On bijections between rooted trees and the comb basis for the cohomology of the weighted partition poset

Fu Liu
University of California, Davis

AMS sectional meeting, San Francisco, CA
October 26, 2014
Outline

- Introduction
 - Poset homology and cohomology
 - Known results on weighted partition poset
- Questions and results
 - González D’león-Wachs’ question
 - Discussion and rephrasing
 - Conjectures and results
Basic definitions

Given a poset (partially ordered set) P, a *chain* of P is a totally ordered subset of P, and a *j-chain* is a chain of $j + 1$ elements.
Basic definitions

Given a poset (partially ordered set) P, a \textit{chain} of P is a totally ordered subset of P, and a \textit{j-chain} is chain of $j + 1$ elements.

For any two comparable elements $x \leq y$ of P, we define

\[
[x, y] := \{z \in P \mid x \leq z \leq y\}; \\
(x, y) := \{z \in P \mid x < z < y\}.
\]
Given a poset (partially ordered set) P, a **chain** of P is a totally ordered subset of P, and a **j-chain** is chain of $j + 1$ elements.

For any two comparable elements $x \leq y$ of P, we define

$$[x, y] := \{z \in P \mid x \leq z \leq y\};$$

$$(x, y) := \{z \in P \mid x < z < y\}.$$

Given a poset P, the **order complex** of P, denoted by $\Delta(P)$ is an (abstract) simplicial complex, where the vertices are the elements of P and the faces are the chains of P.

$$
\Delta(P) = \left\{ \emptyset, a, b, c, d, e, f, \right. \\
abla, ab, bc, bf, cd, cf, de, df, ef, \\
bcf, cdf, def \left. \right\}
$$

$||\Delta(P)||$:

- a \\
- b \\
- c \\
- d \\
- e \\
- ∇ \\
- ab \\
- ac \\
- ad \\
- ae \\
- bc \\
- bd \\
- be \\
- cd \\
- ce \\
- cf \\
- de \\
- df \\
- $e\nabla$ \\
- abc \\
- abd \\
- abe \\
- acd \\
- ace \\
- acf \\
- ade \\
- adf \\
- aef \\
- bcf \\
- $bc\nabla$ \\
- bce \\
- $b\nabla$ \\
- bcf \\
- $c\nabla$ \\
- cdf \\
- cde \\
- cdf \\
- def \\
- $e\nabla$ \\
- $\nabla\nabla$ \\
- $ac\nabla$ \\
- $ad\nabla$ \\
- $ae\nabla$ \\
- $bd\nabla$ \\
- $be\nabla$ \\
- $cd\nabla$ \\
- $ce\nabla$ \\
- $cf\nabla$ \\
- $de\nabla$ \\
- $df\nabla$ \\
- $e\nabla\nabla$ \\
- $\nabla\nabla\nabla$
Poset homology and cohomology

The (co)homology of P is defined to be the reduced simplicial (co)homology of its order complex $\Delta(P)$.
Poset homology and cohomology

The \textit{(co)homology} of P is defined to be the reduced simplicial (co)homology of its order complex $\Delta(P)$.

We will review some relevant concepts here by dealing directly with the chains of P. Let k be an arbitrary field or the ring of integers \mathbb{Z}. Define the \textit{chain space}

$$C_j(P; k) := k\text{-module freely generated by } j\text{-chains of } P.$$

Then we can define \textit{(reduced) chain} and \textit{cochain complexes}

$$\cdots \xleftarrow{\partial_{j-1}} C_{j+1}(P; k) \xrightarrow{\partial_{j+1}} C_j(P; k) \xleftarrow{\partial_j} C_{j-1}(P; k) \xrightarrow{\partial_{j-1}} \cdots$$

The \textit{homology} and the \textit{cohomology} of P in dimension j is defined by

$$\tilde{H}_j(P; k) := \ker \partial_j / \im \partial_{j+1}, \text{ and } \tilde{H}^j(P; k) := \ker \delta_j / \im \delta_{j-1}.$$
The **(co)homology** of P is defined to be the reduced simplicial (co)homology of its order complex $\Delta(P)$.

We will review some relevant concepts here by dealing directly with the chains of P. Let k be an arbitrary field or the ring of integers \mathbb{Z}. Define the *chain space*

$$C_j(P; k) := k\text{-module freely generated by } j\text{-chains of } P.$$

Then we can define *(reduced) chain and cochain complexes*

$$\cdots \xrightarrow{\partial_{j+1}} C_{j+1}(P; k) \xleftarrow{\delta_{j+1}} C_j(P; k) \xrightarrow{\partial_j} C_{j-1}(P; k) \xleftarrow{\delta_j} \cdots$$

The **homology** and the **cohomology** of P in dimension j is defined by

$$\tilde{H}_j(P; k) := \ker \partial_j / \text{im } \partial_{j+1}, \text{ and } \tilde{H}^j(P; k) := \ker \delta_j / \text{im } \delta_{j-1}.$$

The chain and cochain spaces have been identified using the natural bases. This identification is given by the bilinear form $\langle \cdot, \cdot \rangle$ on $\bigoplus C_j(P; k)$ defined by $\langle c, c' \rangle = \delta_{c,c'}$, where c, c' are chains of P, and extending by linearity.
A *partition* of $[n] := \{1, 2, \ldots, n\}$ is a collection of disjoint nonempty subsets $\{B_1, \ldots, B_t\}$ of $[n]$ such that $\bigcup B_i = [n]$.

A *weighted partition* of $[n]$ is a set $\{B_{v_1}^1, \ldots, B_{v_t}^t\}$, where $\{B_1, \ldots, B_t\}$ is a partition of $[n]$, and $v_i \in \{0, 1, 2, \ldots, |B_i| - 1\}$ for all i. The *poset of weighted partitions* of $[n]$, denoted by Π^w_n, is the set of weighted partitions of $[n]$ with *covering relation* defined in the following way: An element $\sigma = \{B_{v_1}^1, B_{v_2}^2, \ldots, B_{v_t}^t\} \in \Pi^w_n$ is *covered* by another element $\pi \in \Pi^w_n$, i.e., $\sigma \prec \pi$, if there exist $1 \leq i < j \leq t$ and $\epsilon \in \{0, 1\}$ such that

$$\pi = \sigma \setminus \{B_{v_i}^i, B_{v_j}^j\} \cup \{(B_i \cup B_j)^{v_i+v_j+\epsilon}\}.$$
Example. Π^w_3:

\[
\begin{array}{c}
\Pi^w_3 :\\
\begin{array}{c}
123^0 \\
12^0|3^0 \\
\hat{0} = 1^0|2^0|3^0 \\
13^0|2^0 \\
1^0|2^3 \\
12^1|3^0 \\
13^1|2^0 \\
1^0|23^1 \\
123^1 \\
12^1|3^1 \\
13^1|2^1 \\
1^0|23^1 \\
123^2 \\
12^2|3^2 \\
13^2|2^2 \\
1^0|23^2 \\
\end{array}
\end{array}
\]
Example. \(\Pi^w_3 \):

\[
\begin{array}{c}
123^0 \\
12^0|3^0 \\
\hat{0} = 1^0|2^0|3^0 \\
\end{array}
\end{array}
\]

Note that \(\Pi^w_n \) has a unique minimal element \(\hat{0} = 1^0|2^0|\cdots|n^0 \), and \(n \) maximal elements \([n]^i\) for \(0 \leq i \leq n - 1 \).
Example. Π_3^w:

```
\hat{0} = 1^0|2^0|3^0
```

Note that Π_n^w has a unique minimal element $\hat{0} = 1^0|2^0|\cdots|n^0$, and n maximal elements $[n]^i$ for $0 \leq i \leq n - 1$.

The top (co)homology of open intervals $(\hat{0}, [n]^i)$ are studied.
A $2v$-colored binary tree on $[n]$ is a binary tree whose internal vertices are colored by red or blue, and leaves are labeled by $[n]$. We denote by \mathcal{BT}_n the set of all $2v$-colored binary trees whose leaves are labeled by $[n]$, and by $\mathcal{BT}_{n,i}$ the set of trees in \mathcal{BT}_n with i internal vertices being red.
A \textit{$2v$-colored binary tree} on $[n]$ is a binary tree whose internal vertices are colored by red or blue, and leaves are labeled by $[n]$. We denote by \mathcal{BT}_n the set of all $2v$-colored binary trees whose leaves are labeled by $[n]$, and by $\mathcal{BT}_{n,i}$ the set of trees in \mathcal{BT}_n with i internal vertices being red.

\textbf{Example.} A tree in $\mathcal{BT}_{5,2}$.
A 2v-colored binary tree on \([n]\) is a binary tree whose internal vertices are colored by red or blue, and leaves are labeled by \([n]\). We denote by \(BT_n\) the set of all 2v-colored binary trees whose leaves are labeled by \([n]\), and by \(BT_{n,i}\) the set of trees in \(BT_n\) with \(i\) internal vertices being red.

Example. A tree in \(BT_{5,2}\).

![Binary tree diagram]

Let \(\text{Lie}_2(n,i)\) be the free \(k\)-module generated by elements of \(BT_{n,i}\) subject to the antisymmetry and Jacobi relations.
Let \mathcal{R}_n be the set of all the rooted trees on $[n]$. that is, all the rooted trees with n vertices that are labeled by $[n]$.

For any edge $\{i, j\}$ in a rooted tree, if i is the parent of j, we say $\{i, j\}$ an *increasing edge* if $i < j$, and a *decreasing edge* if $i > j$. For convenience, we color each increasing edge blue and each decreasing edge red. Let $\mathcal{R}_{n,i}$ be the set of rooted trees on $[n]$ that have i decreasing/red edges.

Example. When $n = 3$:

1. 1
 - 2
 - 3
2. 1
 - 2
 - 3
3. 3
 - 2
 - 1
4. 3
 - 1
 - 2
5. 3
 - 3
 - 1
 - 2
6. 3
 - 1
 - 2
 - 3
There are three bases known for \(\mathcal{L}ie_2(n, i) \):

- \(\text{Comb}^2_{n,i} \): Bershtein-Dotsenk-Khoroshkin introduced a comb basis, for \(\mathcal{L}ie_2(n, i) \) generalizing Wach's comb basis for \(\mathcal{L}ie(n) \).
- \(\text{Liu}^2_{n,i} \): Liu introduced a Liu-Lyndon basis for \(\mathcal{L}ie_2(n, i) \) generalizing the standard Lyndon basis.
- \(\text{Lyn}^2_{n,i} \): González D’león-Wachs constructed another basis for \(\mathcal{L}ie_2(n, i) \) that generalizes the standard Lyndon basis.
On bijections between rooted trees and the comb basis

Relevant results on \((\mathcal{C}, [n])\)

- There are three bases known for \(\mathcal{L}ie_2(n, i)\):
 - \(\text{Comb}^2_{n, i}\): Bershtein-Dotsenk-Khoroshkin introduced a comb basis, for \(\mathcal{L}ie_2(n, i)\) generalizing Wach’s comb basis for \(\mathcal{L}ie(n)\).
 - \(\text{Liu}^2_{n, i}\): Liu introduced a Liu-Lyndon basis for \(\mathcal{L}ie_2(n, i)\) generalizing the standard Lyndon basis.
 - \(\text{Lyn}^2_{n, i}\): González D’león-Wachs constructed another basis for \(\mathcal{L}ie_2(n, i)\) that generalizes the standard Lyndon basis.

- Liu and Dotsenko-Khoroshkin showed that

\[
\text{rank } \mathcal{L}ie_2(n, i) = |\mathcal{R}_{n, i}|.
\]
Relevant results on $(\hat{0}, [n]^i)$

- There are three bases known for $\mathcal{L}ie_2(n, i)$:
 - $\text{Comb}^2_{n,i}$: Bershtein-Dotsenk-Khoroshkin introduced a comb basis, generalizing Wach's comb basis for $\mathcal{L}ie(n)$.
 - $\text{Liu}^2_{n,i}$: Liu introduced a Liu-Lyndon basis generalizing the standard Lyndon basis.
 - $\text{Lyn}^2_{n,i}$: González D'león-Wachs constructed another basis that generalizes the standard Lyndon basis.

- Liu and Dotsenko-Khoroshkin showed that
 $$\text{rank } \mathcal{L}ie_2(n, i) = |\mathcal{R}_{n,i}|.$$

- González D'león-Wachs showed that
 $$\tilde{H}^{n-3}((\hat{0}, [n]^i)) \cong_{\mathfrak{S}_n} \mathcal{L}ie_2(n, i) \otimes \text{sgn}_n,$$
 providing a way to construct bases for $\tilde{H}^{n-3}((\hat{0}, [n]^i))$ from bases for $\mathcal{L}ie_2(n, i)$.
A question

There are three bases constructed for $\mathcal{L}ie_2(n, i)$ and $\tilde{H}^{n-3}((\hat{0}, [n]^i))$. We have

$$|\text{Comb}_{n,i}^2| = |\text{Liu}_{n,i}^2| = |\text{Lyn}_{n,i}^2| = |\mathcal{R}_{n,i}|.$$
A question

There are three bases constructed for $\mathcal{L}ie_2(n, i)$ and $\tilde{H}^{n-3}((\hat{0}, [n]^i))$. We have

$$|\text{Comb}_{n,i}^2| = |\text{Liu}_{n,i}^2| = |\text{Lyn}_{n,i}^2| = |\mathcal{R}_{n,i}|.$$

Liu gave a bijection between $\text{Liu}_{n,i}^2$ and $\mathcal{R}_{n,i}$.
A question

There are three bases constructed for $\mathcal{L}ie_2(n, i)$ and $\tilde{H}^{n-3}((\hat{0}, [n]^i))$. We have

$$|\text{Comb}^2_{n,i}| = |\text{Liu}^2_{n,i}| = |\text{Lyn}^2_{n,i}| = |\mathcal{R}_{n,i}|.$$

Liu gave a bijection between $\text{Liu}^2_{n,i}$ and $\mathcal{R}_{n,i}$.

González D'león constructed a bijection between $\text{Comb}^2_{n,i}$ and $\text{Lyn}^2_{n,i}$.
A question

There are three bases constructed for $\mathcal{L}ie_2(n,i)$ and $\tilde{H}^{n-3}\left((\hat{0}, [n]^i)\right)$. We have

$$|\text{Comb}_{n,i}^2| = |\text{Liu}_{n,i}^2| = |\text{Lyn}_{n,i}^2| = |\mathcal{R}_{n,i}|.$$

Liu gave a bijection between $\text{Liu}_{n,i}^2$ and $\mathcal{R}_{n,i}$.

González D’león constructed a bijection between $\text{Comb}_{n,i}^2$ and $\text{Lyn}_{n,i}^2$.

González D’león-Wachs asked

Question 1. Are there nice bijections between $\mathcal{R}_{n,i}$ and $\text{Comb}_{n,i}^2$ or $\text{Lyn}_{n,i}^2$.
They associate \bar{c}_T, a maximal chain in $(\hat{0}, [n]^i)$, to each $T \in \mathcal{BT}_{n,i}$. Then for any basis $B \subseteq \mathcal{BT}_{n,i}$ of $\mathcal{L}ie_2(n,i)$,

$$\{\bar{c}_T \mid T \in B\}$$

is a basis for $\tilde{H}^{n-3}((\hat{0}, [n]^i))$.
On bijections between rooted trees and the comb basis

González D’león-Wachs’s construction

- They associate \(\tilde{c}_T \), a maximal chain in \((\hat{0}, [n]^i)\), to each \(T \in B\mathcal{T}_{n,i} \). Then for any basis \(B \subseteq B\mathcal{T}_{n,i} \) of \(\mathcal{L}i_2(n,i) \),

 \[
 \{\tilde{c}_T \mid T \in B\}
 \]

 is a basis for \(\tilde{H}^{n-3}((\hat{0}, [n]^i)) \).

- They associate \(\rho_G \), a fundamental cycle of the spherical complex \(\Delta(\overline{\Pi}_G) \), to each \(G \in \mathcal{R}_{n,i} \), and show that

 \[
 \{\rho_G \mid G \in \mathcal{R}_{n,i}\}
 \]

 is a basis for \(\tilde{H}_{n-3}((\hat{0}, [n]^i)) \).
They associate \bar{c}_T, a maximal chain in $(\hat{0}, [n]^i)$, to each $T \in BT_{n,i}$. Then for any basis $B \subseteq BT_{n,i}$ of $Lie_2(n,i)$,

$$\{\bar{c}_T | T \in B\}$$

is a basis for $\tilde{H}^{n-3}((\hat{0}, [n]^i))$.

They associate ρ_G, a fundamental cycle of the spherical complex $\Delta(\bar{\Pi}_G)$, to each $G \in R_{n,i}$, and show that

$$\{\rho_G | G \in R_{n,i}\}$$

is a basis for $\tilde{H}^{n-3}((\hat{0}, [n]^i))$.

Recall we have a bilinear form $\langle \cdot , \cdot \rangle$ defined on the chain space of $(\hat{0}, [n]^i)$.

We say $T \in BT_{n,i}$ and $G \in R_{n,i}$ is a **good pair** if $\langle \rho_G, \bar{c}_T \rangle \neq 0$.
An alternative definition

We say $T \in B\mathcal{T}_n$ and $G \in R_n$ is a **good pair** if one of the following is satisfied:

(i) $n = 1$.

(ii) Suppose $n \geq 2$. Let T_1 and T_2 be the left and right subtrees of the root of T. There exists an edge e of G such that:
 i. e has the same color as the root of T;
 ii. By removing e from G, we obtain two rooted trees G_1 and G_2 satisfying T_i and G_i is a good pair for each i.
An alternative definition

We say $T \in \mathcal{B}T_n$ and $G \in \mathcal{R}_n$ is a **good pair** if one of the following is satisfied:

(i) $n = 1$.

(ii) Suppose $n \geq 2$. Let T_1 and T_2 be the left and right subtrees of the root of T. There exists an edge e of G such that:

- i. e has the same color as the root of T;
- ii. By removing e from G, we obtain two rooted trees G_1 and G_2 satisfying T_i and G_i is a good pair for each i.

Example. When $n = 2$:

- $1 \quad 2$ and $1 \quad 2$ is a good pair
- $1 \quad 2$ and $1 \quad 2$ is a good pair
Example.

- G_1 is a good pair with T_1, but not with T_2.
- G_2 is a good pair with both T_1 and T_2.
An alternative definition (cont’d)

Example.

- G_1 is a good pair with T_1, but not with T_2.
- G_2 is a good pair with both T_1 and T_2.

Given $B \subseteq B_{T_{n,i}}$ a basis for $\text{Lie}_2(n, i)$, we say a bijection $\psi : R_{n,i} \to B$ is a good-pair bijection if G and $\psi(G)$ is a good pair for each $G \in R_{n,i}$.
An alternative definition (cont’d)

Example.

- \(G_1\) is a good pair with \(T_1\), but not with \(T_2\).
- \(G_2\) is a good pair with both \(T_1\) and \(T_2\).

Given \(B \subseteq B \mathcal{T}_{n,i}\) a basis for \(\mathcal{L}ie_2(n,i)\), we say a bijection \(\psi : \mathcal{R}_{n,i} \rightarrow B\) is a **good-pair bijection** if \(G\) and \(\psi(G)\) is a good pair for each \(G \in \mathcal{R}_{n,i}\).

Example. \(B := \{T_1, T_2\}\) is a basis for \(\mathcal{L}ie_2(3,0)\). It is clear there is a **unique** good-pair bijection from \(\mathcal{R}_{3,0} = \{G_1, G_2\}\) to \(B\) :

\[G_1 \mapsto T_1, \quad G_2 \mapsto T_2.\]
Recall there are three bases for $\mathcal{L}ie_2(n, i)$: Comb_n^2, Lyn_n^2, and Liu_n^2.

Question 2. For each of the bases, do good-pair bijections exist? If so, is it unique?
Recall there are three bases for $\mathcal{L}ie_2(n, i)$: $\text{Comb}^2_{n,i}$, $\text{Lyn}^2_{n,i}$ and $\text{Liu}^2_{n,i}$.

Question 2. For each of the bases, do good-pair bijections exist? If so, is it unique?

Fact 3. The bijection given from $\mathcal{R}_{n,i}$ to $\text{Liu}^2_{n,i}$ is a good-pair bijection, and it is unique.
Recall there are three bases for $\mathcal{L}ie_2(n, i) : \text{Comb}^2_{n,i}$, $\text{Lyn}^2_{n,i}$ and $\text{Liu}^2_{n,i}$.

Question 2. For each of the bases, do good-pair bijections exist? If so, is it unique?

Fact 3. The bijection given from $\mathcal{R}_{n,i}$ to $\text{Liu}^2_{n,i}$ is a good-pair bijection, and it is unique.

Conjecture 4. There exists a unique good-pair bijection from $\mathcal{R}_{n,i}$ to $\text{Comb}^2_{n,i}$.
Recall there are three bases for $\mathcal{L}ie_2(n, i)$: $\text{Comb}_{n,i}^2$, $\text{Lyn}_{n,i}^2$, and $\text{Liu}_{n,i}^2$.

Question 2. For each of the bases, do good-pair bijections exist? If so, is it unique?

Fact 3. The bijection given from $\mathcal{R}_{n,i}$ to $\text{Liu}_{n,i}^2$ is a good-pair bijection, and it is unique.

Conjecture 4. There exists a unique good-pair bijection from $\mathcal{R}_{n,i}$ to $\text{Comb}_{n,i}^2$.

Results

Lemma 5. Conjecture 4 are true for $n \leq 4$.

Theorem 6. Conjecture 4 are true when $i = 0, n - 1$.
The unique good-pair bijection from \mathcal{R}_3 to Comb_3^2
Idea of the proof

We prove the following stronger conjecture instead.

Conjecture 7. There exist total orderings on $\mathcal{R}_{n,i} : G_1, G_2, \ldots, \ldots$ and $\text{Comb}^2_{n,i} : T_1, T_2, \ldots$ such that

- G_i and T_i is a good pair;
- G_i and T_j is not a good pair unless $i \geq j$.