BASIC ASSUMPTIONS

1. LAWS OF ELEMENTARY ALGEBRA

1.1. Properties of operations. Suppose \(x, y, z \) are integer numbers, real numbers or complex numbers.

(1) The operation of addition +:
 (a) \((x + y) + z = x + (y + z)\).
 (b) \(x + 0 = 0 + x = x\).
 (c) for every \(x \), there is an additive inverse \(-x\) such that \(x + (-x) = (-x) + x = 0\).
 (d) \(x + y = y + x\).

(2) The operation of multiplication \(\cdot\):
 (a) \((x \cdot y) \cdot z = x \cdot (y \cdot z)\).
 (b) \(x \cdot 1 = 1 \cdot x = x\).
 (c) for every \(x \neq 0 \), there must be a multiplicative inverse \(x^{-1} \) such that \(x \cdot x^{-1} = x^{-1} \cdot x = 1\).
 (d) \(x \cdot y = y \cdot x\).

(3) \(x \cdot (y + z) = x \cdot y + x \cdot z\).
(4) Each of the following sets is closed under both addition + and multiplication \(\cdot\):
 - the integer set \(\mathbb{Z}\), the real number set \(\mathbb{R}\), and the complex number set \(\mathbb{C}\).

 This says that if \(x \) and \(y \) are in \(\mathbb{Z}\), then both \(x + y \) are \(x \cdot y \) in \(\mathbb{Z}\). Same statement holds for \(\mathbb{R}\) and \(\mathbb{C}\).

1.2. Laws of inequality. Suppose \(x, y, z \) are real numbers.

(1) \(x \neq x \) (irreflexivity).
(2) If \(x < y \) and \(y < z \), then \(x < z \) (transitivity).
(3) Exactly one of \(x < y \), \(x = y \), or \(y < x \) is true.
(4) If \(x < y \), then \(x + z < y + z \).
(5) If \(x < y \) and \(0 < z \), then \(xz < yz \).
(6) If \(x < y \) and \(z < 0 \), then \(xz > yz \).

2. Basic definitions

(1) A real number \(x \) is \textbf{positive} if and only if \(x > 0 \). A positive integer is also called a \textbf{natural number}.
(2) A real number \(x \) is \textbf{negative} if and only if \(x < 0 \).
(3) An integer \(x \) is \textbf{even} if and only if there is an integer \(k \) such that \(x = 2k \).
(4) An integer \(x \) is \textbf{odd} if and only if there is an integer \(j \) such that \(x = 2j + 1 \).
(5) For integers \(a \) and \(b \) where \(a \neq 0 \), we say \(a \) \textbf{divides} \(b \) if and only if there is an integer \(k \) such that \(b = ak \).
(6) Two integers x and y have a **common factor** if and only if there exists a positive integer $k > 1$ such that k divides both x and y.

(7) A positive integer p is **prime** if and only if p is greater than 1 and the only positive integers that divide p are 1 and p.

(8) The real number x is **rational** if and only if there exist integers p and q, where $q \neq 0$, such that $x = p/q$.

(9) The **absolute value** of a real number x, denoted by $|x|$, is defined by $|x| = x$ if $x \geq 0$, and $|x| = -x$ if $x < 0$.

Note. After we covered Section 1.4, you may assume simple facts about absolute values such as $|x| \geq 0$ and the results stated in Exercises 1.4.6, unless a problem asks you to prove one of these results.

3. Basic results from number theory

Theorem. The positive integer 1 is the least positive integer.

Theorem (Fundamental Theorem of Arithmetic). Every positive integer larger than 1 can be expressed uniquely as a product of primes.

Lemma 1. Any integer is either an even number or an odd number, but cannot be both.

Lemma 2. Two integers x and y have a common factor if and only if they have a common **prime** factor.

Lemma 3. Any rational number can be written as p/q where p and $q \neq 0$ are integers satisfying that p and q do not have common factors.

4. Fundamental results from Calculus

Theorem (Intermediate Value Theorem). If $f(x)$ is a continuous function on the closed interval $[a, b]$, then for any number z between $f(a)$ and $f(b)$, there exists a number $c \in [a, b]$ such that $f(c) = z$.

Theorem (Fundamental Theorem of Algebra). Suppose $f(x)$ is a polynomial of degree $d \geq 1$. If the coefficients of f are all complex numbers, then f has at least one complex root.

Corollary. Suppose $f(x)$ is a polynomial of degree $d \geq 1$. If the coefficients of f are all complex numbers, then f has exactly d complex roots (counting multiplicities).

Theorem (Complex Conjugate Root Theorem). Suppose $f(x)$ is a polynomial with real coefficients. If $a + bi$ (for some real numbers a, b) is a root of f, then so is its complex conjugate $a - bi$.

Therefore, the number of non-real roots of f is even.