BASIC ASSUMPTIONS

1. LAWS OF ELEMENTARY ALGEBRA

1.1. Properties of operations. Suppose \(x, y, z \) are integer numbers, real numbers or complex numbers.

(1) The operation of addition +:
 (a) \((x + y) + z = x + (y + z) \).
 (b) \(x + 0 = 0 + x = x \).
 (c) for every \(x \), there is an additive inverse \(-x \) such that \(x + (-x) = (-x) + x = 0 \).
 (d) \(x + y = y + x \).

(2) The operation of multiplication \(\cdot \):
 (a) \((x \cdot y) \cdot z = x \cdot (y \cdot z) \).
 (b) \(x \cdot 1 = 1 \cdot x = x \).
 (c) for every \(x \neq 0 \), there must be a multiplicative inverse \(x^{-1} \neq 0 \) such that \(x \cdot x^{-1} = x^{-1} \cdot x = 1 \).
 (d) \(x \cdot y = y \cdot x \).

(3) \(x \cdot (y + z) = x \cdot y + x \cdot z \).

(4) Each of the following sets is closed under both addition + and multiplication \(\cdot \):
 - the integer set \(\mathbb{Z} \), the real number set \(\mathbb{R} \), and the complex number set \(\mathbb{C} \).

 This says that if \(x \) and \(y \) are in \(\mathbb{Z} \), then both \(x + y \) are \(x \cdot y \) in \(\mathbb{Z} \). Same statement holds for \(\mathbb{R} \) and \(\mathbb{C} \).

1.2. Laws of inequality. Suppose \(x, y, z \) are real numbers.

(1) \(x \not< x \) (irreflexivity).

(2) If \(x < y \) and \(y < z \), then \(x < z \) (transitivity).

(3) Exactly one of \(x < y \), \(x = y \), or \(y < x \) is true.

(4) If \(x < y \), then \(x + z < y + z \).

(5) If \(x < y \) and \(0 < z \), then \(xz < yz \).

(6) If \(x < y \) and \(z < 0 \), then \(xz > yz \).

2. BASIC DEFINITIONS

(1) A real number \(x \) is positive if and only if \(x > 0 \). A positive integer is also called a natural number.

(2) A real number \(x \) is negative if and only if \(x < 0 \).

(3) An integer \(x \) is even if and only if there is an integer \(k \) such that \(x = 2k \).

(4) An integer \(x \) is odd if and only if there is an integer \(j \) such that \(x = 2j + 1 \).

(5) For positive integers \(a \) and \(b \), we say \(a \) divides \(b \) if and only if there is a positive integer \(k \) such that \(b = ak \).
(6) Two integers x and y have a **common factor** if and only if there exists a positive integer $k > 1$ such that k divides both x and y.
(7) A positive integer p is **prime** if and only if p is greater than 1 and the only positive integers that divide p are 1 and p.
(8) The real number x is **rational** if and only if there exist integers p and q, where $q \neq 0$, such that $x = p/q$.

3. Basic results from number theory

Theorem (Fundamental Theorem of Arithmetic). Every positive integer larger than 1 can be expressed uniquely as a product of primes.

Lemma 1. Two integers x and y have a common factor if and only if they have a common prime factor.

Lemma 2. Any rational number can be written as p/q where p and $q \neq 0$ are integers satisfying that p and q do not have common factors.