SUPPLEMENTAL NOTES ON CHAPTER 5

Unlike the other chapters, most of the proofs you write for this chapter are not just based on definitions; you often need to apply theorems. Here is a summary of the proof methods related to the concepts we learn in Chapter 5.

1. Basic methods of proving $A \approx B$:
 - The most common way is directly showing there exists a bijection $f : A \to B$. Usually first construct a function $f : A \to B$ then show f is a bijection by using the methods we learned in chapter 4.
 - Sometimes use Lemma 5.1.2.

2. Basic methods of proving a set is finite:
 - Directly verify the definition.
 - Use Theorem 5.1.3: If $B \approx A$ and A is finite, then B is finite.
 - Use Theorem 5.1.6: If $B \subseteq A$ and A is finite, then B is finite.
 - Use Theorem 5.1.7: Union of finitely many finite sets is finite.

3. Basic methods of proving a set is infinite:
 - Suppose S is finite. Then try to get a contradiction. Two common way of finding a contradiction:
 - Use theorems on finite sets;
 - Show the bijection between S and \mathbb{N}_k is either not injective or not surjective.
 - Prove S is equivalent to some known infinite set.
 - Use an equivalent form of Theorem 5.1.6: If $B \subseteq A$ and B is infinite, then A is infinite.
 - Use the contrapositive of Corollary 5.1.11: If S is equivalent to one of its proper subset, then S is infinite.

4. Basic methods of proving a set is denumerable:
 - Directly prove $S \approx \mathbb{N}$ by constructing a one-to-one correspondence between S and \mathbb{N}.
 - Prove S is equivalent to some known denumerable set: $\mathbb{N}, \mathbb{E}^+, \mathbb{Z}, \mathbb{N} \times \mathbb{N}, \mathbb{Q}^+, \mathbb{Q}$.
 - Use Theorem 5.2.3/(b): If A and B are denumerable, then $A \times B$ is denumerable.
 - Use Theorem 5.3.5: If A is denumerable and B is finite, then $A \cup B$ is denumerable.
 - Use a consequence of Theorem 5.3.6: Union of finitely many pairwise disjoint denumerable sets is denumerable.
 - Prove S is countable and infinite using methods listed in (3) and (5).
(5) Basic methods of proving a set is countable:
 (a) Prove S is either finite or denumerable by using the methods listed in (2) or (4).
 (b) Use Theorem 5.3.2: If $B \subseteq A$ and A is countable, then B is countable.
 (c) Use Theorem 5.3.8 (and its corollary): Union of a countable collection of countable sets is countable.

(6) Basic methods of proving a set is uncountable:
 (a) Prove by contradiction. Assume the set is countable. Then apply theorems on countable sets to find a contradiction.
 (b) Prove S is infinite and not denumerable: See (3) for methods of proving infinite sets. Prove not denumerable by contradiction.
 (c) Prove S has cardinality \mathfrak{c}: See (7).

(7) Basic methods of proving a set has cardinality \mathfrak{c}:
 (a) Prove S is equivalent to $(0, 1)$.
 (b) Prove S is equivalent to some set known to have cardinality \mathfrak{c}: (a, b), $(a, +\infty)$, $(-\infty, b)$, \mathbb{R}.

Finally, the Cantor-Schroder-Berstein Theorem (Theorem 5.4.4) provides us another way to prove a set has a certain cardinal number especially the infinite ones (e.g. $\mathbb{N}_0, \mathfrak{c}$). For example, to prove a set S has cardinal number \mathfrak{c}, instead of constructing a bijection from S to a known set with cardinality \mathfrak{c}, you can find two sets A and B of cardinality \mathfrak{c}, and then show that there are injections from A to S and S to B.