Problem 1
Give the definition of each part below.

(a) A symmetric relation on a set A.

(b) A partition of a nonempty set A.

(c) The characteristic function of a set A.

Problem 2
Give the equivalence relation R on $A = \{1, 2, 3, 4\}$ such that A/R is the partition $\\{\{1, 2, 3\}, \{4\}\}$. No justification is required.
Problem 3 Let $\mathcal{A} = \{A_\alpha : \alpha \in \Delta\}$ be a family of sets and let B be a set. Prove that

$$B \cup \left(\bigcap_{\alpha \in \Delta} A_\alpha \right) = \bigcap_{\alpha \in \Delta} (B \cup A_\alpha).$$
Problem 4

(a) State the principle of mathematical induction (PMI).

(b) Use the PMI to prove that for any \(n \in \mathbb{N}\), \(\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}\).
Problem 5 For each part, determine whether R is an equivalence relation and prove your answer. In the case when R is an equivalence relation, find $\frac{T}{2}$.

(a) R is the relation on \mathbb{Q} given by xRy iff $x = 3^k y$, for some $k \in \mathbb{N}$.

(b) R is the relation on \mathbb{Q} given by xRy iff $x = 3^k y$, for some $k \in \mathbb{Z}$.
Problem 6 Give a relation on $A = \{1, 2, 3\}$ that is reflexive and transitive but not symmetric. Explain why the given relation is not symmetric.

Problem 7 Let F be a relation from A to B and G a relation from B to C. Prove that $\text{Dom}(G \circ F) \subseteq \text{Dom}(F)$.

Problem 8 Let $f : A \rightarrow B$ with $\text{Rng}(f) = C$. Prove that if f^{-1} is a function, then $f^{-1} \circ f = I_A$.
Problem 9 Suppose $f : A \to B$ and $g : C \to D$. Let $E = \{x \mid f(x) = g(x)\}$. In class, we proved that $f \cap g$ is a function with domain E by showing that $f \cap g = g|_E$. Prove this result directly by verifying the two conditions in the definition of a function.