Homework 8 Due on March 12, 2025

Turn in your **best two problems** from the six problems below.

You may turn in one problem rated as [2+] or [3-] from Homework 7, but at least one problem has to be from this set.

P1 [2+] In class, we discussed that given a vector space or an affine space V, and S a finite subset of V, the poset

 $L(S) := \{S \cap W : W \text{ is a subspace of } V\}, \text{ ordered by inclusion}$

is a geometric lattice.

We also showed that Π_n is a geometric lattice.

Find V and S such that $\Pi_n \cong L(S)$. Justify your answer.

3.54 [2] Let P be a finite poset. Simplify the sum

$$f(P) = \sum_{t_1 < \dots < t_n} \frac{1}{(\# \bigvee_{t_1} - 1) \cdots (\# \bigvee_{t_{n-1}} - 1)},$$

where the sum ranges over all nonempty chains of P for which t_n is a maximal element of P.

3.57ab [2+] Let P be an n-element poset. If $t \in P$ then set $\lambda_t = \#\{s \in P : s \leq t\}$. Show that

$$e(P) \ge \frac{n!}{\prod_{t \in P} \lambda_t},$$

where the equality holds if and only if every component of P is a rooted tree (where the root as usual is the maximum element of the tree).

3.62ab [2] Let P_n be the poset with elements s_i , t_i for $i \in [n]$, and cover relations $s_1 < s_2 < \cdots < s_n$ and $t_i > s_i$ for all $i \in [n]$. (E.g., P_3 has the Hasse diagram of Figure 3.46 in the book.)

- (a) Find a "nice" expression for the rank-generating function $F(J(P_n), x)$.
- (b) Let $P = \lim_{n \to \infty} P_n$. Find the rank-generating function $F(J_f(P), x)$.
- **3.58** [3-] Let P be a finite set. Let A be an antichain of P which intersects every maximal chain. Show that

$$e(P) = \sum_{t \in A} e(P - t).$$

Give an elegant bijective proof.

3.94 [2+] Let L = J(P) be a finite distributive lattice. A function $v : L \to \mathbb{C}$ is called a *valuation* (over \mathbb{C}) if $v(\hat{0}) = 0$ and

$$v(s) + v(t) = v(s \wedge t) + v(s \vee t), \forall s, t \in L.$$

Prove that v is uniquely determined by its values on the join-irreducibles of L (which we may identify with P). More precisely, show that if I is an order ideal of P, then

$$v(I) = -\sum_{t \in I} v(t)\mu(t,\hat{1}),$$

where μ denotes the Möbius function of I (considered as a subposet of P) with $\hat{1}$ adjoined.

3.144 [2] Let B_k denote a boolean algebra of rank k, and $\Omega(B_k, m)$ its order polynomial. Show that $\Omega(B_{n+1}, 2) = \Omega(B_n, 3)$.