Fu Liu Math 245

Homework 5 Due on February 19, 2025

Turn in your **best two problems** from the four problems below.

You may turn in one problem from Homework 4, but at least one problem has to be from this set.

- **E2** [2+] Let \Diamond_d be the convex hull of $\{\pm \mathbf{e}_i : i = 1, 2, \dots, d\}$, where \mathbf{e}_i 's are the vectors in the standard basis of \mathbb{R}^d . (This polytope is the *d*-dimensional *cross-polytope*. When d = 3 it is an octahedron.)
 - (1) Find an \mathcal{H} -representation of \Diamond_d . Justify your answer.
 - (2) Use a combinatorial argument to find an expression for $i(\Diamond_d, n)$, using the basis $\left\{ \begin{pmatrix} n \\ k \end{pmatrix} : 0 \le k \le d \right\}$.
 - (3) Find explicitly the h^* -polynomial of \Diamond_d .

E3 [2+] Let $R_d \subset \mathbb{R}^d$ be the convex hull of $\left\{ \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_d, -\sum_{i=1}^d \mathbf{e}_i \right\}$. (This polytope is the *d*-dimensional standard reflexive polytope.) Find explicitly the h^* -polynomial of R_d .

E4 [2] Let $\mathbf{s} = (s_1, s_2, \ldots, s_d) \in \mathbb{P}^d$ be a sequence of positive integers, and $P_{\mathbf{s}} \subset \mathbb{R}^d$ the convex hull of $(0, 0, \ldots, 0)$, $(0, 0, \ldots, 0, s_d)$, $(0, \ldots, 0, s_{d-1}, s_d)$, \ldots , (s_1, s_2, \ldots, s_d) . Show that

$$i(P_{\mathbf{s}}, n) = i(P_{(s_d, s_{d-1}, \dots, s_1)}, n).$$

4.52 [3-] Let $P_{\mathbf{s}}$ be as defined in Problem E4. Show that if $\mathbf{s} = (d, d - 1, \dots, 2, 1)$, then

$$i(P_{\mathbf{s}}, n) = (n+1)^d.$$