transfer function of the SPRIM reduced-order model matchestwice as many mo-
ments as the theory of general Krylov subspace-based projection methods predicts.
The reason for this increased accuracy is a certainJ-symmetry, which follows from
the block structures of the data matrices of the SPRIM modelsand results in a dou-
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bling of the number of matched moments; for details and proofs, we refer the reader
to [19].

5.4 Pros and Cons of PRIMA and SPRIM

The underlying Krylov subspace for both PRIMA and SPRIM isKn̂(M,R), and
generating a basis matrix̂Vn̂ for this subspace is the dominant computational work
for both algorithms. PRIMA useŝVn̂ directly to generate a reduced-order model of
state-space dimension̂n that matcheŝq(n̂,m) ≥ ⌊n̂/m⌋ moments and is passive.
SPRIM first processes the blocks ofV̂n̂ to obtain the matrix(39), Vn. This ma-
trix is then used to generate a reduced-order model of state-space dimensionn that
matches2q̂(n̂,m) ≥ ⌊n̂/m⌋ moments, is passive, and satisfies reciprocity. Here,
n is the number of columns ofVn. Since each of the three diagonal blocksṼ (l),
l = 1,2,3, of Vn has at most̂n columns andṼ (3) has at mostmv columns,n is
bounded as follows:

n ≤ 2 n̂+min{n̂, mv}.
Therefore, for the samên, PRIMA generates smaller reduced-order models than
SPRIM. On the other hand, the SPRIM models satisfy reciprocity, which simplifies
their synthesis as electrical networks, and in terms of moment matching, the SPRIM
models are twice as accurate as the PRIMA models.

In practice, both PRIMA and SPRIM are run as iterative algorithms with iter-
ation counter̂n. The iterative process is stopped oncen̂ is large enough so that
the reduced-order transfer function has converged to the original transfer function
throughout the given frequency range of interest. Due to itshigher accuracy, SPRIM
will typically converge faster, i.e., for a smallern̂, than PRIMA. The following ex-
ample, which is taken from [21], illustrates the differencein convergence behavior
between SPRIM and PRIMA. The example (referred to as “package example”) is
an RCL network with state-space dimensionN = 1841. The network hasmi = 8
current sources andmv = 8 voltage sources, and thusm = mi + mv = 16. Its
transfer function is16×16-matrix valued and has256 components. The expansion
points0 = 2π×1010 was used. For this example,n̂ = 128 was needed for SPRIM
to achieve convergence. The corresponding state-space dimension of the SPRIM
reduced-order model isn = 2n̂+mv = 264. Figure 5.4 depicts the absolute values
of the (8,1)-component and the(9,9)-component of the transfer functions. Note
that forn̂ = 128 PRIMA has not converged yet.

6 Thick-Restart Krylov Subspace Techniques

While Krylov subspace-projection algorithms, such as PRIMA and SPRIM, gener-
ate reduced-order models that are passive and satisfy a moment-matching property,
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Fig. 3 Absolute values of transfer functions for package example

their use becomes prohibitive for RCL networks with ‘very’ large state-space dimen-
sionN . The computational costs of these methods is dominated by the generation of
suitable basis vectors for Krylov subspacesKn(M,R) of dimensionn. For general
RCL networks, the work for this task is proportional ton2N . As a result, for very
largeN , it is typically not feasible to run the Krylov subspace method for a value of
n that is large enough to produce a reduced-order model of sufficient accuracy.

A standard approach in numerical linear algebra to reduce the computational cost
fromO(n2N) toO(n0lN) is to restart the Krylov subspace method after each cycle
of n0 steps and runl of these restarted cycles. The most common restarted Krylov
subspace techniques are designed for matrix computations that are described byM
and for which the starting blockR can be chosen freely. In model order reduction,
however,R is determined by the given data matrices of the original system, and thus
R cannot be chosen freely.

Recently, there has been a lot of interest in so-calledthick-restartKrylov sub-
space techniques (see, e.g., [10] and the references therein), which, in contrast to
standard restart methods, can be adapted to the problem of model order reduction.
The basic idea is that after each cycle ofn0 steps, ‘relevant’ information is extracted
from the batch of basis vectors generated in this cycle and the extracted vectors are
then used as starting vectors in the next cycle.

For model order reduction, ‘relevant’ information means converged eigenvectors
corresponding to poles of the original transfer function(14), H , that are close to
the frequency range of interest; cf. Figure 2. Recall from(14) that any poleµ ∈ C

of H is a generalized eigenvalue of the matrix pencilsE −A; i.e., there exists a
generalized eigenvectorv ∈ CN such that

Av = µEv, v 6= 0. (43)
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The Krylov subspace method is applied to the matrixM = −(s0 E−A)−1E. It is
straightforward to verify that the vectorv satisfies the relation(43) if, and only if,v
is an eigenvector ofM , i.e.,

Mv = λv, v 6= 0, (44)

where the eigenvaluesµ andλ are connected as follows:

µ = s0 +
1

λ
. (45)

It is well known that Krylov subspace methods (applied toM ) will generate eigen-
vectors for the dominant eigenvaluesλ of M within a very small number of it-
erations. Here, ‘dominant’ means ‘largest in absolute value’. In view of (45), the
dominant eigenvaluesλ of M correspond to the polesµ of H closest to the expan-
sion points0. This means that by placings0 close to the frequency range of interest,
we can expect to obtain generalized eigenvectors associated with a few converged
poles ofH close to the frequency range of interest. These generalizedeigenvectors
are then used for the thick restart in the next cycle ofn0 steps of the Krylov subspace
method. The same process is repeated in such a way that in eachcycle, one obtains
additional converged poles ofH close to the frequency range of interest. However,
since poles closest to the expansion point converge fastest, this thick-restart process
has to allow for changing expansion points, so that in each cycle new additional

poles ofH can be found. We denote bys(j)
0 the expansion point employed in the

j-th cycle. Note that, except for the first points
(1)
0 , the expansion points need to be

complex in order to stay close to the frequency range of interest; cf. Figure 4. A

typical strategy for choosing thes(j)
0 ’s is to move up parallel to the imaginary axis,

as indicated in Figure 4 for the casel = 3.

Fig. 4 Placement of mul-
tiple expansion points
s
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With changing values ofs(j)
0 , the matrixM also changes within each cycle. We

denote by
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M (j) = −
(

s
(j)
0 E−A

)−1
E

the matrix that the Krylov subspace method is applied to in the l-th cycle. It readily
follows from the equivalence of(44) and (43) that any eigenvectorv of M (j) is
also an eigenvector ofM (j+1), only the value of the corresponding eigenvalues are
transformed according to the relation

s
(j)
0 +

1

λ(j)
= s

(j+1)
0 +

1

λ(j+1)
.

Due to this invariance of the eigenvectors ofM (j), the information used in the thick
restart remains relevant from cycle to cycle even though thematrix M (j) changes
to M (j+1).

In the following algorithm, we outline the basic steps for generating a projection
matrixVn via the thick-restart Krylov subspace approach.

Algorithm 5 (Generation of projection matrixVn via thick-restart Krylov subspace
approach)

• Input: Matrices of the form

A =







A11 −Al −Av

AT
l 0 0

AT
v 0 0






, E =







E11 0 0

0 L 0

0 0 0






, B =







Ai 0

0 0

0 −I






,

whereA11 � 0, E11 � 0, andL ≻ 0.
An initial expansion points(1)

0 ∈ R such that the matrixs(1)
0 E−A is nonsingu-

lar; this last condition is satisfied for anys(1)
0 > 0.

Numbern0 (> m) of iterations in each cycle of the Krylov subspace method.
Maximum numberlmax of thick restarts.

• For l = 1,2, . . . , lmax do:

– Formally set

M (l) = −
(

s
(l)
0 E−A

)−1
E, R(l) =







(

s
(l)
0 E−A

)−1
B if l = 1,

Y (l−1) if l > 1.

– Run n0 steps of your favorite Krylov subspace method(applied to M (l)

and R(l)) to obtain ann× n0 matrix V (l) the columns of which span the
Krylov subspaceKn0

(

M (l),R(l)
)

.
– If l is ‘large’ enough: stop.
– Extract ‘relevant’ eigenvector informationY (l) from V (l) to be used in the

next thick restart.
– Select suitable next expansion points

(l)
0 ∈ C. It needs to be such that the

matrixs
(l)
0 E−A is nonsingular; this last condition is satisfied ifRe s

(l)
0 > 0.
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• Output: Projection matrix

Vn =
[

V (1) V (2) · · · V (l)
]

, where n := n0l. (46)

The matrixVn produced by Algorithm 5 is then used to obtain a reduced-order
model of state-space dimensionn via projection by defining the reduced-order data
matrices as follows:

An := V H
n AVn, En := V H

n EVn, and Bn := V H
n B. (47)

Note that due to complex expansion points, the matrixVn is complex in general, and
thusAn, En, andBn are complex in general as well. In Section 7 below, we briefly
discuss how to obtain real projection matrices even for complex expansion points.

Due to the use of the multiple expansion pointss
(1)
0 ,s

(2)
0 , . . . ,s

(l)
0 , the reduced-

order model given by the data matrices(47) satisfies a multi-point moment-matching
property of the form

Hn(s) = H(s)+O
(

(

s− s
(j)
0

)qj

)

, j = 1,2, . . . , l. (48)

We remark that reduced-order models characterized by(48) can also be obtained by
complex frequency hopping (CFH) [7]. However, CFH was proposed as a modifi-
cation of AWE to allow changing expansion points, and CFH suffers from the same
numerical problems as AWE due to the use of explicit moment computations.

Finally, we present a numerical example that illustrates the benefits of thick-
restart Krylov subspace techniques for reduced-order modeling. With a single real
expansion point, a reduced-order model of state-space dimensionn = 80 is needed
to achieve satisfactory convergence throughout the frequency range of interest; see
Figure 5 (a). With thick restarts, three expansion points (one real, two complex) and
l = 3 cycles ofn0 = 14 Krylov stops are sufficient to obtain a reduced-order model
of state-space dimensionn = n0l = 42 of comparable accuracy; see Figure 5 (b).

7 Complex Expansion Points

There are two main reasons why Krylov subspace-based model order reduction
usually employs real expansion pointss0. First, the matrices(28), M andR, to
which the Krylov subspace method is applied are real, thus avoiding the use of
complex arithmetic, which is 4 times as costly as real arithmetic. Second, when pas-
sive reduced-order models are constructed via the projection approach described in
Section 3.4, the projection matrixVn needs to be real in order to obtain real reduced-
order data matrices(33). On the other hand, the use of complex expansion pointss0

typically results in a significantly smaller state-space dimensionn of the reduced-
order models, sinces0 can be placed closer to the frequency range of interest than
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(a) Single expansion point andn = 80
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(b) Three expansion points andn = 42

Fig. 5 Single expansion point vs. multiple expansion points and thick restarts

any reals0. Finally, as we discussed in Section 6, thick-restart Krylov subspace
techniques only make sense when complex expansion points can be used.

We now consider the case thats0 ∈ C \R is a non-real expansion point and
thatVn ∈ CN×n is a basis matrix for the complexn-dimensional Krylov subspace
Kn(M,R), whereM andR are the complex matrices given by(28). Suppose we
are trying to employ a projection approach similar to the onein Section 3.4 that
produces real reduced-order data matrices. One possibility is to replace the complex
matrixVn by the real matrix

[

Re Vn Im Vn

]

; (49)

see [26, 27]. One obvious disadvantage of this approach is that the dimension of
the resulting reduced-order model is doubled to2n. Furthermore, in general, the
matrix (49) is not guaranteed to have full column rank, and so before using (49)
as a projection matrix, one would need to check for and possibly delete any lin-
early dependent columns of(49) by means of some variant of a Gram-Schmidt
orthogonalization process. On the other hand, the transferfunction of the resulting
reduced-order model will satisfy a two-point moment-matching property of the form

Hn = H(s)+O
(

(s−s0)
q̂(n,m)

)

and Hn = H(s)+O
(

(s−s0)
q̂(n,m)

)

, (50)

whereq̂(n,m) ≥ ⌊n/m⌋.
It turns out that the process of generating a real projectionmatrix by first comput-

ing a complex basis matrixVn for Kn(M,R) and then orthogonalizing the columns
of the matrix(49) is computationally inefficient. First note that the resulting real
projection matrix is a basis matrix for then-th paired complex conjugate Krylov
subspace
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K(p)
n (M,R) := span

{

v,v
∣

∣ v ∈ Kn(M,R)
}

. (51)

In [24], we study the problem of constructing real basis matrices for paired complex

conjugate Krylov subspacesK(p)
n (M,R) and propose an algorithm that is computa-

tionally cheaper than the obvious approach outlined above.In particular, employing
the algorithm from [24] allows the efficient construction ofpassive reduced-order
models via projection onto Krylov subspaces with non-real expansion points.

Finally, we present a numerical example that illustrates the benefits of using even
a single complex expansion point. With a single real expansion point, a reduced-
order model of state-space dimensionn = 138 is needed to achieve satisfactory con-
vergence throughout the frequency range of interest; see Figure 6 (a). With a single
complex expansion point, a reduced-order model of state-space dimensionn = 69
is sufficient to obtain comparable accuracy; see Figure 6 (b). Thus the dimension of
the reduced-order model has been halved by employing a complex expansion point.
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(a) Real expansion point andn = 138
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(b) Complex expansion point andn = 69

Fig. 6 Single real vs. single complex expansion point

8 Concluding Remarks

Model order reduction is a classical and well-studied subject of control theory. How-
ever, in control theory, the systems to be reduced are of relatively small or at most
moderate size, and most of the methods developed in this areaare not suitable or
efficient enough to be applied to large-scale systems. In theearly 1990s, the need
to efficiently reduce the ever-increasing sizes of the RCL networks used to model
the interconnect of VLSI circuits led to a renewed interest in model order reduc-
tion especially in the development of methods that are applicable to large-scale sys-
tems. Model order reduction techniques based on Krylov subspaces have emerged
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as the methods of choice for generating macromodels of large-scale multi-port RCL
networks that arise in VLSI circuit simulation. Furthermore, these algorithms have
also found applications in other areas, such as structural analysis and computational
acoustics.

Despite all the progress in Krylov subspace-based model order reduction of
large-scale RCL networks in recent years, there are still many open problems. State-
of-the-art structure-preserving methods, such as SPRIM, first generate a basis matrix
of the underlying Krylov subspace and then employ explicit projection using some
suitable partitioning of the basis matrix to obtain a structure-preserving reduced-
order model. In particular, there are two major problems with the use of such ex-
plicit projections. First, it requires the storage of the basis matrix, which becomes
prohibitive in the case of ‘truly’ large-scale RCL networks. Second, the approx-
imation properties of the resulting structure-preservingreduced-order models are
not optimal, and they show that the available degrees of freedom are not fully used
in general. It would be highly desirable to have structure-preserving model order
reduction methods that do not involve explicit projection and would thus be appli-
cable in the truly large-scale case. Other unresolved issues include the automatic
and adaptive choice of the expansion points and robust and reliable stopping criteria
and error bounds.
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5. Baker, Jr., G.A., Graves-Morris, P.: Padé Approximants, second edn. Cambridge University
Press, New York, New York (1996)

6. Celik, M., Pileggi, L., Odabasioglu, A.: IC InterconnectAnalysis. Kluwer Academic Publish-
ers, Boston/Dordrecht/London (2002)

7. Chiprout, E., Nakhla, M.S.: Analysis of interconnect networks using complex frequency hop-
ping (CFH). IEEE Trans. Computer-Aided Design14(2), 186–200 (1995)

8. de Villemagne, C., Skelton, R.E.: Model reductions usinga projection formulation. Internat.
J. Control46(6), 2141–2169 (1987)

9. Deo, N.: Graph Theory with Applications to Engineering and Computer Science. Prentice-
Hall, Englewood Cliffs, New Jersey (1974)

10. Eiermann, M., Ernst, O.G.: A restarted Krylov subspace method for the evaluation of matrix
functions. SIAM J. Numer. Anal.44, 2481–2504 (2006)



28 Roland W. Freund

11. Elmore, W.C.: The transient response of damped linear networks with particular regard to
wideband amplifiers. J. Appl. Phys.19(1), 55–63 (1948)

12. Feldmann, P., Freund, R.W.: Efficient linear circuit analysis by Padé approximation via the
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