Problem 1 Give the definition of each part below.

(a) A proposition.

(b) The equivalence of two propositional forms.

(c) The intersection of two sets A and B.

Problem 2 Show that the propositional forms $[P \Rightarrow (Q \lor R)]$ and $[(P \land \sim R) \Rightarrow Q]$ are equivalent.
Problem 3 In each of the following cases, first translate each symbolic expression into ordinary English statement. Then negate each expression symbolically, pushing the negation symbol as far in as possible. Finally, give a translation of each negated expression into ordinary English.

(a) $(\exists e)\{e > 0 \land (\forall d)[d > 0 \Rightarrow (\forall x)(0 < |x - a| < d \Rightarrow |f(x) - L| < e)]\}$, where d, e, and x are real numbers.

(b) $(\forall a)(\forall b)(\forall c)(a \text{ divides } bc \Rightarrow (a \text{ divides } b \lor a \text{ divides } c))$, where a, b, c are integers.
Problem 4 Determine whether each statement is true or false. If a statement is true, prove it. If it is false, give a counterexample.

(a) If x is an even integer and y is a multiple of x (by an integer), then y is even.

(b) Let t be a real number. If $t^2 = 9$, then $t > 2$.

(c) Let x and y be integers. If xy is odd, then both x and y are odd.
Problem 5
(a) Write the tautology that justifies the proof of a conditional proposition by contradiction. (Hint: Instead of proving $P \Rightarrow Q$, what is the equivalent propositional form we show?)

(b) Prove the following by contradiction: Let x be an integer. If x^2 is even, then x is even.

Problem 6 Let the universe be all real numbers \mathbb{R}. For any $B \subseteq \mathbb{R}$, define $B^* = B \cup \{0\}$. Prove that $B = B^*$ iff $0 \in B$.
Problem 7 Let A, B and C be sets. Indicate if each statement is true or false and prove your answer:

(a) $(A - B) \cup (A - C) = A - (B \cup C)$.

(b) $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

(c) If $A \cap B \cap C = \emptyset$, then $A \cap B = A \cap C = B \cap C = \emptyset$.