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Abstract. In the special case of braid fans, we give a combinatorial formula for
the Berline–Vergne’s construction for an Euler-Maclaurin type formula that computes
number of lattice points in polytopes. Our formula is obtained by computing a sym-
metric expression for the Todd class of the permutohedral variety. By showing that
this formula does not always have positive values, we prove that the Todd class of the
permutohedral variety Xd is not effective for d ≥ 24. Additionally, we prove that the
linear coefficient in the Ehrhart polynomial of any lattice generalized permutohedron
is positive.

Keywords: Ehrhart polynomials, generalized permutohedra, Berline–Vergne construc-
tion

1 Introduction

Let Λ be a lattice of finite rank and V = Λ ⊗ R be the corresponding real finite-
dimensional vector space. A lattice polyope in V is a polytope such that all of its vertices
lie in Λ. A classical problem in the crossroads between enumerative combinatorics and
discrete geometry is that of counting lattice points in lattice polytopes. For any polytope
P ⊂ V we define Lat(P) := |P ∩ Λ|. One of the earliest results in the area is Pick’s
theorem, which says that for any lattice polygon P ⊂ R2 we have

Lat(P) = a(P) +
1
2

b(P) + 1,

where a(P) is the area of P and b(P) is the number of lattice points on the boundary of
P. One way to obtain a higher dimensional analog of Pick’s formula is to find a formula
relating the number of lattice points of P with the different normalized volumes of the
faces F of P. We want a real-valued function α on pairs (F, P), where F is a face of a
lattice polytope P, such that

Lat(P) = ∑
F: a face of P

α(F, P) nvol(F), (1.1)
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where nvol(F) is the normalized volume of F. It is clear that for a given lattice polytope
P one can always find many functions α satisfying (1.1). What we want is a function
that works simultaneously for all lattice polyopes. We can do this by requiring the
function α to be local, i.e., if the numbers α(F, P) only depend on the local geometry
of P around F, or more specifically, the value only depends on ncone(F, P), the normal
cone of P at F. Any local function α that satisfies (1.1) for all lattice polytopes P is called
a McMullen function, since McMullen was the first to prove their existence [9]. His
proof is nonconstructive and shows that there are infinitely many McMullen functions.
In the present paper we compute the values for a particular McMullen function on a
special family of polytopes: generalized permutohedra. A generalized permutohedron
is a polytope whose normal fan is a coarsening of the braid fan Σd.

Our methods for computing a McMullen function for generalized permutohedra are
based on the theory of toric varieties.

1.1 Todd classes of toric varieties

Let P be a lattice polytope with normal fan Σ and XΣ be the associated toric variety. The
Todd class Td(XΣ) is an element in the Chow ring of XΣ. As such it can be written as a
Q-linear combination of the toric invariant cycles [V(σ)]:

Td(XΣ) = ∑
σ∈Σ

rΣ(σ) [V(σ)], rΣ(σ) ∈ Q. (1.2)

Since the cycles [V(σ)] satisfy algebraic relations, the values rΣ(σ) satisfying (1.2) are
not uniquely determined. An amazing connection with lattice polytopes is given by the
fact that any function rΣ(·) satisfying (1.2) defines a function α satisfying (1.1) for P by
setting

α(F, P) = rΣ(ncone(F, P)).

A proof of this fact can be found in Danilov’s 1978 survey [4] where he further asked if
there exist a function r that depends only on the cone σ and not on Σ, in other words,
if there exist a local function r satisfying (1.2) for all fans Σ. Accordingly, we call such a
function r on pointed cones a Danilov function. By setting

α(F, P) = r(ncone(F, P)),

any Danilov function gives a McMullen function.
We want to briefly remark on two constructions of Danilov functions from the last

two decades. Pommersheim and Thomas [10] gave a construction of a Danilov function
r(σ) that depends on choosing a complement map for subspaces. A couple of years later
Berline and Vergne [1] constructed a McMullen function with the property that it is
computable in polynomial time fixing the dimension and it is a valuation on cones. We
call this construction the BV-function, and denote it by αbv.
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Later they showed that if a function r on pointed cones is defined by r(σ) = αbv (F, P)
as long as σ = ncone(F, P), then it is a Danilov function. For convenience, we abuse the
notation, and consider αbv to be both a function on pairs (F, P) and a function on cones
with the connection that αbv(F, P) = αbv(ncone(F, P)). Thus, αbv is both a McMullen
function and a Danilov function.

Both constructions, Berline–Vergne’s and Pommersheim-Thomas’, are algorithmic. A
priori it is very hard to get formulas for general cones. There are very few examples
of fans Σ for which αbv(σ) (or any other Danilov function) have been computed for all
σ ∈ Σ. In this paper, we focus on computing the BV-function on all cones in braid fans
using tools developed in previous work of the authors.

In [2] we exploited an extra symmetry property satisfied by the function αbv, and used
this symmetry to study the values on cones in braid fans. One main result in [2] is the
uniqueness theorem, which in the context of the present paper states that, for the specific
example of braid fans, αbv is the unique function satisfying (1.2) and being invariant
under the permutation action of the symmetric group on the ambient space. Using this,
we obtain the main result of this paper – Theorem 4.1 – which gives a combinatorial
formula for αbv on all cones in braid fans.

1.2 Connection to Ehrhart theory

Ehrhart proved that for every lattice polytope P the function Lat(tP) for t ∈ N is a
polynomial in t of dimension d = dim P. More precisely, there exist a0, a1, . . . , ad ∈ Q

such that for all t ∈ N, Lat(tP) := a0 + a1t1 + a2t2 + · · · + adtd. The right hand side is
called the Ehrhart polynomial of P. Given a McMullen formula α one can deduce that

ak = ∑
F:a face of P

dim F=k

α(F, P) nvol(F). (1.3)

We call a lattice polytope P Ehrhart positive if all the (middle) coefficients of its
Ehrhart polynomial are positive (see [8] for a recent survey on Ehrhart positivity). One
of the main motivations for [2] was to prove a conjecture of De Loera et al. asserting that
matriod polytopes are Ehrhart positive [5]. Noticing that matroid polytopes belong to the
family of generalized permutohedra, we focus on the latter larger family of polytopes.

Conjecture 1.1 ([2, Conjecture 1.2]). Lattice generalized permutohedra are Ehrhart positive.

One observes that a consequence of (1.3) is that if we have a McMullen function α

such that α(F, P) is positive for all faces F ⊂ P then P is Ehrhart positive. (The converse
is not true as shown in Section 3.4 of [3].) Using the fact that the BV-function αbv is a
McMullen function and it has certain valuation properties, we showed in [2] that the
following conjecture (if true) implies Conjeture 1.1.
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Conjecture 1.2 ([2, Conjecture 1.3]). Let P be a generalized permutohedron and F ⊂ P a face,
then αbv(F, P) is positive. Equivalently, αbv(σ) is positive for every cone σ in the braid fan.

Despite of these positive results we’ve obtained in our previous work towards Con-
jeture 1.2, in the present paper, we use our main result - the combinatorial formula
described in Theorem 4.1 - to find negative values for αbv on some cones in braid fans,
hence disproving Conjeture 1.2. Note that this does not imply that Conjeture 1.1 is false,
and in fact we present a proof, independent of the rest of the paper, that the linear co-
efficient of the Ehrhart polynomial of any lattice generalized permutohedron is positive,
providing further evidence to Conjeture 1.1. This positivity result of linear Ehrhart coef-
ficient was proved independently by Jochemko and Ravichandran in [7], using different
techniques from what are presented in this paper.

2 Preliminaries and notation.

Here we review concepts and notation that we are going to use. As standard we denote
[d + 1] := {1, 2, 3, · · · , d, d + 1}. The set of all subsets of [d + 1] form a poset Bd+1 called
the boolean algebra and we define the truncated boolean algebra, denoted by Bd+1, to
be the poset obtained from Bd+1 by removing [d + 1] and ∅. Two elements S, S′ ∈ Bd+1
are incomparable if neither S ⊆ S′ nor S ⊇ S′. A k-chain S• = (S1, · · · , Sk) is a sequence
of k totally ordered elements of Bd+1. For notational purposes, we complete S• by adding
∅ and [d + 1] to obtain ∅ = S0 ( S1 ( · · · ( Sk ( Sk+1 = [d + 1]. We denote the new
sequence by Ŝ•. The set of all k-chains in Bd+1 is denoted Ck

d+1 and let Cd+1 =
⋃

k Ck
d+1.

2.1 Braid fan and Permutohedral variety

Let Vd be the d-dimensional real vector space 1⊥ ⊂ Rd+1, where 1 is the all one vector.
Its dual is Wd = R[d+1]/(1).

The combinatorics of the braid fans are summarized in Lemma 2.1 below. Let e1, · · · ,
ed+1 be the standard basis of Rd+1 and for each S ∈ Bd+1 we define eS := ∑i∈S ei as
an element in Wd. For any k-chain S• of Bd+1, we define the corresponding braid cone
σS• := Cone(eS : S ∈ S•), which is k-dimensional. The following is well known.

Lemma 2.1. The map S• 7→ σS• gives a one-to-one correspondence between chains in Cd+1 and
cones in the braid fan Σd. Moreover, k-chains in Cd+1 are in bijection with k-dimensional cones
in Σd.

2.2 Permutohedral variety

For toric varieties we follow the notation and terminology of [6]. The permutohedral
variety Xd is the toric variety associated to Σd. For each S• ∈ Cd+1, its corresponding
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braid cone σS• is associated with a subvariety V(σS•). These subvarieties are the torus
invariant cycles.

For any d ∈N we define the following ring

Rd := k[xS : S ∈ Bd+1],

where k is any algebraically closed field. For any element i ∈ [d + 1] we define the linear
form `i := ∑S3i xS.

Definition 2.2. The Chow ring of the permutohedral variety Xd can be presented as
Ad
∼= Rd/(I1 + I2), where

I1 = 〈xSxS′ : for S, S′ incomparable〉, I2 = 〈`a − `b : for all a, b ∈ [d + 1]〉.

We are interested in computing the Todd class of Xd in Ad. The following definition
follows [6, Section 5].

Definition 2.3. The Todd class of Xd is the element of Ad defined as

Td(Xd) := ∏
S∈Bd+1

(
xS

1− e−xS

)
, (2.1)

which is an element of Ad by expanding each parenthesis on the right hand side as

x
1− e−x = 1 +

x
2
+

∞

∑
i=1

(−1)i−1Bi

(2i)!
x2i = 1 +

x
2
+

x2

12
− x4

720
+

x6

30240
+ · · · . (2.2)

Here Bi is the i-th Bernoulli number. Also note that f k = 0 for any k > d and f ∈ Ad, so
the sum in (2.2) is finite.

For each S• ∈ Cd+1, the class of the subvariety V(σS•) in Ad is denoted [V(σS•)], and
it can be represented as a square-free element in Ad :

[V(σS•)] = xS• := ∏
S∈S•

xS. (2.3)

We are interested in expressions for Td(Xd) in terms of classes of the torus invariant
cycles. In other words, we are looking for r(S•) ∈ Q such that

Td(Xd) = ∑
S•∈Cd+1

rd(S•) xS• = ∑
S•∈Cd+1

rd(S•) [V(σS•)]. (2.4)

We call such an expression a square-free expression for the Todd class Td(Xd) of Xd.
Our interest in such an expression lies in the following theorem originally attributed to
Danilov which is already mentioned in Section 1.1. Here we only state it in the particular
case of braid fans.
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Theorem 2.4 (Section 5 in [6]). Let P be a d-dimensional lattice generalized permutohedron
with normal fan Σd. Suppose rd is a function defined on Cd+1 such that (2.4) holds. Using the
one-to-one correspondence between chains in Cd+1 and cones in Σd described in Lemma 2.1, we
can consider rd to be a function on braid cones by letting rd(σS•) := rd(S•). Then we have that

Lat(P) = ∑
F⊂P

rd(ncone(F, P)) nvol(F). (2.5)

Therefore, an equation of the form (2.4) gives a solution to (1.1) for lattice generalized
permutohedra by setting α(F, P) = rd(ncone(F, P)).

We are going to require one more special property for our expressions of the form
(2.4).

Definition 2.5. The symmetric group Sd+1 acts on elements of Bd+1 hence on the gen-
erators of the ring Rd. Notice that this action fixes both ideals I1 and I2 so that Sd+1
acts naturally on Ad too. We say an element f ∈ Ad is symmetric if π · f = f for all
π ∈ Sd+1.

For any f ∈ Ad, we define its symmetrization to be

f ] :=
1

(d + 1)! ∑
π∈Sd+1

π · f . (2.6)

(It is easy to see that f ] is symmetric.)

Recall that the BV-function αbv is both a McMullen function and a Danilov function.
In the case of the braid fan, we abuse notation again, and consider αbv a function on
Cd+1 by letting αbv(S•) := αbv(σS•), ∀S• ∈ Cd+1. Then using results from [2] we prove
the following.

Theorem 2.6. [Theorem 5.5 in [2]] There is a unique symmetric square-free expression for
Td(Xd). It is given by the Berline–Vergne function:

Td(Xd) = ∑
S•∈Cd+1

αbv(S•)[V(σS•)]. (2.7)

We call the right hand side of (2.7) the Berline–Vergne expression for the Todd class
of Xd.

Combining the theorem with the symmetrization described in (2.6) we get the fol-
lowing

Proposition 2.7. Let f be any square-free expression for Td(Xd) (as in (2.4)), then its sym-
metrization f ] is the Berline–Vergne expression for Td(Xd).
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3 Spider diagrams

In this section we develop the necessary combinatorial language that will be used to
express our main formulas in Section 4.

Definition 3.1. Let T• ∈ Cd+1 and S ∈ T• (so S is a subset of [d + 1]). A spider Sp =
Sp(T•, S) on T• with head S is a graph on the vertex set T• with edge set {S, T} for every
T ∈ T•\{S}. We call S the head and every non head vertex a leg. Legs are partitioned
in two subsets L and R. The set L consists of the left legs, i.e., of T ∈ T• such that T ⊂ S
and R consists of the right legs, sets T ∈ T• with S ⊂ T.

The size of a spider is |Sp(T•, S)| := |T•|, the size of its vertex set. A spider of size
one is called a trivial spider. It has no legs. (Note that number of edges in a spider Sp is
|Sp| − 1.)

Notation 3.2. A left leg will be labeled as TL
i if it is the i-th smallest vertex among all left

legs, and a right leg will be labeled by TR
j if it is the j-th largest vertex among all right

legs. If there are no left legs, we give the head vertex h an additional label TL
1 ; similarly,

if there are not Right legs, we give the head vertex S an additional label TR
1 .

Example 3.3. To save space we avoid commas, for instance {12} := {1, 2}. Consider the
spider with chain T• = {12} ⊂ {123} ⊂ {123456} ⊂ {12345678} and head S = {12}.
In Figure 1 we have labeled the spider according to Notation 3.2. Note that the head S
receives also the label of TL

1 .

TL
1 = S TR

3 TR
2 TR

1

{12} {123} {123456} {12345678}
3 4 5 6

Figure 1: A spider with the head having two different labels.

Definition 3.4. Let T• ∈ Cd+1 be a chain. A spider diagram D consist of a partition of
T• into k-disjoint intervals T1,•, · · · , Tk,• together with a spider Spi := Sp(Ti,•, Si) on each
interval. Notice that the set of heads form a chain S• ∈ Cd+1. Additionally, we always
adjoin two trivial spiders Sp0 and Spk+1 having vertex set ∅ and [d + 1] respectively.

Notation 3.5. In a spider diagram D the legs are now triply indexed: the element TP
i,j

with P ∈ {L, R} is the jth smallest/largest on the side L/R of the i-th spider. See Figure 2
for an example of this indexing system.
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Example 3.6. In Figure 2 we show a spider diagram with two spiders with vertices
labeled according to Notation 3.5. Notice the two trivial spiders on the extremes.

∅ = S0 TL
1,1 TL

1,2
S1 TR

1,3 TR
1,2 TR

1,1 TL
2,1 TL

2,2
S2 TR

2,1 S3 = [d + 1]
0 1 2 3 4 5 6 7 8 9 1 1

Figure 2: A spider diagram with two spiders.

For our formulas in the next section we to define several terms coming from spider
diagrams.

Definition 3.7. Let T• ∈ Cd+1 be a chain and let D be a spider diagram on it. We denote
the spiders Spi = (Gi, Ti,•, Si) for i = 0, · · · , k + 1, where Sp0 and Spk+1 are trivial. For
each i, let mi its size, and Li and Ri be set of left and right legs respectively.

We define the internal weight of a single spider Spi as

intwt(Spi) :=

(
∏
j>1

|TL
i,j − TL

i,j−1|
|Si − TL

i,j−1|

)(
∏
j>1

|TR
i,j−1 − TR

i,j|
|TR

i,j−1 − Si|

)
, (3.1)

and the boundary weight of the diagram D as

bdwt(D) :=
k+1

∏
i=1

(
|TL

i,1 − TR
i−1,1|

|Si − Si−1|

)
. (3.2)

Notice that the internal weights of the extremal spiders is 1.
The weight of a spider diagram D is defined as

wt(D) := bdwt(D)
k+1

∏
i=0

intwt(Spi).

The sign of D is defined as sgn(D) := (−1)|D|−k. The Tcoefficient of D is the coefficient
of the monomial ∏ xmi

Si
in the expression for Td(Xd) given by expanding (2.1) using (2.2)

on each parenthesis. The binomial of D is given by Binom(D) := ∏ (
|Spi|−1
|Li|,|Ri|

).

Remark 3.8. The extremal spiders only affect the weight. In general, when we refer to
the heads of a spider diagram we ignore ∅ and [d + 1].
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4 General formula

Theorem 4.1. We have the following square-free expression

Td(Xd) = ∑
S•∈Cd+1

αbv(S•)[V(σS•)]. (4.1)

where
αbv(S•) = ∑

D∈SD(S•)
Tdcoeff(D)Binom(D)sgn(D)wt(D), (4.2)

where SD(S•) is the set of all spider diagrams with heads S•.

The proof comes from directly computing using the definition of Todd class in (2.1)
and using the relations in I2 to express arbitrary monomials as a sum of square-free
monomials. Every time we make a choice we average over all possible choices to keep
symmetry which allow us to invoke Theorem 2.6.

Proposition 4.2. The number of terms in (4.2) has the following generating function

∞

∑
n=1

h(n)zn = − z(z4 − 2z2 + 2z + 1)
z5 − z4 − 2z3 + 4z2 + z− 1

= z + 3z2 + 5z3 + 15z4 + 29z5 + · · · . (4.3)

4.1 Formulas for Berline–Vergne function

To see how the (4.2) works we are going to compute some examples.

Proposition 4.3 (Codimension 2 cones.). Let (S1, S2) ∈ Cd+1 be an arbitrary 2-chain, then

αbv(S1, S2) =
1
4
− 1

12

(
d + 1− s2

d + 1− s1
+

s1

s2

)
, (4.4)

where si := |Si| for i = 1, 2.

Proof. We use Theorem 4.1. In this case all possible spider diagrams are shown in Fig-
ure 3.

1
4 − 1

12
d+1−s2
d+1−s1

− 1
12

s1
s2

Figure 3: All spider diagrams on two vertices with the corresponding contribution to
(4.2). Extremal spiders are omitted from the figure.
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Formula (4.4) (and a similar one for three dimesional cones) was already obtained in
[2] relying on some general formulas in the Berline–Vergne constructions. Since there
is no simple closed formula for their construction for unimodular cones of dimension
larger than three, we couldn’t push it further than that. The next proposition shows
Theorem 4.1 in action. This formula couldn’t be obtained with previously known tools.

Proposition 4.4. Let (S1, S2, S3, S4) ∈ Cd+1 be an arbitrary 4-chain, then

αbv(S1, S2, S3, S4) =
1

16
− 1

48

(
s3 − s2

s3 − s1
+

s1

s2
+

s4 − s3

s4 − s2
+

s2 − s1

s3 − s1
+

d + 1− s4

d + 1− s3
+

s3 − s2

s4 − s2

)
+

1
144

(
s3 − s2

s3 − s1

d + 1− s4

d + 1− s3
+

s3 − s2

s4 − s1
+

s1

s2

d + 1− s4

d + 1− s3
+

s1

s2

s3 − s2

s4 − s2

)
+

1
720

(
s3 − s2

s3 − s1

s4 − s3

s4 − s1

d + 1− s4

d + 1− s1
+ 3

s1

s2

s4 − s3

s4 − s2

d + 1− s4

d + 1− s2

)
+

1
720

(
3

s1

s2

s2 − s1

s3 − s1

d + 1− s4

d + 1− s3
+

s1

s2

s2 − s1

s4 − s2

s3 − s2

s4 − s2

)
where si := |Si| for i = 1, · · · , 4.

Proof. We use Theorem 4.1. Figure 4 shows all possible spider diagrams in this case.

1
16

− 1
48

s3−s2
s3−s1

− 1
48

s1
s2

− 1
48

s4−s3
s4−s2

− 1
48

s2−s1
s3−s1

− 1
48

d+1−s4
d+1−s3

− 1
48

s3−s2
s4−s2

1
144

s3−s2
s3−s1

d+1−s4
d+1−s3

1
144

s3−s2
s4−s1

1
144

s1
s2

d+1−s4
d+1−s3

1
144

s1
s2

s3−s2
s4−s2

1
720

s3−s2
s3−s1

s4−s3
s4−s1

d+1−s4
d+1−s1

1
7203 s1

s2

s4−s3
s4−s2

d+1−s4
d+1−s2

1
7203 s1

s2

s2−s1
s3−s1

d+1−s4
d+1−s3

1
720

s1
s2

s2−s1
s4−s2

s3−s2
s4−s2

Figure 4: All spider diagrams on four vertices with the corresponding contribution to
Equation (4.2). Extremal spiders are omitted from the figure.
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Example 4.5. Using sage we found negative values for αdffl in four dimensional cones
in Σd. The smallest d for which this happens is d + 1 = 25, where α24(S1, S2, S3, S4) =
−19/1684800, for any four chain with |S1| = 10, |S2| = 12, |S3| = 13, |S4| = 15.

Example 4.5 disproves Conjeture 1.2. Furthermore, it also enable us to prove the
following theorem.

Theorem 4.6. The Todd class of the permutohedral variety Xd is not effective for d ≥ 24. That
is, there is no way of expressing it as a nonnegative combination of the cycles.

5 Edge positivity

As mentioned in the introduction for every lattice polytope P the function Lat(tP), t ∈N

is a polynomial in t of dimension d = dim P, i.e., Lat(tP) = a0 + a1t1 + a2t2 + · · · +
adtd, ai ∈ Q. This is the Ehrhart polynomial of P and will be denoted Lat(P, t). We
also define Lati(P) := [ti]Lat(P, t), the coefficient of ti in the Ehrhart polynomial.

5.1 Edge positivity

In this section we take a different argument to show that αbv values are indeed positive
on codimension one cones in the braid fan and thus the main conjecture Conjeture 1.1 is
true for Lat1. The arguments in this section are independent of the rest of the paper. We
make use of hypersimplices.

Proposition 5.1. If Lat1(∆k,d+1) > 0 for all 1 ≤ k ≤ n then αbv is positive on every codimen-
sion one cone, thus Lat1(P) > 0 for any generalized permutohedra.

Proof. This is a consequence of [2, Theorem 5.5]. In the case of an edge the mixed
valuation is equal to the valuation itself, the rest of the formula is positive hence the first
part follows. The second part is a consequence of the reduction theorem [2, Theorem
3.5] which shows how the positivity of αbv for all codimension k cones in Σd implies
positivity of Latk for all generalized permutohedra.

The following result is standard [11, Chapter 3, Ex. 62].

Proposition 5.2. The Ehrhart polynomial for ∆k,d+1 is given by

Lat(∆k,d+1, t) = [zkt]

(
1− zt+1

1− z

)d+1

. (5.1)

Or equivalently the more explicit formula

Lat(∆k,d+1, t) =
k

∑
i=0

(−1)i
(

d + 1
i

)(
d + t(k− i)− i

d

)
(5.2)
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Lemma 5.3. For any k ≤ d, Lat1(∆k,d+1) > 0.

The proof is a careful tracking of the linear coefficient in (5.2).

Theorem 5.4. Conjeture 1.1 is true for the linear terms. More precisely, Lat1(P) > 0 for every
lattice generalized permutohedron P.

Proof. It follows from Proposition 5.1 and Lemma 5.3.
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