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Order Reduction

Roland W. Freund

Abstract In recent years, model order reduction techniques basedynwsub-
spaces have become the methods of choice for generatingsrald macromodels
of the large-scale multi-port RCL networks that arise in Virfflerconnect analysis.
A difficult and not yet completely resolved issue is how towgrghat the resulting
macromodels preserve all the relevant structures of tiggnalilarge-scale RCL net-
works. In this paper, we present a brief review of how Krylabspace techniques
emerged as the algorithms of choice in VLSI circuit simwlatidescribe the current
state-of-art of structure preservation, discuss somentemgvances, and mention
open problems.

1 Introduction

In 1990,Asymptotic Waveform EvaluatigAWE) was introduced as a generaliza-
tion of the classical ElImore delay to obtain more accuraténty estimates for the
increasingly larger RCL networks arising in VLSI intercaah modeling. It was
quickly realized that the mathematical concept behind AWEquivalent to model
order reduction based on Padé approximation. The commebitween Krylov
subspaces and Padé approximation then provided the lasde¥ising Krylov
subspace-based methods for generating macromodels efdaede multi-port RCL
networks. These algorithms satisfy some of the same keyeptiep as AWE, such
as moment matching, but they avoid AWE'’s unstable numeheslavior due to
round-off errors and explicit moment computations.

Generating small-scale macromodels of large-scale RCwarks is a special
instance of the problem dflodel Order ReductioiMOR) of large-scale systems,
which is a classical and well-studied subject of the are2aftrol Theoryin mathe-
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matics. However, in control theory, the systems to be redliace of relatively small
or at most moderate size, and the methods developed in gastygpically are too
computationally expensive to be viable for large-scaldesys. The need to effi-
ciently reduce the ever-increasing sizes of the RCL netwaded to model VLSI
interconnect led to a renewed interest in MOR and espedératlye development of
algorithms that are applicable to large-scale systems.

Generally, Krylov subspace-based MOR algorithms have geteas powerful
and versatile tools for model order reduction of large-scgistems. Even though
many of these algorithms were originally proposed in thaexdrof VLSI intercon-
nect analysis, they have found applications in many othesisarsuch as structural
analysis and computational acoustics. On the other haedyritblem of MOR of
large-scale RCL networks has brought the issue of strugi@servation to promi-
nence. The ideal MOR algorithm for large-scale RCL netwoskailld generate
small-scale macromodels in the form of RCL networks. Krykmbspace-based
MOR algorithms, however, are linear algebra techniques tlagy produce macro-
models described by data matrices, rather than networksor® modest goal then
is to generate macromodels that preserve essential piepefRCL networks, such
as passivity and reciprocity.

The Passive Reduced-order Interconnect Macromodeling AllgoriPRIMA)
was the first Krylov subspace-based method that produces/pasacromodels of
RCL networks. The key insight behind PRIMA is that passiciy be preserved by
using explicit projection of the data matrices describing original RCL network
onto Krylov subspaces and by giving up about half the momeatthing satisfied
by MOR based on Padé approximation. On the other hand, PRIbES not pre-
serve other structures inherent to RCL networks, such @gsrosity, which makes
it harder to synthesize the PRIMA macromodels as actualredatnetworks.

The Structure-Preserving Reduced-order Interconnect Macdehing(SPRIM)
algorithm was introduced as a structure-preserving vagaiPRIMA that over-
comes many of the shortcomings of PRIMA and at the same tisneoire accu-
rate than PRIMA. The purpose of this paper is twofold. Fingt, review PRIMA
and SPRIM and their basic properties. Second, we discuss secent advances
in structure-preserving MOR. In particular, we describbiak-restart Krylov sub-
space approach that allows the use of complex and multiplaresion points for the
underlying moment-matching property, and we discuss s@tieniques designed
for the efficient implementation of this approach.

This paper is organized as follows. In Section 2, we sumradhe standard de-
scription of general RCL networks and some of their key pri@e In Section 3,
we present a brief review of the evolution of Krylov subsphesed model order
reduction from moment matching to the currently dominafiagadigm of projec-
tion onto Krylov subspaces. In Sections 4 and 5, we desciti®IR and SPRIM,
respectively. In Section 5, we discuss some recent advamaespting thick-restart
Krylov subspace technigues to the problem of model ordaratéeh. Section 6 ad-
dresses some issues arising in moment matching with coneglgansion points.
Finally, we make some concluding remarks in Section 7.
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Throughout this paper the following notation is used. Theo$eeal and com-
plex numbers is denoted i and C, respectively. For general (real or complex)
matricesM = [m;,], M7 := [my;] is thetransposeof M, and M := [my;] is
the Hermitian (or complex conjugadeof M. Then x n identity matrix is denoted
by I,,, or simply! if its size is apparent from the context. The zero matrix isated
by 0; its actual size will always be apparent from the contexe fbtation) > 0
(M = 0) is used to indicate that a real or complex square madifixs Hermitian
positive semidefinitgpositive definitg If all entries of the matrix\/ = 0 (M > 0)
are real, then\/ is said to besymmetric positive semidefinifgositive definite Fi-
nally, for a matrixy € RV >" we denote byolspan V the linear subspace &
spanned by the columns ®f. Note thatcolspan V' has dimensiom if, and only if,
rank V =n.

2 Description of RCL Networks

An RCL networkis an electronic circuit with linear resistors, capacitamsluctors,
and independent voltage and current sources as its onlyeaksmin this section,
we briefly review the standard description and some key ptigseof such RCL
networks.

2.1 RCL Network Equations

A system of equations describing any electronic circuit barobtained by com-
bining Kirchhoff’s current lawgKCLSs), Kirchhoff’s voltage lawgKVLs), and the
branch constitutive relationCRs). The BCRs are the equations that describe the
electronic behavior of each of the circuit elements. Fongxa, the BCR of a re-
sistor is Ohm’s law.

An elegant approach to formulating KCLs and KVLs for a givéec&onic cir-
cuit is based on the representation of the circuit topolagg directed graph; see,
e.g., [9, 33, 35, 32]. The edges of such a graph corresporftetelements of the
circuit, and the nodes correspond to the nodes of the cinehith represent the in-
terconnections of the circuit elements. Each eglgan be expressed as an ordered
paire = (n1,n2) of nodesu; andny, where the direction of is fromn, to no. For
circuit elements for which the direction of the electricrant through the element
is known beforehand, the direction of the associated edgj@isen accordingly. For
any other circuit element, an arbitrary direction is assiyjto the associated edge.
If the computed electric current through an element is ngatiee, then the cur-
rent flow is in the direction of the edge; otherwise, the datuarent flow is against
the direction of the edge. Such a directed graph can be 8eschy itsincidence
matrix the rows and columns of which correspond to the nodes andsedegpec-
tively, and the entries of which are defined as follows. Thiemmm associated with
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edgee = (n1,n2) contains the entry!” in the row position corresponding to node
n1, the entry “-1” in the row position corresponding to nodeg, and zero entries
otherwise. Since the resulting matrix is always rank deiiciene deletes the row
associated with thground nodeof the circuit. We refer to the matrix obtained af-
ter this deletion as the incidence matyixof the circuit. In terms of4, all of the
circuit's KCLs and KVLs can be stated compactly as follows:

Aig=0 and ATv =g, Q)

Here,i¢ is the vector the entries of which are the currents througthalcircuit
elementsy¢ is the vector the entries of which are the voltages acrogbaltircuit
elements, and is the vector the entries of which are the voltages at the :iofithe
circuit, except for the ground node at which the voltage i®ze

We now assume that the given electronic circuit is an RCL askwMWe use
subscripts, ¢, [, v, andi, to refer to edge quantities corresponding to the resistors
capacitors, inductors, voltage sources, and current esurespectively, of the given
RCL network. Moreover, we assume that the edges of the ateddirected graph
are ordered according to element type. Consequently, Hyghigrincidence matrix
A and the vectorgs andve can be partitioned as follows:

i Uy
ie Ve
AZ[.AT A. A Ay Ai}, te= 11|, ve=|v
2 Uy
123 (%3

Furthermore, the BCRs for the resistors, capacitors, athacitors can be stated in
the following compact form:

vp(t) = Rip(t), i.(t)=C divc(t), v (t) = Liil(t). (2)
t dt
Here, R andC are diagonal matrices, the diagonal entries of which aredhis-
tances of the resistors and the capacitances of the caacispectively, and in
particular,R > 0 andC > 0. The matrixL contains the inductances between the
inductors as its entries. If mutual inductances are indutieen is a full matrix;
otherwise L is also a diagonal matrix. In both casés;- 0. Therefore, the matrices
in (2) always satisfy
R>0, C=0, and L>0. €))

Finally, the BCRs for the independent voltage and currentcas of the RCL net-
work simply state that
vy(t) and i;(t) 4

are given functions that can be chosen as inputs to the nietwbereas

vi(t) and i,(t) (5)
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are unknown output functions that need to be determinedra®ptne problem of
solving the system of equations describing the given RClvok.

The KCLs and KVLg(1) together with the BCR&) yield a system of equations
for the unknown circuit quantities(t), ve, andig. The size of this system can be
reduced significantly by using some of the relationglinand(2) to eliminatev,,
ve, vy, iy, @andic.. This process is known as modified nodal analysis and reisults
the system of equations

A.CAT %v(t) + A RTIATw(t) + Ay (t) + Ay iy (t) = — Az ii (1),
d
LSin(t) = A u(t) =0, 6)

AJv(t) =v(t)

for the remaining unknown quantitiest), 4;(¢), andi,(t); see, e.g., [6, Section 5.2]
or [21]. Recall from(4) that the functiong;(¢) and v, (¢) appearing on the right-
hand side of6) are given. Furthermore, the unknown output functigft) in (5)
can be easily obtained fron{t) via the relation

vi(t) = A7 v(1), (7)

which follows from the KVLs(1).
For the purpose of model order reduction, it is convenienstade the equa-
tions(6) and(7) as adescriptor systerof the form

d
Eax(t) = Ax(t)+ Bu(t), @
y(t) = BTz (t).
Here, we have set
, v(t)
L —Zi(t) L vi(t) L .
ay= | ] o= M) w0 =la0 ] @
iy (t)
and
A A —A, Ei1 0 0 A; 0
A= AT 0 0|, E=|0 L 0|, B:=|0 0]/, (10
AT 0 0 0 0 0 0 —I
where
A :=—AR AT and Ei;:=A.CAL. (11)

The vector-valued functions(t), y(t), andz(¢) are callednput vector output vec-
tor, andstate-space vectaf the descriptor systeif8). We denote byn the length
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of the input and output vectors and By the length of the state-space vector. The
integer N is called thestate-space dimensiaf (8). In view of (9), m is the to-

tal number of voltage and current sources of the given RClvoit, andV is the
sum of the number of nodes (excluding the ground node), thebeu of inductors,
and the number of voltage sources. Note tHatE € RV*N, B ¢ RV*™ and
the matrix £/ is singular in general. Finally, we remark thatand £ satisfy the
semidefiniteness conditions

2411 0 0
A+AT=] 0 0 0]|=<0 and E=ET >0, (12)
0 00

which readily follow from(3), (10), and(11).

2.2 RCL Transfer Functions

The first relation of the descriptor systgi®) represents a linear system of differ-
ential-algebraic equations. In Laplace domain, this i@tats transformed into a
purely algebraic linear system that can be used to forméityimate the state-space
vector. To this end, we denote b(s), i(s), andg(s) the Laplace transform of
x(t), u(t), andy(t), respectively. Application of the Laplace transform to tinee-
domain systen(8) results in the Laplace-domain system

sEi(s) = Az(s)+ Ba(s),

(13)
y(s) = B i(s),
wheres € C.
From now on, we assume that timatrix pencils £ — A isregular, i.e., the matrix
s 2 — A'is singular only for finitely many values afe C. We can then eliminate
#(s) from (13) to obtain the input-output relation

j(s) = H(s)a(s), where H(s):=BT(sE—A)"'B. (14)

The functionH is called thetransfer functionof the descriptor syster8). We
remark thatH is a rationalm x m-matrix-valued function and that the potential
poles of H are the values of € C for which the matrixs £ — A is singular. For
RCL networks with only current source&(s) and(s) are the input currents and
output voltages of these sources, and thiys) is theimpedance matriof the net-
work. Similarly, H (s) is theadmittance matrior RCL networks with only voltage
sources. For RCL networks with both voltage and currentsEs)f (s) is called a
hybrid matrixof the network; see, e.g., [1, Section 2.4].

Finally, we remark that the regularity assumption for theérmgencils £ — A is
satisfied for any realistic RCL network. Indeedy — A is regular if, and only if, the
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subnetwork consisting of only the voltage sources of the R€work has no closed
(undirected) loops and the (undirected) graph correspgdi the subnetwork ob-
tained from the RCL network by deleting all its current s@scs connected; see,
e.g., [20, Theorem 1].

2.3 Passivity

A physical system is said to lmassivéf it only consumes energy. Clearly, any RCL
network is passive.

It is well known [1] that passivity of a descriptor systei®) is equivalent to
positive realness of its associated transfer fundtidn, H. Here, a transfer function
H is said to bepositive realif it has no poles in the right half

Cy:={seC ‘ Res>0}
of the complex plane and
H(s)+ (H(s))" =0 forall seC,.

Since RCL networks are passive, the associated transfetidart? in (14) is
positive real. This fact can also be deduced directly froensbmidefiniteness con-
ditions (12) by employing the following result, which can be found as Tieeo 13
in [16].

Theorem 1. Let A, E € RV*N and B € RV*™ be given matrices, and assume
that A+ AT <0, E= ET > 0, and that the matrix pencid E — A is regular. Then,

the function

H(s):=BT(sE—A)"'B

is positive real.

2.4 Reciprocity

A second important property of RCL networksreciprocity, which represents a
certain symmetry of the input-output behavior of the netysee, e.g., [36] and [1,
Section 2.8]. For RCL networks with only current sourcesip®city is equivalent
to the symmetry of the impedance matfii(s), i.e., H(s) = H(s)T forall s € C.
Similarly, reciprocity is equivalent to the symmetry of thémittance matrix{ (s)
for RCL networks with only voltage sources.

For general RCL networks withw; current andn,, voltages sources, reciprocity
is equivalent to the transfer functidifi(s) being symmetric with respect to tiseg-
nature matrix
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Ly O
Y= [ 76% I ] ER™ ™ m=m;+m,. (15)
My

Here, H is said to besymmetric with respect t& if H(s)X = X (H(s))" for all
s € C. Note that the definitioi15) of the signature matrix assumes the ordefing
of the input and output vectoisandy. If a different ordering for: andy is used,
then the diagonal entries af need to be permuted accordingly.

It turns out that reciprocity follows easily from the blodkiscture of the matrices
A, E, andB defined in(10) and from the symmetry of the diagonal blocksb&nd
E. In fact, we have the following theorem the proof of whichtimgyhtforward and
left as an exercise to the reader.

Theorem 2. Let A, E € RV*N and B € RV *™ be matrices with block structures
of the form

A —Aip —Ais Ey; 0 0 Bi1 0
A=14%, 0 0 |, E=|0 Ex»n 0|, B=|0 0],
A, 0 0 0 0 0 0 Bso

where the sizes of the blocks are the same &s$Gnand
Ay =A]|, En=E],, Exn=Ej}.
Then, the function
H(s):=BT(sE—A)"'B

is symmetric with respect to the signature mattbdefined in(15).

3 A Brief Review of Krylov Subspace-Based Model Order
Reduction

In this section, we present a brief review of the evolutioiKoflov subspace-based
model order reduction from moment matching to the curresdiypinating paradigm
of projection onto Krylov subspaces.

3.1 Moment Matching and Paé Approximation

The Elmore delay [11] is a classical, simple metric for eatimy signal delays in
electronic networks. In 1990symptotic Waveform EvaluatiddAWE) [31] was

introduced as a generalization of the Elmore delay to obteire accurate timing
estimates for the large RCL networks arising in VLSI intenacect modeling; see,

e.g., [6].
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To illustrate the AWE approach, we consider the special cd$@C networks
driven by a single voltage source. The transfer funcfibis then scalar-valued and
represents the admittance of the RC network. The Taylorresipa of H about
sp = 0 is given by

H(s)=po+p1s+pos® +-+pjsl +--- (16)

where theu;’s are the so-callechomentsSuppose we are trying to approximéie
by a rational functiorf{; of the form
ax
Hy(s)= PR where aq, b1 € R. a7)
5—01

Given the first two momentgyo andyq, of the transfer functiori16), H, we can
determine values of the parametersb; in (17) such that the Taylor expansions of
H; andH aboutsg = 0 agree in the first two moments, i.e.,

Hy(s)=H(s)+0O(s?). (18)

The last condition is satisfied if, and only if; = —Mg/ul andb; = po/p1. More-
over, one can show that > 0 andyu; < 0, and thusy; > 0 andb; < 0. It follows
that

R::—b—1>0 and C:=2 0.
al b%
Furthermore, it is easy to verify that for these valuefadnd C, the approximate
transfer function(17), Hy, is the admittance of the simple RC network shown in
Figure 1. The impulse response of this network is giveri(by= i(0) exp(—t/7),
wherer := RC'is the EImore delay of the original given RC network. Note tha

104 R

OIS
Fig. 1 Synthesis of the

approximate transfer func-
tion (17), H1, as an RC B
network - -

RC network in Figure 1 represents a synthesis of the appatiomdefined by the
moment-matching propertyis).

AWE generalizes the‘one-pole’ approximatigrt) of the transfer functiof16),
H, of the given RC network to a general approximatidp with n poles. More
precisely,H,, is of the form

o a2 Qan,
Ha(s) = = oot =, (19)
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where the2n free parameterg, ,as,...,a, andby,be,...,b, are now chosen such
that the Taylor expansions éf,, andH aboutsy = 0 agree in the firsn moments,
ie.,

Hy(s) = H(s)+O(s*™). (20)

The property(20) is often referred to amoment matchind he corresponding trans-
fer function H,, is an optimal approximation to the original transfer fuoaoti/ in
the sense that among all functions of the foft®), H, matches the maximum
possible number of moments. Such optimal approximatiomsaltedPace approx-
imants[5].

There are two major issues with the original AWE approactstRihe computa-
tion of H,, via explicitly generating thén momentsug, i1, - . . , pton—1 IS €xtremely
sensitive to numerical round-off errors and thus is viabig dor very small val-
ues ofn, typically n < 10; we refer the reader to [12, 13] for a discussion of this
issue and for numerical examples. The problem can be rabtblygenerating the
necessary moment information implicitly, by exploitinggtbonnection of moment
matching and Krylov subspace methods; see Section 3.3.

The second, more fundamental issue is that for general R@ionles, reduced-
order transfer functions defined via Padé approximatiomelopreserve essential
properties, such as passivity and reciprocity, of the nabnetwork. In fact, preser-
vation of these properties can only be guaranteed for theiapmses of RC, RL,
and LC networks; see [22, 4, 23]. For general RCL networks, igsue can be
resolved by relaxing the moment-matching property andgusirtainPace-type
approximantsinstead of Padé approximants; see Section 3.5.

3.2 Reduced-Order Models

We now return to the case of general RCL networks with a tatailmer ofm inde-
pendent current and voltage sources. Recall that in timeatlgrthe RCL network
equations can be stated as a descriptor sygt¢mith data matricest, £ € RV *V
and B € RN*™ of the form (10), where N is the state-space dimension of the
system(8). In Laplace domain, the RCL network is described by its ti@minc-
tion (14), H.

A generalreduced-order modedf (8) is a descriptor system of the same form
as(8), but with state-space dimensior(< N), instead ofV. Thus a reduced-order
model is of the form

d
Tl (t) = Ap an(t) + Bpu(t), 1)

yn(t) = Bgzn (t),

En

whereA,,, £, € R"*" andB,, € R"*". Note that the input vectar(t) in (21) is
the same as ifR). In particular, the number is unchanged froni8). The output
vectory, (t) of (21), however, is only an approximation to the original outputtee
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y(t) of (8). In fact, the problem of model order reduction is to find a sigfitly
large reduced state-space dimensicand matricesd,,, E,, andB,, such that the
output vector of the reduced-order mo¢t&l) is a ‘sufficiently good’ approximation
to the output vector of the original systei)).

Provided that the matrix pencil

sE,—A,, seC, (22)

associated with the reduced-order ma@el) is regular, we have, in analogy (b4),
the Laplace-domain input-output relation

Jn(s) = Hu(s)i(s), where Hy,(s):= Bl (sE,—A,) 'Bn,  (23)
for the reduced-order modél1). Together with(14), it follows that

Gn(s) = 9(s) = (Hn(s) = H(s))a(s).

This relation shows that in terms of transfer functions,phablem of model order
reduction is to find a sufficiently large reduced state-spi@mensiom and matrices
Ay, En, and B,, such that the transfer functiof23), H,, of the reduced-order
model is a ‘sufficiently good’ approximation to the trandfiemction(14), H, of the
original system:

H,(s)~ H(s) in‘some sense’

There are many general-purpose methods for constructitaptiapproximations
H,; see, e.g., [3, 2]. For the special case of systems desgrREL networks,
techniques based on moment matching are the most widelyarsi®dh fact, for
very largeN, are often the only computationally viable approaches.

3.3 Moment Matching Via Krylov Subspace Methods

Recall that for general RCL networks with a total numbenoihdependent current
and voltage sources, the transfer functidghsand H,, are m x m-matrix-valued.
We now consider the extension of the moment-matching pt2e) to the case
of such general RCL networks. Furthermore, instead of tipaesion pointy = 0
in (20), we allow general expansion poinig subject to the constraint that the ma-
trix so E — A is nonsingular. This condition guarantees thais not a pole of the
transfer function14), H. For now, we restrict ourselves to real expansion points
s0 € R; the case of general complex expansion poigte C is discussed in Sec-
tion 7.

In this general setting, moment matching takes on the fatigiorm:

H,(s)=H(s)+O((s—s0)9). (24)
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Here,q = ¢(n,m) is an integer that depends on the reduced state-space dmens
n, on'm, and on the particular method for constructing the redwureidr model
associated withf{,,. In this setting, the AWE approach is obtained by choosing a
method that gives the maximum valuegah (24). The corresponding functioH,,

is then called am-th Pace approximanbf H and the systen21) a Pacé reduced-
order modebf (8). We denote byj(n.m) the maximum value of in (24). Itis well
known (see, e.g., [14, 15]) that

an.m) > 2| = |, (25)
m
where equality holds true in the generic case.
As mentioned before, generating Padé reduced-order madteictly from the
first ¢ = ¢(n,m) momentsy;, j =0,1,...,¢4—1, in the expansion

H(s) = pio+ p1(s — s0) + pa(s — s0)* + -+ pg—1(s—so)T 4+ (26)

is extremely sensitive to numerical round-off errors. Thmedy is to avoid the
computation of the moments and instead, to generate themateon contained in
the moments via Krylov subspace techniques. To this end geweite the transfer
function(14), H, as follows:

H(s) :BT(SOE—A+(S—SO)E)_1B :BT(I—(S—SO)M)_IR

> ) _ (27)
— ZBTMJR (s —s0)’,
j=0
where
1 -1
M::—(SOE—A) E and R:= (SOE—A) B. (28)
Comparing(26) and(27), it follows that
p;j=BTMIR=((MTYB)'R, j=0,1,.... (29)

The representatiof29) shows that the leading coefficients in the expangiti) of
H can be obtained by computing suitable inner products ofahdihg columns of
the matrices

[R MR M?R --- MJ7'R ...] (30)

and
[B MTB (MT)?B ... (MT)y—'B ] (31)

Working directly with the columns of these matrices woulduléin a procedure
that is still sensitive to numerical round-off errors. kwtl, Krylov subspace meth-
ods generate more suitable basis vectors for the subspaaeses! by the leading
columns of these matrices. Computing moment informati@nimner products of
these basis vectors then avoids the numerical issues of ntenatching and leads
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to algorithms that generate Padé reduced-order modelsumerically stable and
reliable way; see [12, 13, 14, 25, 17] for more detalils.

For later use, we give a formal definition of the Krylov subsgmassociated with
the matriceg30) and(31). Let Nmax (< V) denote the rank of the matrig0).
Then, forin = 1,2,..., Nmax, then-th (right) Krylov subspacéinduced byM and
R) is defined as thé-dimensional subspace & spanned by the firsi linearly
independent columns of the matri30). In the following, KC;, (M, R) denotes this
n-th Krylov subspace. Similarly, the-th (left) Krylov subspacelC, (MT, B), is
spanned by the first linearly independent columns of the mat(id ).

An important issue in moment matching is the choice of theaasmn pointsg
in (24). Typically, the goal is to construct a reduced-order md@de) such that its
transfer function,, approximates the original transfer functiéhwell enough in
some given frequency range of interest of the form

$=iw, Wmin < W < Wnax,

where0 < wmin < wmax are given andi = /—1. Moreover, the state-space di-
mensionn of the reduced-order model should be as small as possibéeg@heral
convergence theory of Padé approximation suggests t@ placlose to the fre-
quency range of interest, yet at a safe distance from the pbkbe original transfer
function H. Recall from Section 2.3 that the polesfare to the left of or on the
imaginary axis. Therefore, the expansion painis placed in the right hal€_ of
the complex plane. The ideal placementg@fvould be on a horizontal line through
the midpoint of the frequency range of interest, resultimg inon-reak. This in
turn would result in complex matricéd and R in (28) and thus the need for com-
plex rather than real arithmetic, which would increase thmputational work by
roughly a factor ofl. This is the reason for the usual restriction to positiye> 0;
see, e.g., the discussion in [13]. A typical placementof- 0 relative to the fre-
quency range of interest is shown in Figure 2.

°
Im s
°
° 1 frequency range
° of interest
7
°
poles °
° °
[ L
« * . .:
i [ )
Fig. 2 Typical placement . ® °l S
of expansion pointg for P L —
the moment-matching prop- . . s—plane Res
erty (24)
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3.4 Passive Models Via Projection

While Padé reduced-order models are optimal in terms of emmatching, they
do not preserve the passivity of general RCL networks.

A very basic, general approach to constructing passivecesttorder models is
to employprojection Let

Vi, e RNX™ with  rank V, =n (32)
be given. Then, by simply setting
Ap:=V.rAV,, E,:=VIEV,, and B,:=V[IB, (33)

one obtains a reduced-order mod#l) that can be viewed as a projection of the
N-dimensional state space of the original system ontmtdénensional subspace
spanned by the columns of the matvix. In particular, projection employs an ansatz
of the form

n(t) = Vaa(t)

for the state-space vector, (¢) of the reduced-order modét1). Recall from(9)
thatz(t) denotes the state-space vector of the original descripstes(8).
Reduced-order models obtained by means of this simple girojeapproach
trivially preserve passivity of the original system; seg, €28, 29, 30, 16]. Indeed,
the only additional condition on the matri32), V,,, is that the resulting matrix pen-
cil (22) is regular. Recall thatl and E satisfy the semidefiniteness properti¢g).
The definitions of4,, and E,, in (33) readily imply that these matrices satisfy the
very same semidefiniteness conditions. Therefore, by Emedr, the transfer func-
tion (23), H, is positive real, and thus the corresponding reduced-ondelel(21)
is passive.

3.5 Projection Combined With Krylov Subspaces

The projection approach described in Section 3.4 can be ic@dbvith the use of

Krylov subspaces to obtain reduced-order models that esgiygaand at the same

time satisfy a moment-matching property, albeit a weakertban Padé models.
To this end, we choose the projection maf®), V,,, such that

Ka(M,R) C colspan V,. (34)

Recall thatC; (M, R) is then-th (right) Krylov subspace defined in Section 3.3.
Since; (M, R) has dimensiom and, by(32), V;, is assumed to have ramk the
condition(34) implies that: < n. Note that: = n if, and only if, equality holds true
in (34). In this case, the projection matri32), V;;, is abasis matrixfor IC; (M, R),
i.e., the columns o¥}; form a basis for the linear subspalCg (M, R). We will use
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the notationV;,, instead ofi/;,, to indicate that/;, is a basis matrix. We remark that
there are standard Krylov subspace techniques, such asatiieArnoldi process
[16, Algorithm 1], to construct the columns &F,.

We now return to the general caégt). Let A,,, E,, and B,, be the matrices
defined by the projection approag$s), and letH,, be the transfer functio(23) of
the corresponding reduced-order mog#l). The main result of Krylov subspace-
based projection then states tliat satisfies the moment-matching property

Hy(s) = H(s)+O((s — s0)1™™)),  where Q(ﬁ,m)ZL%J. (35)

Moreover, in the generic casgn,m) = [2/m| in (35). Recall from(24) and(25)
that Padé reduced-order models majth, ) moments, where

~ n n
qg(n,m)>2 {mJ >2 {mJ )
Thus, Krylov subspace-based projection results in recdiacddr models that, in the
generic case, match only half as many moments as Padé nibdelsn and even
less ifn < n. Reduced-order transfer functiofs, that match fewer moments than
n-th Padé approximants are calledh Pace-type approximan&nd the systert21)
is aPace-type reduced-order modef (8).
The Padé-type moment matching propdi§) of Krylov subspace-based pro-
jection is well known. For example, it was established faiioias special cases in
[8, 28, 25]. Proofs for the general case can be found in [1B, 19

4 PRIMA

The simplest way to satisfy conditiq4) is to choose the projection matr{2)
as a basis matrix fo€, (M, R). In this case: = n, and the moment-matching prop-
erty (35) takes on the following form:

H;(s) = H(s)+O((s— s0)1™™)),  where Q(ﬁ,m)ZL%J. (36)

Moreover, in the generic cas@n,m) = [n/m]. The corresponding reduced-order
models(21) given by the reduced data matricg)3) (wheren = ) are then the
ones produced by PRIMA (Passive Reduced-order IntercoMezromodeling Al-
gorithm) [29, 30].

Next, we present an algorithmic statement of the basic stEpRIMA.

Algorithm 3 (PRIMA for general RCL networks)

e Input: Matrices of the form
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A —A —A, Ei;p 000 A 0
A=A 0o 0|, E=| 0 L 0|, B=|0 0|,
AT 0 0 0 0 0 0 —I

whereA; <0, E11 = 0,andL = 0.
An expansion poindp € R such that the matrixy £ — A is nonsingular; this last
condition is satisfied for anyy > 0.

e Formally set

M=—(soE—A"'E, R=(s9E—A)'B.

e Until nis large enough, run your favorite Krylov subspace metfagaplied toA/
and R) to construct a matrix

Vi = [v1 v2 -+ i ]
the columns of which span thieth Krylov subspacé,, (M, R), i.e.,
colspan Vi, = Kj, (M, R).

e Set R R A A R
Ap=VIAV,, E,=VIEV,, and B,=VIB.

e Output: The data matrices\;,, £, and B;, of the PRIMA reduced-order model

d
E:Z?ﬁ (t) = Aﬁ Tp (t) + Bﬁ u(t), (37)

Ya(t) = Bl za(t).

Since the PRIMA reduced-order modéy) are generated via projection onto
Krylov subspaces, they satisfy the moment-matching pitgp@6) and they are
guaranteed to be passive. In general, however, the PRIMAematb not satisfy
reciprocity [34] and thus cannot be synthesized as RCL ndssvéurthermore, the
reduced-order data matricds,, £, and B are dense in general and thus do not
preserve the block structures of the original data matrites, andB.

E;

5 SPRIM

In this section, we describe the SPRIM (Structure-PresgriReduced-order Inter-
connect Macromodeling) algorithm [18, 21], which remedtes lack of structure
preservation of PRIMA.
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5.1 Preserving Block Structures

As in PRIMA, the main computational step of SPRIM is the gatien of a basis
matrix V;, for the A-th block Krylov subspacéC;, (M, R). In contrast to PRIMA,
however, SPRIM does not use the matrix directly for the projection of the orig-
inal data matrices. Instead, SPRIM employs a modified versfdahis matrix that
trivially leads to structure preservation. To this eFigls first partitioned as follows:

\74¢Y;
V= |V®]. (38)
v (3)

Here, the block sizes correspond to the block sizes of thggnali data matricest
andE in (10). While V;, has full column rank, the same is not necessarily true
for the three subblockg ), I = 1,2, 3, in (38). In particular, the third blocky (%),

is of sizem, x n, wherem,, denotes the number of voltage sources of the given
RCL circuit. Usually, the numbet,, is very small andn,, < n. Therefore,y (3
typically does not have full column rank. In the actual impéntation of SPRIM,
we run a Gram-Schmidt algorithm on the rowsléf?) to determine a matrix’ (3)
the columns of which span the same space as the columi§*bfbut which has
full column rank. The other two blocks usually have many nrores than columns,
and these blocks are unlikely not to have full column rankthie implementation
of SPRIM, there is also the option to check the column rankbefirst two blocks
and replace them by matric&&?) andV (2 of full column rank. Next, we set up
the actual projection matrik;, as follows:

v 0 0
V= 0 Vv@& o |. (39)
0o 0 VO
By construction, we have
Kn(M,R) = colspan Vi, C colspan Vj,. (40)

Thus the matrix(39), V,,, satisfies conditior{34), which in turn guarantees the
moment-matching proper{5). Furthermore, in view of the block structuredf,
the data matrice&3) of the resulting reduced-order model obtained via propecti
with V,, have the same block structure as the original data matricés and B.

5.2 The Algorithm

An algorithmic statement of the basic steps of SPRIM is devid.
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Algorithm 4 (SPRIM for general RCL networks)

e Input: Matrices of the form

A A A, Eiin 00 A; 0
A=A 0o 0|, E=| 0 L 0|, B=|0 0 [,
A7 00 0 0 0 0 —I

whereA1; <0, E11 = 0,andL = 0.
An expansion poindp € R such that the matrixo £ — A is nonsingular; this last
condition is satisfied for anyy > 0.

e Formally set

M=—(s0E—A"'E, R=(s9E—A) " 'B.

e Until nis large enough, run your favorite Krylov subspace metfagplied toi]
and R) to construct a matrix

Va=[v1 va - wp]
the columns of which span thieth Krylov subspac&’; (M, R), i.e.,
colspan Vj, = Ki(M,R).

o Let
(1)

V,=|V®
3

be the partitioning ofi/;, corresponding to the block sizes dfand E.
e Fori=1,2,3do:
If 7, :=rank V() < 7, determine anV x r; matrix V) with

colspan V) = colspan V) and rank VO = .
e Set
A = (PO) 470, A = (PO)TATO, 4, = (70)7 4,76,
oy = (PO B VO, L= () TLy®, A = (70)7 4,

e Output: The data matrices
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Ay —A —A, Ei1 0 0
A=A 0 0|, E,=| 0 L ,
AT 0 0 0 0

AZ‘ 0
and B,=1] 0 0
0 —(Ve)HT

of the SPRIM reduced-order model

d
b, Exn(t) —Anxn(t)+B"u(t)’ (41)

yn(t) = BLz, (1)

5.3 Some Properties

In this subsection, we list some of the properties of the $PRIgorithm 4.

Since the SPRIM reduced-order modéld) are generated via projection onto
Krylov subspaces, they are guaranteed to be passive andgakisfy the moment-
matching property35). In contrast to the PRIMA models, the data matriegs
E,,, andB,, of the SPRIM reduced-order models exhibit the same blocktires
as the original data matrice$, £, and B. In particular, the conditions of Theo-
rem 2 hold true for the matriced,,, £, and B,,, and consequently, the SPRIM
reduced-order models are guaranteed to satisfy recigrdthiile reciprocity is not
sufficient to ensure the synthesizability of reduced-ondedels as RCL networks,
it significantly simplifies the synthesis of the models asm@éarelectronic networks;
see [1].

Preservation of the block structures of the data matricesiatreases the accu-
racy of the moment-matching property of the SPRIM modelsil&vhe theory of
projection onto Krylov subspace guarant€&s), the SPRIM reduced-order models
satisfy the following stronger moment-matching property:

Hp(s)=H(s)+O((s —s0)%™™), where Q(ﬁ,m)z{%J. (42)

The integerg(n,m) is the same as irf35) and (36), and in the generic case,
4(n,m) = [n/m]| in (42). The property means that at the expansion peinthe
transfer function of the SPRIM reduced-order model matdhvice as many mo-
ments as the theory of general Krylov subspace-based pimjenethods predicts.
The reason for this increased accuracy is a certasymmetry, which follows from
the block structures of the data matrices of the SPRIM magledsresults in a dou-
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bling of the number of matched moments; for details and [oeé refer the reader
to [19].

5.4 Pros and Cons of PRIMA and SPRIM

The underlying Krylov subspace for both PRIMA and SPRIMKis(M, R), and
generating a basis matri, for this subspace is the dominant computational work
for both algorithms. PRIMA useE; directly to generate a reduced-order model of
state-space dimensionthat matchegj(n,m) > |7/m] moments and is passive.
SPRIM first processes the blocks 6; to obtain the matrix39), V,,. This ma-
trix is then used to generate a reduced-order model of spEee dimension that
matches2g(n, m) > |n/m| moments, is passive, and satisfies reciprocity. Here,
n is the number of columns df,,. Since each of the three diagonal blodke),
1 =1,2,3, of V,, has at most. columns and/®) has at mostn,, columns,n is
bounded as follows:

n < 27+ min{n, m,}.

Therefore, for the samg, PRIMA generates smaller reduced-order models than
SPRIM. On the other hand, the SPRIM models satisfy reciproehich simplifies
their synthesis as electrical networks, and in terms of nmdmeatching, the SPRIM
models are twice as accurate as the PRIMA models.

In practice, both PRIMA and SPRIM are run as iterative altons with iter-
ation counterh. The iterative process is stopped ontes large enough so that
the reduced-order transfer function has converged to tiggnat transfer function
throughout the given frequency range of interest. Due tioigher accuracy, SPRIM
will typically converge faster, i.e., for a smallér than PRIMA. The following ex-
ample, which is taken from [21], illustrates the differemce&onvergence behavior
between SPRIM and PRIMA. The example (referred to as “paslka@mple”) is
an RCL network with state-space dimensidyn= 1841. The network hasn; = 8
current sources anth,, = 8 voltage sources, and thus = m; +m, = 16. Its
transfer function id6 x 16-matrix valued and ha&56 components. The expansion
pointsy = 27 x 10'° was used. For this example= 128 was needed for SPRIM
to achieve convergence. The corresponding state-spacensiom of the SPRIM
reduced-order model is = 2n 4+ m,, = 264. Figure 5.4 depicts the absolute values
of the (8,1)-component and th€),9)-component of the transfer functions. Note
that forn = 128 PRIMA has not converged yet.

6 Thick-Restart Krylov Subspace Techniques

While Krylov subspace-projection algorithms, such as PRI&hd SPRIM, gener-
ate reduced-order models that are passive and satisfy a mtanatching property,
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10° 10
Frequency (Hz) Frequency (Hz)

(a) (8,1)-component of transfer functions  (b) (9,9)-component of transfer functions

Fig. 3 Absolute values of transfer functions for package example

their use becomes prohibitive for RCL networks with ‘vearde state-space dimen-
sionN. The computational costs of these methods is dominateddoyeheration of
suitable basis vectors for Krylov subspadés (M, R) of dimension:. For general
RCL networks, the work for this task is proportionahtdN. As a result, for very
largeV, it is typically not feasible to run the Krylov subspace neatlior a value of
n that is large enough to produce a reduced-order model otmuffiaccuracy.

A standard approach in numerical linear algebra to redueedmputational cost
from O(n%N) to O(nolN) is to restart the Krylov subspace method after each cycle
of ng steps and rum of these restarted cycles. The most common restarted Krylov
subspace techniques are designed for matrix computatiahatte described hy/
and for which the starting block can be chosen freely. In model order reduction,
however R is determined by the given data matrices of the originaksysaind thus
R cannot be chosen freely.

Recently, there has been a lot of interest in so-caléck-restartKrylov sub-
space techniques (see, e.g., [10] and the referencesrthesiich, in contrast to
standard restart methods, can be adapted to the problemdsl maer reduction.
The basic idea is that after each cyclewgfsteps, ‘relevant’ information is extracted
from the batch of basis vectors generated in this cycle améxiracted vectors are
then used as starting vectors in the next cycle.

For model order reduction, ‘relevant’ information meanew&rged eigenvectors
corresponding to poles of the original transfer functiad), H, that are close to
the frequency range of interest; cf. Figure 2. Recall fridd) that any poleu € C
of H is a generalized eigenvalue of the matrix pendil — A; i.e., there exists a
generalized eigenvectore C"V such that

Av=pEv, v#0. (43)
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The Krylov subspace method is applied to the maldx= —(so E — A) "' E. Itis
straightforward to verify that the vectorsatisfies the relatiot43) if, and only if, v
is an eigenvector ao#/, i.e.,

Mv=Mv, v#0, (44)

where the eigenvalugsand )\ are connected as follows:

1

=S80+ X (45)
It is well known that Krylov subspace methods (applied1) will generate eigen-
vectors for the dominant eigenvaluasof A within a very small number of it-
erations. Here, ‘dominant’ means ‘largest in absolute &alln view of (45), the
dominant eigenvalues of M correspond to the polgesof H closest to the expan-
sion pointsg. This means that by placing close to the frequency range of interest,
we can expect to obtain generalized eigenvectors assdaiatie a few converged
poles ofH close to the frequency range of interest. These generatigetvectors
are then used for the thick restart in the next cyclep$teps of the Krylov subspace
method. The same process is repeated in such a way that iyeehone obtains
additional converged poles @f close to the frequency range of interest. However,
since poles closest to the expansion point converge fastésthick-restart process
has to allow for changing expansion points, so that in eadteayew additional

poles of H can be found. We denote bﬁj) the expansion point employed in the

j-th cycle. Note that, except for the first poiﬁ)ll), the expansion points need to be
complex in order to stay close to the frequency range of éstercf. Figure 4. A
typical strategy for choosing thx%j)’s is to move up parallel to the imaginary axis,
as indicated in Figure 4 for the cake: 3.

Im s
[ )
. 1 frequency range
o / of interest
® [ ) 3)
poles . .éo
° °
* 9 2)
« °, : .éo
[ ]
[ ]
. °L o
Fig. 4 Placement of mul- o' oo ° .
tiple expansion points ® . Res
(1) (2) (1) ° s—plane
S0 80 500950

With changing values oféj), the matrix) also changes within each cycle. We
denote by
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MO =~ (5§ E—A)_lE

the matrix that the Krylov subspace method is applied to &1 cycle. It readily
follows from the equivalence of44) and (43) that any eigenvector of M) s
also an eigenvector af/ 1), only the value of the corresponding eigenvalues are
transformed according to the relation

_ Gty 1

s + L =s +
0 AG) 0 AGHD)

Due to this invariance of the eigenvectorsidgf’), the information used in the thick
restart remains relevant from cycle to cycle even thoughthgix A7) changes
to M(j+1)_

In the following algorithm, we outline the basic steps fongeating a projection
matrix V,, via the thick-restart Krylov subspace approach.

Algorithm 5 (Generation of projection matrii, via thick-restart Krylov subspace
approach)

e Input: Matrices of the form

A1 —A —A, Eip 00 A; 0
A=A 0o 0|, E=| 0 L 0|, B=|0 0 |,
AV 00 0 0 0 0 —I

whereA; <0, E11 = 0,andL = 0.
An initial expansion poin};él) € R such that the matrixél) E — Ais nonsingu-
lar; this last condition is satisfied for angél) > 0.
Numberng (> m) of iterations in each cycle of the Krylov subspace method.
Maximum numbet,, . of thick restarts.

e Forl=1,2,...,l;hax dO:

Formally set

- Or_ AN\ 'n w1
MO = (P p-a) B, RO (sB-a) B ifi=1,
Y=y if 1> 1.

— Runny steps of your favorite Krylov subspace meth@pplied to M ()
and R") to obtain ann x no matrix V() the columns of which span the
Krylov subspacéC,,, (M, R1).

— If lis ‘large’ enough: stop.

— Extract ‘relevant’ eigenvector informatiori) from V() to be used in the
next thick restart.

— Select suitable next expansion po&ré? € C. It needs to be such that the

matrix s((f) E — Ais nonsingular; this last condition is satisfiedkfe s((f) >0
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e Output: Projection matrix
Vo=V V@ ... vO]  where n:=nol. (46)

The matrixV;, produced by Algorithm 5 is then used to obtain a reducedrorde
model of state-space dimensiarvia projection by defining the reduced-order data
matrices as follows:

A,=VHAv, E,.=VHEV,, and B,:=VIB. (47)

Note that due to complex expansion points, the mafixs complex in general, and
thusA,, E,, andB,, are complex in general as well. In Section 7 below, we briefly
discuss how to obtain real projection matrices even for dergxpansion points.
Due to the use of the multiple expansion pois&@,s?), . ,sél), the reduced-
order model given by the data matri¢e$) satisfies a multi-point moment-matching

property of the form
_ RG] C
H,L(s)—H(s)—i—(’)((s sg’) ) j=1,2,...,1L. (48)

We remark that reduced-order models characterized&ycan also be obtained by
complex frequency hopping (CFH) [7]. However, CFH was pisgzbas a modifi-
cation of AWE to allow changing expansion points, and CFHegsffrom the same
numerical problems as AWE due to the use of explicit momentmaations.
Finally, we present a numerical example that illustrates libnefits of thick-
restart Krylov subspace techniques for reduced-order timzdéVith a single real
expansion point, a reduced-order model of state-spacendimen = 80 is needed
to achieve satisfactory convergence throughout the fregueange of interest; see
Figure 5 (a). With thick restarts, three expansion pointe(eeal, two complex) and
[ =3 cycles ofng = 14 Krylov stops are sufficient to obtain a reduced-order model
of state-space dimension= nyl = 42 of comparable accuracy; see Figure 5 (b).

7 Complex Expansion Points

There are two main reasons why Krylov subspace-based madet ceduction
usually employs real expansion points First, the matrice28), M and R, to
which the Krylov subspace method is applied are real, thaesdang the use of
complex arithmetic, which is 4 times as costly as real aréticn Second, when pas-
sive reduced-order models are constructed via the projeapproach described in
Section 3.4, the projection matri%, needs to be real in order to obtain real reduced-
order data matrice®3). On the other hand, the use of complex expansion psints
typically results in a significantly smaller state-spaca@hsionn of the reduced-
order models, sincey can be placed closer to the frequency range of interest than
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rel err = 0.011652 rel err = 0.0117639

1071

(a) Single expansion point and= 80 (b) Three expansion points amd= 42

Fig. 5 Single expansion point vs. multiple expansion points amncktfestarts

any realsg. Finally, as we discussed in Section 6, thick-restart Krydobspace
technigues only make sense when complex expansion poimtsscased.

We now consider the case that € C\ R is a non-real expansion point and
thatV,, € CV*" is a basis matrix for the complexdimensional Krylov subspace
K. (M,R), whereM and R are the complex matrices given 38). Suppose we
are trying to employ a projection approach similar to the on&ection 3.4 that
produces real reduced-order data matrices. One possibitih replace the complex
matrix V,, by the real matrix

[ReV, ImV, |; (49)

see [26, 27]. One obvious disadvantage of this approachaisthie dimension of
the resulting reduced-order model is double®to Furthermore, in general, the
matrix (49) is not guaranteed to have full column rank, and so beforegugify

as a projection matrix, one would need to check for and phssidlete any lin-
early dependent columns ¢49) by means of some variant of a Gram-Schmidt
orthogonalization process. On the other hand, the trafisfietion of the resulting
reduced-order model will satisfy a two-point moment-matgtproperty of the form

Hp=H(s)+0O((s—s0)1™™) and H, = H(s)+O((s—35)4™™)), (50)

whereg(n,m) > [n/m].

It turns out that the process of generating a real projeatiatrix by first comput-
ing a complex basis matri,, for K,, (M, R) and then orthogonalizing the columns
of the matrix(49) is computationally inefficient. First note that the restireal
projection matrix is a basis matrix for theth paired complex conjugate Krylov
subspace
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KP (M, R) := span {v,5 | v € Kn(M,R) }. (51)

In [24], we study the problem of constructing real basis mas for paired complex

conjugate Krylov subspac (Lp) (M, R) and propose an algorithm that is computa-
tionally cheaper than the obvious approach outlined abdavgarticular, employing
the algorithm from [24] allows the efficient constructionpdssive reduced-order
models via projection onto Krylov subspaces with non-regpbasion points.

Finally, we present a numerical example that illustratedinefits of using even
a single complex expansion point. With a single real exgampbint, a reduced-
order model of state-space dimensioa 138 is needed to achieve satisfactory con-
vergence throughout the frequency range of interest; sperdb (a). With a single
complex expansion point, a reduced-order model of stadeesgimensiom = 69
is sufficient to obtain comparable accuracy; see Figure.gin)s the dimension of
the reduced-order model has been halved by employing a exregpansion point.

abs(H2.1))
abs(H2.1))

(a) Real expansion point and= 138 (b) Complex expansion point and= 69

Fig. 6 Single real vs. single complex expansion point

8 Concluding Remarks

Model order reduction is a classical and well-studied stttijecontrol theory. How-
ever, in control theory, the systems to be reduced are divelasmall or at most
moderate size, and most of the methods developed in thisaageaot suitable or
efficient enough to be applied to large-scale systems. Iredny 1990s, the need
to efficiently reduce the ever-increasing sizes of the RCiwaoeks used to model
the interconnect of VLSI circuits led to a renewed interasimodel order reduc-
tion especially in the development of methods that are agple to large-scale sys-
tems. Model order reduction techniques based on Krylovsates have emerged
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as the methods of choice for generating macromodels of-secgke multi-port RCL
networks that arise in VLSI circuit simulation. Furtherrapthese algorithms have
also found applications in other areas, such as structnadysis and computational
acoustics.

Despite all the progress in Krylov subspace-based modedrambuction of
large-scale RCL networks in recent years, there are stithnopen problems. State-
of-the-art structure-preserving methods, such as SPRi8gienerate a basis matrix
of the underlying Krylov subspace and then employ explioijgction using some
suitable partitioning of the basis matrix to obtain a stnuetpreserving reduced-
order model. In particular, there are two major problems$lie use of such ex-
plicit projections. First, it requires the storage of theibamatrix, which becomes
prohibitive in the case of ‘truly’ large-scale RCL networl&econd, the approx-
imation properties of the resulting structure-preservieduced-order models are
not optimal, and they show that the available degrees ofltmeeare not fully used
in general. It would be highly desirable to have structuresprving model order
reduction methods that do not involve explicit projectiodavould thus be appli-
cable in the truly large-scale case. Other unresolved ssggude the automatic
and adaptive choice of the expansion points and robust éiafileestopping criteria
and error bounds.
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