Problem 1 Give the definition of each part below.

(a) A proposition.

Answer: A proposition is a sentence that is either true or false.

(b) The equivalence of two propositional forms.

Answer: Two propositional forms are equivalent if and only if they have the same truth tables.

c) The intersection of two sets A and B.

Answer: The intersection of A and B is the set $A \cap B = \{ x : x \in A \text{ and } x \in B \}$.

Problem 2 Show that the propositional forms $[P \Rightarrow (Q \lor R)]$ and $[(P \land \sim R) \Rightarrow Q]$ are equivalent.

Solution: From the table below we can see that $[P \Rightarrow (Q \lor R)]$ and $[(P \land \sim R) \Rightarrow Q]$ have the same truth tables, thus are equivalent.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>$Q \lor R$</th>
<th>$P \Rightarrow (Q \lor R)$</th>
<th>$\sim R$</th>
<th>$P \land \sim R$</th>
<th>$(P \land \sim R) \Rightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Problem 3 In each of the following cases, first translate each symbolic expression into ordinary English statement. Then negate each expression symbolically, pushing the negation symbol as far in as possible. Final, give a translation of each negated expression into ordinary English.

(a) \((\exists e)(e > 0 \land (\forall d)(d > 0 \Rightarrow (\forall x)(0 < |x - a| < d \Rightarrow |f(x) - L| < e)))\), where \(d, e, \) and \(x\) are real numbers.

Solution: English: There exits some positive number \(e\) such that for all \(x \neq a\), the difference between \(f(x)\) and \(L\) is smaller than \(e\).

Negation: \((\forall e)(e > 0 \Rightarrow (\exists d)(d > 0 \land (\exists x)(0 < |x - a| < d \land |f(x) - L| \geq e)))\). (The universe is \(\mathbb{R}\).)

English: For all positive number \(e\), there exists some positive \(d\) such that for some \(x\) in the interval \((a - d, a + d)\) the difference between \(f(x)\) and \(L\) is no less than \(e\).

(b) \((\forall a)(\forall b)(\forall c)(a \text{ divides } bc \Rightarrow (a \text{ divides } b \lor a \text{ divides } c))\), where \(a, b, c\) are integers.

Solution: English: For any integers \(a, b, c\), if \(a\) divides \(bc\), then \(a\) divides \(b\) or \(a\) divides \(c\).

Negation: \((\exists a)(\exists b)(\exists c)(a \text{ divides } bc \land a \text{ does not divide } b \land a \text{ does not divide } c)\). (The universe is \(\mathbb{Z}\).)

English: There exist integers \(a, b, c\), such that \(a\) divides \(bc\) but \(a\) divides neither \(b\) nor \(c\).
Problem 4

Determine whether each statement is true or false. If a statement is true, prove it. If it is false, give a counterexample.

(a) If \(x \) is an even integer and \(y \) is a multiple of \(x \) (by an integer), then \(y \) is even.

Answer: The statement is true.

Proof: Let \(x \) be an even integer and \(y \) is a multiple of \(x \).

By the definition of even, \(x = 2k \), for some integer \(k \). Since \(y \) is a multiple of \(x \), there exists an integer \(m \) such that \(y = mx \). Therefore,

\[
y = mx = m(2k) = 2(mk).
\]

Because \(mk \) is an integer, \(y = 2(mk) \) is even.

Thus, if \(x \) is an even integer and \(y \) is a multiple of \(x \) (by an integer), then \(y \) is even.

(b) If \(t^2 = 9 \), then \(t > 2 \).

Answer: The statement is false.

Counterexample: Let \(t = -3 \). we still have that \(t^2 = 9 \). However, \(-3 < 2 \).

(c) Let \(x, y \) and \(z \) be integers. If \(xy \) is odd, then both \(x \) and \(y \) are odd.

Answer: The statement is true.

Proof: Let \(x, y \) and \(z \) be integers. We will prove by contraposition.

Suppose \(x \) or \(y \) is not odd. Then (at least) one of them is even. Without loss of generality, we assume \(x \) is even. Then by the definition of even, \(x = 2k \) for some integer \(k \). Thus, \(xy = (2k)y = 2(ky) \). Since \(ky \) is an integer, we must have that \(xy \) is even, which is not odd.

Therefore, if \(x \) or \(y \) is not odd, then \(xy \) is not odd.

Thus, by contraposition, if \(xy \) is odd, then both \(x \) and \(y \) are odd.
Problem 5

(a) Write the tautology that justifies the proof of a conditional proposition by contradiction. (Hint: Instead of proving \(P \Rightarrow Q \), what is the equivalent propositional form we show?)

Answer: \((P \Rightarrow Q) \iff [\sim (P \Rightarrow Q) \Rightarrow (R \land \sim R)]\)

Or: \((P \Rightarrow Q) \iff [(P \land \sim Q) \Rightarrow (R \land \sim R)]\)

(b) Prove the following by contradiction: Let \(x \) be an integer. If \(x^2 \) is even, then \(x \) is even.

Proof by contradiction: Let \(x \) be an integer. Suppose \(x^2 \) is even and \(x \) is odd.

By the definition of odd, \(x = 2k + 1 \), for some integer \(k \). Then

\[
 x^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.
\]

\(k \in \mathbb{Z} \) implies that \(2k^2 + 2k \in \mathbb{Z} \). Hence, \(x^2 \) is odd, which is a contradiction to \(x^2 \) is even.

Therefore, if \(x^2 \) is even, then \(x \) is even. \(\Box \)

Problem 6

Let the universe be all real numbers \(\mathbb{R} \). For any \(B \subseteq \mathbb{R} \), define \(B^* = B \cup \{0\} \).

Prove that \(B = B^* \) iff \(0 \in B \).

Proof: We will use two-part proof of a biconditional sentence. Let \(B \subseteq \mathbb{R} \) and \(B^* = B \cup \{0\} \).

(a) Suppose \(B = B^* \). Then \(0 \in B \cup \{0\} = B^* = B \).

Therefore, if \(B = B^* \), then \(0 \in B \).

(b) Suppose \(0 \in B \). We will show \(B = B^* \) by proving \(B \subseteq B^* \) and \(B^* \subseteq B \).

First, \(B \subseteq B \cup \{0\} = B^* \), because \(B \subseteq B \cup A \), for any set \(A \).

Next, \(0 \in B \) implies that \(\{0\} \subseteq B \). Unioning \(B \) on both sides of \(\{0\} \subseteq B \) gives \(B \cup \{0\} \subseteq B \cup B \). However, \(B \cup \{0\} = B^* \) and \(B \cup B = B \). Thus, we have \(B^* \subseteq B \).

We showed that \(B \subseteq B^* \) and \(B^* \subseteq B \). Thus, we conclude that \(B = B^* \).

Therefore, if \(0 \in B \), then \(B = B^* \).

Therefore, \(B = B^* \) iff \(0 \in B \). \(\Box \)
Problem 7 Let A, B and C be sets. Indicate if this statement is true or false and prove your answer:

(a) $(A - B) \cup (A - C) = A - (B \cup C)$.

Answer: The statement is false. (You can use a Venn diagram to convince yourself. But a Venn diagram cannot serve as a proof. We give a counterexample.)

Counterexample: Let $A = \{1, 2, 3\}$, $B = \{2, 3, 4\}$, and $C = \{3, 4, 5\}$.

Then $A - B = \{1\}$, $A - C = \{1, 2\}$, and so $(A - B) \cup (A - C) = \{1, 2\}$.

$B \cup C = \{2, 3, 4, 5\}$ and $A - (B \cup C) = \{1\}$.

Hence, in this example, $(A - B) \cup (A - C) \neq A - (B \cup C)$.

(b) $A \times (B \cup C) = (A \times B) \cup (A \times C)$.

Answer: This statement is true.

Proof: Let A, B and C be sets. We show that for any (x, y), we have that $(x, y) \in A \times (B \cup C)$ iff $(x, y) \in (A \times B) \cup (A \times C)$. Let (x, y) be an ordered pair of objects.

Then

$(x, y) \in A \times (B \cup C)$ \iff $x \in A$ and $y \in B \cup C$

\iff $x \in A$ and $(y \in B$ or $y \in C)$

\iff $(x \in A$ and $y \in B$) or $(x \in A$ and $y \in C)$

\iff $(x, y) \in A \times B$ or $(x, y) \in A \times C$

\iff $(x, y) \in (A \times B) \cup (A \times C)$.

Therefore, $A \times (B \cup C) = (A \times B) \cup (A \times C)$. \qed

(c) If $A \cap B \cap C = \emptyset$, then $A \cap B = A \cap C = B \cap C = \emptyset$.

Answer: The statement is false.

Counterexample: Let $A = \{1, 2\}$, $B = \{2, 3\}$, and $C = \{1, 3\}$. Then $A \cap B \cap C = \emptyset$.

But $A \cap B = \{1, 2\} \cap \{2, 3\} = \{2\} \neq \emptyset$.