Homework 7

Due on March 5, 2025

Turn in your **best two problems** from the six problems below. You may turn in one problem rated as [2+] or [3-] from Homework 6, but at least one problem has to be from this set.

3.14a [2+] A finite poset P is a *series-parallel poset* if it can be built up from a one-element poset using the operations of disjoint union and ordinal sum. There is a unique four-element poset (up to isomorphism) that is not series-parallel, namely, the zigzag poset Z_4 of Exercise 3.66.

Show that a finite poset P is series-parallel if and only if it contains no induced subposet isomorphic to Z_4 . Such posets are sometimes called *N*-free posets.

3.34 [2] Find all nonisomorphic posets P such that

$$F(J(P), x) = (1+x)(1+x^2)(1+x+x^2).$$

3.44a [3-] Let $\omega = a_1 a_2 \cdots a_n \in \mathfrak{S}_n$. Let $P_{\omega} = \{(i, a_i) : i \in [n]\}$, regarded as a subposet of $\mathbb{P} \times \mathbb{P}$. In other words, define $(i, a_i) \leq (k, a_k)$ if $i \leq k$ and $a_i \leq a_k$. Let j(P) denote the number of order ideals of the poset P. Show that

$$\sum_{\omega \in \mathfrak{S}_n} j(P_\omega) = \sum_{i=0}^n \frac{n!}{i!} \binom{n}{i}.$$

3.45a [2] Let $L_k(n)$ denote the number of k-element order ideals of the boolean algebra B_n . Show that for fixed k, $L_k(n)$ is a polynomial function of n of degree k-1 and leading coefficient 1/(k-1)!. Moreover, the differences $\Delta^i L_k(0)$ are all nonnegative integers.

3.127ab [2+]

(a) How many maximal chains does Π_n have?

(b) The symmetric group \mathfrak{S}_n acts on the partition lattice Π_n in an obvious way. This action induces an action on the set \mathcal{M} of maximal chains of Π_n . Show that the number $\#\mathcal{M}/\mathfrak{S}_n$ of \mathfrak{S}_n -orbits on \mathcal{M} is equal to the Euler number E_{n-1} . For instance, when n = 5 a set of orbit representatives is given by (omitting $\hat{0}$ and $\hat{1}$ from each chain, and writing e.g. 12-34 for the partition whose nonsingleton blocks are $\{1,2\}$ and $\{3,4\}$): 12 < 123 < 1234, 12 < 123 < 123-45, 12 < 12-34 < 125-34, 12 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 12-34 < 1

Hint: use Proposition 1.6.2.

3.178 [2+] Let L_n denote the lattice of faces of an *n*-dimensional cube, ordered by inclusion, and let f(n) be the total number of chains containing $\hat{0}$ and $\hat{1}$ in L_n . Show that

$$\sum_{n \ge 0} f(n) \frac{x^n}{n!} = \frac{e^x}{2 - e^{2x}}.$$