Fu Liu Math 245

Homework 2 Due on Jan 27, 2025

The seven problems below are all from the 2nd edition of EC1. Note that I treat 1.44a and 1.44b as two separate problems. However, clearly you should not use your solutions to 1.44b as your solutions to 1.44a.

Only turn in your **best two problems**.

You may turn in one problem rated as [2+] or [3-] from Homework 1 (which you have not previously submitted), but at least one problem has to be from this set.

- **1.38** [2] Show that the number of permutations $\omega \in \mathfrak{S}_n$ fixed by the fundamental transformation $\mathfrak{S}_n \xrightarrow{\wedge} \mathfrak{S}_n$ of Proposition 1.3.1 (i.e., $\omega = \hat{\omega}$) is the Fibonacci number F_{n+1} .
- **1.44a** [2] Suppose $n \ge 2$. Show that the total number of cycles of all even permutations of [n] and the total number of cycles of all odd permutations of [n] differ by $(-1)^n (n-2)!$.
- **1.44b** [3-] Give a bijective proof for the above problem.
- **1.53a** [2] The Eulerian Catalan number is defined by $EC_n = A(2n+1, n+1)/(n+1)$. The first few Eulerian Catalan numbers, beginning with $EC_0 = 1$, are 1, 2, 22, 604, 31238. Show that $EC_n = 2A(2n, n+1)$, whence $EC_n \in \mathbb{Z}$.
- **1.53b** [3-] Show that EC_n is the number of permutations $\omega = a_1 a_2 \cdots a_{2n+1}$ with n descents, such that every left factor $a_1 a_2 \cdots a_i$ has at least as many ascents as descents. For n = 1 we are counting the two permutations 132 and 231.

1.126 [2+] Show that

$$\sum_{\omega} q^{\mathrm{inv}(\omega)} = q^n \prod_{j=0}^{n-1} (1 + q^2 + q^4 + \dots + q^{4j}),$$

where ω ranges over all fixed-point free involutions in \mathfrak{S}_{2n} , and where $\operatorname{inv}(\omega)$ denotes the number of inversions of ω . Given a simple combinatorial proof analogous to the proof of Corollary 1.3.13.

1.138 [2] Find a simple formula for the number of alternating permutations $a_1 a_2 \ldots a_{2n} \in \mathfrak{S}_{sn}$ satisfying $a_2 < a_4 < a_6 < \cdots < a_{2n}$.