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Basic definitions

Given a poset (partially ordered set) P, a chain of P is a totally ordered subset of P,

and a j-chain is chain of j + 1 elements.
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Basic definitions

Given a poset (partially ordered set) P, a chain of P is a totally ordered subset of P,

and a j-chain is chain of j + 1 elements.

For any two comparable elements x ≤ y of P, we define

[x, y] ∶= {z ∈ P ∣ x ≤ z ≤ y};

(x, y) ∶= {z ∈ P ∣ x < z < y}.
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Basic definitions

Given a poset (partially ordered set) P, a chain of P is a totally ordered subset of P,

and a j-chain is chain of j + 1 elements.

For any two comparable elements x ≤ y of P, we define

[x, y] ∶= {z ∈ P ∣ x ≤ z ≤ y};

(x, y) ∶= {z ∈ P ∣ x < z < y}.

Given a poset P, the order complex of P , denoted by ∆(P ) is an (abstract) simpli-

cial complex, where the vertices are the elements of P and the faces are the chains of

P .

a

b

c

d

e

f

P ∶ ∆(P ) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∅, a, b, c, d, e, f,

ab, bc, bf, cd, cf, de, df, ef,

bcf, cdf, def

⎫⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎭ ab

c

d
e

f
∣∣∆(P )∣∣ ∶
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Poset homology and cohomology

The (co)homology of P is defined to be the reduced simplicial (co)homology of its

order complex ∆(P ).
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Poset homology and cohomology

The (co)homology of P is defined to be the reduced simplicial (co)homology of its

order complex ∆(P ).

We will review some relevant concepts here by dealing directly with the chains of P .

Let k be an arbitrary field or the ring of integers Z. Define the chain space

Cj(P ;k) ∶= k-module freely generated by j-chains of P .

Then we can define (reduced) chain and cochain complexes

⋯

∂j−1

ÐÐ→
←ÐÐ

δj+1
Cj+1(P ;k)

∂j+1

ÐÐ→

←ÐÐ

δj
Cj(P ;k)

∂j

ÐÐ→

←ÐÐ

δj−1
Cj−1(P ;k)

∂r−1
ÐÐ→

←ÐÐ

δr−2
⋯

The homology and the cohomology of P in dimension j is defined by

H̃j(P ;k) ∶= ker∂j/ im∂j+1, and H̃j(P ;k) ∶= ker δj/ im δj−1.
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Poset homology and cohomology

The (co)homology of P is defined to be the reduced simplicial (co)homology of its

order complex ∆(P ).

We will review some relevant concepts here by dealing directly with the chains of P .

Let k be an arbitrary field or the ring of integers Z. Define the chain space

Cj(P ;k) ∶= k-module freely generated by j-chains of P .

Then we can define (reduced) chain and cochain complexes

⋯

∂j−1

ÐÐ→

←ÐÐ

δj+1
Cj+1(P ;k)

∂j+1

ÐÐ→

←ÐÐ

δj
Cj(P ;k)

∂j

ÐÐ→

←ÐÐ

δj−1
Cj−1(P ;k)

∂r−1
ÐÐ→

←ÐÐ

δr−2
⋯

The homology and the cohomology of P in dimension j is defined by

H̃j(P ;k) ∶= ker∂j/ im∂j+1, and H̃j(P ;k) ∶= ker δj/ im δj−1.

The chain and cochain spaces have been identified using the natural bases. This iden-

tification is given by the bilinear form ⟪⋅, ⋅⟫ on⊕Cj(P ;k) defined by ⟪c, c′⟫ = δc,c′,
where c, c′ are chains of P , and extending by linearity.
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Weighted Partition Poset

A partition of [n] ∶= {1, 2, . . . , n} is a collection of disjoint nonempty subsets

{B1, . . . ,Bt} of [n] such that ⋃Bi = [n].

A weighted partition of [n] is a set {Bv1
1
, . . . ,Bvt

t }, where {B1, . . . ,Bt} is a par-

tition of [n], and vi ∈ {0, 1, 2, . . . , ∣Bi∣ − 1} for all i. The poset of weighted paritions

of [n], denoted by Πw
n , is the set of weighted paritions of [n] with covering relation

defined in the following way: An element σ = {Bv1
1
,Bv2

2
, ...,Bvt

t } ∈ Πw
n is covered by

another element π ∈ Πw
n , i.e., σ ⋖ π, if there exist 1 ≤ i < j ≤ t and ǫ ∈ {0, 1} such

that

π = σ ∖ {Bvi
i ,B

vj
j } ∪ {(Bi ∪Bj)

vi+vj+ǫ}.
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Weighted Partition Poset (cont’d)

Example. Πw
3
∶

0̂ = 10∣20∣30

1230 1231 1232

120∣30 130∣20 10∣230 121∣30 131∣20 10∣231
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Weighted Partition Poset (cont’d)

Example. Πw
3
∶

0̂ = 10∣20∣30

1230 1231 1232

120∣30 130∣20 10∣230 121∣30 131∣20 10∣231

Note that Πw
n has a unique minimal element 0̂ = 10∣20∣⋯∣n0, and n maximal ele-

ments [n]i for 0 ≤ i ≤ n − 1.
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Weighted Partition Poset (cont’d)

Example. Πw
3
∶

0̂ = 10∣20∣30

1230 1231 1232

120∣30 130∣20 10∣230 121∣30 131∣20 10∣231

Note that Πw
n has a unique minimal element 0̂ = 10∣20∣⋯∣n0, and n maximal ele-

ments [n]i for 0 ≤ i ≤ n − 1.

The top (co)homology of open intervals (0̂, [n]i) are studied.
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2v-colored binary trees and L ie2(n, i)

A 2v-colored binary tree on [n] is a binary tree whose internal vertices are colored

by red or blue, and leaves are labeled by [n]. We denote by BT n the set of all 2v-

colored binary trees whose leaves are labeled by [n], and by BT n,i the set of trees in

BT n with i internal vertices being red.
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2v-colored binary trees and L ie2(n, i)

A 2v-colored binary tree on [n] is a binary tree whose internal vertices are colored

by red or blue, and leaves are labeled by [n]. We denote by BT n the set of all 2v-

colored binary trees whose leaves are labeled by [n], and by BT n,i the set of trees in

BT n with i internal vertices being red.

Example. A tree in BT 5,2.

1

2 5

43
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2v-colored binary trees and L ie2(n, i)

A 2v-colored binary tree on [n] is a binary tree whose internal vertices are colored

by red or blue, and leaves are labeled by [n]. We denote by BT n the set of all 2v-

colored binary trees whose leaves are labeled by [n], and by BT n,i the set of trees in

BT n with i internal vertices being red.

Example. A tree in BT 5,2.

1

2 5

43

Let L ie2(n, i) be the free k-module generated by elements of BT n,i subject to

the antisymmetry and Jacobi relations.
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Rooted Trees

Let Rn be the set of all the rooted trees on [n]. that is, all the rooted trees with n

vertices that are labeled by [n].
For any edge {i, j} in a rooted tree, if i is the parent of j, we say {i, j} an increasing

edge if i < j, and a decreasing edge if i > j. For convenience, we color each increasing

edge blue and each decreasing edge red. Let Rn,i be the set of rooted trees on [n]
that have i decreasing/red edges.

Example. When n = 3 ∶

1

2

3

1

2 3

3

2

1

3

1 2

1

3

2

2

1

3

2

3 1

2

3

1

3

1

2
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Relevant results on (0̂, [n]i)
� There are three bases known for L ie2(n, i) ∶

– Comb2n,i: Bershtein-Dotsenk-Khoroshkin introduced a comb basis, for L ie2(n, i)
generalizing Wach’s comb basis for L ie(n).

– Liu2n,i: Liu introduced a Liu-Lyndon basis for L ie2(n, i) generalizing the stan-

dard Lyndon basis.

– Lyn2n,i: González D’león-Wachs constructed another basis for L ie2(n, i) that

generalizes the standard Lyndon basis.
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Relevant results on (0̂, [n]i)
� There are three bases known for L ie2(n, i) ∶

– Comb2n,i: Bershtein-Dotsenk-Khoroshkin introduced a comb basis, for L ie2(n, i)
generalizing Wach’s comb basis for L ie(n).

– Liu2n,i: Liu introduced a Liu-Lyndon basis for L ie2(n, i) generalizing the stan-

dard Lyndon basis.

– Lyn2n,i: González D’león-Wachs constructed another basis for L ie2(n, i) that

generalizes the standard Lyndon basis.

� Liu and Dotsenko-Khoroshkin showed that

rankL ie2(n, i) = ∣Rn,i∣.
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Relevant results on (0̂, [n]i)
� There are three bases known for L ie2(n, i) ∶

– Comb2n,i: Bershtein-Dotsenk-Khoroshkin introduced a comb basis, for L ie2(n, i)
generalizing Wach’s comb basis for L ie(n).

– Liu2n,i: Liu introduced a Liu-Lyndon basis for L ie2(n, i) generalizing the stan-

dard Lyndon basis.

– Lyn2n,i: González D’león-Wachs constructed another basis for L ie2(n, i) that

generalizes the standard Lyndon basis.

� Liu and Dotsenko-Khoroshkin showed that

rankL ie2(n, i) = ∣Rn,i∣.

� González D’león-Wachs showed that

H̃n−3 ((0̂, [n]i)) ≃Sn
L ie2(n, i)⊗ sgnn,

providing a way to construct bases for H̃n−3 ((0̂, [n]i)) from bases for L ie2(n, i).
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A question

There are three bases constructed for L ie2(n, i) and H̃n−3 ((0̂, [n]i)) .We have

∣Comb2n,i ∣ = ∣Liu
2

n,i ∣ = ∣Lyn
2

n,i ∣ = ∣Rn,i∣.
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A question

There are three bases constructed for L ie2(n, i) and H̃n−3 ((0̂, [n]i)) .We have

∣Comb2n,i ∣ = ∣Liu
2

n,i ∣ = ∣Lyn
2

n,i ∣ = ∣Rn,i∣.

Liu gave a bijection between Liu2n,i andRn,i.
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A question

There are three bases constructed for L ie2(n, i) and H̃n−3 ((0̂, [n]i)) .We have

∣Comb2n,i ∣ = ∣Liu
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n,i ∣ = ∣Lyn
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A question

There are three bases constructed for L ie2(n, i) and H̃n−3 ((0̂, [n]i)) .We have

∣Comb2n,i ∣ = ∣Liu
2

n,i ∣ = ∣Lyn
2

n,i ∣ = ∣Rn,i∣.

Liu gave a bijection between Liu2n,i andRn,i.

González D’león constructed a bijection between Comb2n,i and Lyn2n,i .

González D’león-Wachs asked

Question 1. Are there nice bijections betweenRn,i and Comb2n,i or Lyn2n,i.
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González D’le ón-Wachs’s construction

� They associate c̄T , a maximal chain in (0̂, [n]i), to each T ∈ BT n,i. Then for any

basis B ⊆ BT n,i of L ie2(n, i),

{c̄T ∣ T ∈ B}

is a basis for H̃n−3((0̂, [n]i)).
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González D’le ón-Wachs’s construction

� They associate c̄T , a maximal chain in (0̂, [n]i), to each T ∈ BT n,i. Then for any

basis B ⊆ BT n,i of L ie2(n, i),

{c̄T ∣ T ∈ B}

is a basis for H̃n−3((0̂, [n]i)).

� They associate ρG, a fundemental cycle of the spherical complex ∆(Π̄G), to each

G ∈ Rn,i, and show that

{ρG ∣G ∈Rn,i}

is a basis for H̃n−3((0̂, [n]i)).
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González D’le ón-Wachs’s construction

� They associate c̄T , a maximal chain in (0̂, [n]i), to each T ∈ BT n,i. Then for any

basis B ⊆ BT n,i of L ie2(n, i),

{c̄T ∣ T ∈ B}

is a basis for H̃n−3((0̂, [n]i)).

� They associate ρG, a fundemental cycle of the spherical complex ∆(Π̄G), to each

G ∈ Rn,i, and show that

{ρG ∣G ∈Rn,i}

is a basis for H̃n−3((0̂, [n]i)).

Recall we have a bilinear form ⟪⋅, ⋅⟫ defined on the chain space of (0̂, [n]i).

We say T ∈ BT n,i and G ∈Rn,i is a good pair if ⟪ρG, c̄T⟫ ≠ 0.
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An alternative definition

We say T ∈ BT n and G ∈ Rn is a good pair if one of the following is satisfied:

(i) n = 1.

(ii) Suppose n ≥ 2. Let T1 and T2 be the left and right subtrees of the root of T. There

exists an edge e of G such that:

i. e has the same color as the root of T ;

ii. By removing e from G, we obtain two rooted trees G1 and G2 satisfying Ti and

Gi is a good pair for each i.
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An alternative definition

We say T ∈ BT n and G ∈ Rn is a good pair if one of the following is satisfied:

(i) n = 1.

(ii) Suppose n ≥ 2. Let T1 and T2 be the left and right subtrees of the root of T. There

exists an edge e of G such that:

i. e has the same color as the root of T ;

ii. By removing e from G, we obtain two rooted trees G1 and G2 satisfying Ti and

Gi is a good pair for each i.

Example. When n = 2 ∶

1 2
and

1

2

is a good pair

1 2
and

2

1

is a good pair
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An alternative definition (cont’d)

1 2

3

T1

1 3

2

T2

1

2

3

G1

1

2 3

G2

Example.

� G1 is a good pair with T1, but not with T2.

� G2 is a good pair with both T1 and T2.
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An alternative definition (cont’d)

1 2

3

T1

1 3

2

T2

1

2

3

G1

1

2 3

G2

Example.

� G1 is a good pair with T1, but not with T2.

� G2 is a good pair with both T1 and T2.

Given B ⊆ BT n,i a basis for L ie2(n, i), we say a bijection ψ ∶ Rn,i → B is a

good-pair bijection if G and ψ(G) is a good pair for each G ∈ Rn,i.
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An alternative definition (cont’d)

1 2

3

T1

1 3

2

T2

1

2

3

G1

1

2 3

G2

Example.

� G1 is a good pair with T1, but not with T2.

� G2 is a good pair with both T1 and T2.

Given B ⊆ BT n,i a basis for L ie2(n, i), we say a bijection ψ ∶ Rn,i → B is a

good-pair bijection if G and ψ(G) is a good pair for each G ∈ Rn,i.

Example. B ∶= {T1, T2} is a basis for L ie2(3, 0). It is clear there is a unique good-

pair bijection fromR3,0 = {G1,G2} to B ∶

G1 ↦ T1, G2 ↦ T2.
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A rephrased question and results

Recall there are three bases for L ie2(n, i) ∶ Comb2n,i, Lyn
2

n,i and Liu2n,i .

Question 2. For each of the bases, do good-pair bijections exist? If so, is it unique?
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A rephrased question and results

Recall there are three bases for L ie2(n, i) ∶ Comb2n,i, Lyn
2

n,i and Liu2n,i .

Question 2. For each of the bases, do good-pair bijections exist? If so, is it unique?

Fact 3. The bijection given fromRn,i to Liu2n,i is a good-pair bijection, and it is unique.
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A rephrased question and results

Recall there are three bases for L ie2(n, i) ∶ Comb2n,i, Lyn
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n,i and Liu2n,i .

Question 2. For each of the bases, do good-pair bijections exist? If so, is it unique?

Fact 3. The bijection given fromRn,i to Liu2n,i is a good-pair bijection, and it is unique.

Conjecture 4. There exists a unique good-pair bijection fromRn,i to Comb2n,i .
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A rephrased question and results

Recall there are three bases for L ie2(n, i) ∶ Comb2n,i, Lyn
2

n,i and Liu2n,i .

Question 2. For each of the bases, do good-pair bijections exist? If so, is it unique?

Fact 3. The bijection given fromRn,i to Liu2n,i is a good-pair bijection, and it is unique.

Conjecture 4. There exists a unique good-pair bijection fromRn,i to Comb2n,i .

Results

Lemma 5. Conjecture 4 are true for n ≤ 4.

Theorem 6. Conjecture 4 are true when i = 0, n − 1.
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The unique good-pair bijection from R3 to Comb
2
3

1

2

3

1

2 3

3

2

1

3

1 2

1

3

2

2

1

3

2

3 1

2

3

1

3

1

2

1 2

3

1 3

2

1 2

3

1 3

2

1 3

2

1 2

3

2 3

1

1 3

2

1 2

3
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Idea of the proof

We prove the following stronger conjecture instead.

Conjecture 7. There exist total orderings on Rn,i: G1,G2, . . . , . . . and Comb2n,i ∶

T1, T2, . . . such that

� Gi and Ti is a good pair;

� Gi and Tj is not a good pair unless i ≥ j.
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