The volume of the Birkhoff polytope

by Fu Liu

University of California, Davis

April 14, 2007
The volume of the Birkhoff polytope

Outline

- Introduction to the Birkhoff polytope
- Our formula for the volume of the Birkhoff polytope
- Theories behind the proof
The volume of the Birkhoff polytope

Birkhoff polytope and its faces

Definition 1. The *Birkhoff polytope*, B_n, is the set of all *doubly-stochastic matrices*, that is, the real nonnegative matrices with all row and column sums equal to one.

We consider B_n in the n^2-dimensional space $\mathbb{R}^{n^2} = \{ n \times n \text{ real matrices} \}$.

Faces of B_n:

- The vertices of B_n are the $n \times n$ permutation matrices. The vertex set $V(B_n)$ can be considered as S_n, the set of all the permutations on $[n] = \{1, 2, \ldots, n\}$.

- B_n has n^2 facets: for each pair of (i, j) with $1 \leq i, j \leq n$, the doubly-stochastic matrices with (i, j)th entry equal to 0 is a facet.

- In general, if S is the union of the nonzero indices of a set of permutation matrices, then the set of doubly-stochastic matrices M with $M(i, j) = 0$ for $(i, j) \notin S$ is a face of B_n, and every face arises this way.
Example: faces of B_3

$S = \begin{pmatrix} \star & 0 & 0 \\ 0 & \star & \star \\ 0 & \star & \star \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cup \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Hence $B_3 \cap \{M \mid M(1, 2) = M(1, 3) = M(2, 1) = M(2, 3) = 0\}$ is a face of B_3.
The volume of the Birkhoff polytope

Example: faces of B_3

$S = \begin{pmatrix} \star & 0 & 0 \\ 0 & \star & \star \\ 0 & \star & \star \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cup \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.

Hence $B_3 \cap \{ M \mid M(1, 2) = M(1, 3) = M(2, 1) = M(2, 3) = 0 \}$ is a face of B_3.

$S = \begin{pmatrix} \star & \star & 0 \\ 0 & \star & \star \\ 0 & \star & \star \end{pmatrix}$ cannot be described as the union of nonzero indices of a set of permutation matrices.
Example: faces of B_3

- $S = \begin{pmatrix} \star & 0 & 0 \\ 0 & \star & \star \\ 0 & \star & \star \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cup \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$. Hence $B_3 \cap \{M \mid M(1, 2) = M(1, 3) = M(2, 1) = M(2, 3) = 0\}$ is a face of B_3.

- $S = \begin{pmatrix} \star & \star & 0 \\ 0 & \star & \star \\ 0 & \star & \star \end{pmatrix}$ cannot be described as the union of nonzero indices of a set of permutation matrices.

- $S = \begin{pmatrix} 0 & \star & 0 \\ 0 & 0 & \star \\ \star & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$. Hence $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} = (123)$ is a vertex of B_3.
The volume of the Birkhoff polytope

Example: faces of B_3

\[
S = \begin{pmatrix}
\ast & 0 & \ast \\
\ast & \ast & \ast \\
\ast & \ast & \ast
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} \cup \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix} \cup \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} \cup \begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix}.
\]

$B_3 \cap \{M \mid M(1, 2) = 0\}$ is a facet of B_3.
Why do we care about the volume of B_n? It turns out if we can calculate the volumes of each face of B_n, then one can generate doubly-stochastic matrices uniformly at random.
Why do we care about the volume of B_n? It turns out if we can calculate the volumes of each face of B_n, then one can generate doubly-stochastic matrices uniformly at random.

Some work on the volume of B_n and its faces:

- Bona gave a lower bound for $\text{Vol}(B_n)$.
- A special face of B_n: the volume of the Chan-Robbins-Yen polytope is a product of Catalan numbers.
- Beck-Pixton calculated $\text{Vol}(B_n)$ up to $n = 10$.

The volume of B_n
Our result

Our goal is to give a combinatorial formula for $\text{Vol}(B_n)$.
Our result

Our goal is to give a combinatorial formula for \(\text{Vol}(B_n) \).

We present closed formulas for all coefficients of the Ehrhart polynomial \(i(B_n, m) \).

In particular, the volume of \(B_n \) looks like this

\[
\text{Vol}(B_n) = \frac{1}{(n-1)^2!} \sum_{\sigma \in S_n=V(B_n)} \sum_{\gamma_1(c, \sigma) \cdots \gamma_{(n-1)^2}(c, \sigma)} \langle c, \sigma \rangle^{(n-1)^2}.
\]

The rational function summands are indexed by combinatorial data.
Arborescences

- A directed spanning tree with all edges pointing away from the root is an arborescence.
Arborescences

• A directed spanning tree with all edges pointing away from the root n is an arborescence.

• The set of all arborescences on the nodes $[n] = \{1, 2, \ldots, n\}$ will be denoted by $\text{Arb}(n)$. It is well known that the cardinality of $\text{Arb}(n)$ is n^{n-2}.
• A directed spanning tree with all edges pointing away from the root n is an arborescence.

• The set of all arborescences on the nodes $[n] = \{1, 2, \ldots, n\}$ will be denoted by $\text{Arb}(n)$. It is well known that the cardinality of $\text{Arb}(n)$ is n^{n-2}.

• For any $T \in \text{Arb}(n)$, we denote by $E(T)$ the set of edges of T. The cardinality of $E(T)$ is $n - 1$. Hence, there are $(n - 1)^2$ (directed) edges not in $E(T)$.
Arborescences

- A directed spanning tree with all edges pointing away from the root n an arborescence.

- The set of all arborescences on the nodes $[n] = \{1, 2, \ldots, n\}$ will be denoted by $\text{Arb}(n)$. It is well known that the cardinality of $\text{Arb}(n)$ is n^{n-2}.

- For any $T \in \text{Arb}(n)$, we denote by $E(T)$ the set of edges of T. The cardinality of $E(T)$ is $n - 1$. Hence, there are $(n - 1)^2$ (directed) edges not in $E(T)$.

- For any $e \notin E(T)$, there is a unique oriented cycle, denoted by $\text{cycle}(T + e)$, in $T + e$. We associate a $n \times n (0, -1, 1)$-matrix $W_{T,e}$ to it.
\(W^{T,e} \): The matrix associated to \(cycle(T + e) \)

\begin{align*}
\hat{W}^{T_A,(1,3)} &= \begin{pmatrix}
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{pmatrix}.
\end{align*}

- The edges in \(cycle(T, e) \) all have the same orientation: choose \(T_A \) and \(e = (1,3) \),

\[W^{T_A,(1,3)} = \begin{pmatrix}
-1 & 0 & 1 \\
1 & -1 & 0 \\
0 & 1 & -1
\end{pmatrix}. \]
The volume of the Birkhoff polytope

\[W^{T,e} : \text{The matrix associated to } cycle(T + e) \]

- The edges in \(cycle(T, e) \) all have the same orientation: choose \(T_A \) and \(e = (1, 3) \),

\[W^{T_A,(1,3)} = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}. \]

- There are two vertices \(s, t \) in \(cycle(T, e) \) such that all the edges are directed from \(s \) to \(t \): choose \(T_C \) and \(e = (2, 1) \),

\[W^{T_C,(2,1)} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ -1 & 1 & 0 \end{pmatrix}. \]
The volume of the Birkhoff polytope

Our main result

Theorem 2 (DeLoera–L–Yoshida). The volume of the Birkhoff polytope B_n is given by the formula

$$
\text{Vol}(B_n) = \frac{1}{((n-1)^2)!} \sum_{\sigma \in S_n} \sum_{T \in \text{Arb}(n)} \frac{\langle c, \sigma \rangle^{(n-1)^2}}{\prod_{e \notin E(T)} \langle c, W^{T,e} \sigma \rangle}.
$$

In the formula $c \in \mathbb{R}^{n^2}$ is any vector such that $\langle c, W^{T,e} \sigma \rangle$ is non-zero for all pairs (T, e) of an arborescence T and an edge $e \notin E(T)$ and all $\sigma \in S_n$.

We can for instance choose $c = (1, 2, 4, 8, \ldots, 2^{n^2-1})$ to obtain a completely explicit formula.
Any point in \mathbb{Z}^d is called a lattice point. An integral polytope is a convex polytope whose vertices are all lattice points.
Any point in \mathbb{Z}^d is called a \textit{lattice point}. An \textit{integral} polytope is a convex polytope whose vertices are all lattice points.

Definition 3. For any polytope $P \subset \mathbb{R}^d$ and some positive integer $m \in \mathbb{N}$, the \textit{mth dilated polytope} of P is $mP = \{mx : x \in P\}$. We denote by

$$i(m, P) = |mP \cap \mathbb{Z}^d|$$

the number of lattice points in mP.

Any point in \mathbb{Z}^d is called a **lattice point**. An **integral** polytope is a convex polytope whose vertices are all lattice points.

Definition 3. For any polytope $P \subset \mathbb{R}^d$ and some positive integer $m \in \mathbb{N}$, the *mth dilated polytope* of P is $mP = \{mx : x \in P\}$. We denote by

$$i(m, P) = |mP \cap \mathbb{Z}^d|$$

the number of lattice points in mP.

Example:

![Diagram of lattice points and polytopes](image)
Volume/area and lattice points enumerator

Pick’s theorem: For any integral polygon Q:

$$\text{area}(Q) = |Q \cap \mathbb{Z}^2| - \frac{1}{2}|\partial(Q) \cap \mathbb{Z}^2| - 1.$$
Volume/area and lattice points enumerator

Pick's theorem: For any integral polygon Q:

$$\text{area}(Q) = |Q \cap \mathbb{Z}^2| - \frac{1}{2} |\partial(Q) \cap \mathbb{Z}^2| - 1.$$

If P is an integral polygon, then so is mP.

$$i(P, m) = \text{area}(mP) + \frac{1}{2} |\partial(mP) \cap \mathbb{Z}^d| + 1$$

$$= \text{area}(P)m^2 + \frac{1}{2} |\partial(P) \cap \mathbb{Z}^d|m + 1$$
Volume/area and lattice points enumerator

Pick’s theorem: For any integral polygon Q:

$$\text{area}(Q) = |Q \cap \mathbb{Z}^2| - \frac{1}{2}|\partial(Q) \cap \mathbb{Z}^2| - 1.$$

If P is an integral polygon, then so is mP.

$$i(P, m) = \text{area}(mP) + \frac{1}{2}|\partial(mP) \cap \mathbb{Z}^d| + 1$$

$$= \text{area}(P)m^2 + \frac{1}{2}|\partial(P) \cap \mathbb{Z}^d|m + 1$$

Ehrhart’s theorem: Let P be a d-dimensional integral polytope, then $i(P, m)$ is a polynomial in m of degree d, with the leading coefficient the volume $\text{Vol}(P)$ of P.

Therefore, we call $i(P, m)$ the *Ehrhart polynomial* of P.
The volume of the Birkhoff polytope

Multivariate generating function

For any polyhedron $P \in \mathbb{R}^d$, we define the *multivariate generating function* (MGF) of P as

$$f(P, z) = \sum_{\alpha \in P \cap \mathbb{Z}^d} z^\alpha,$$

where $z^\alpha = z_1^{\alpha_1} z_2^{\alpha_2} \cdots z_d^{\alpha_d}$.

One sees that by setting $z = (1, 1, \ldots, 1)$, we get the number of lattice points in P if P is a polytope.

Example: Let P be the polytope with vertices $v_1 = (0, 0), v_2 = (2, 0)$ and $v_3 = (0, 2)$.

$$P: \begin{array}{ccc}
& (0,2) & \\
(0,1) & & (1,1) \\
& (0,0) & (1,0) & (2,0)
\end{array}$$

$$f(P, z) = z_1^0 z_2^0 + z_1^1 z_2^0 + z_1^0 z_2^1 + z_1^1 z_2^1 + z_1^0 z_2^2 = 1 + z_1 + z_2 + z_1 z_2 + z_2^2.$$
It turns out that \(f(P, z) \) can be written as a rational function, for any rational polyhedron \(P \).

Lemma 4 (Brion, 1988; Lawrence, 1991). *Let \(P \) be a rational polyhedron and let \(V(P) \) be the vertex set of \(P \). Then, considered as rational functions,

\[
f(P, z) = \sum_{v \in V(P)} f(C(P, v), z),
\]

where \(C(P, v) \) is the **supporting cone** of \(P \) at \(v \), i.e., the smallest cone with vertex \(v \) containing \(P \).
It turns out that $f(P, z)$ can be written as a rational function, for any rational polyhedron P.

Lemma 4 (Brion, 1988; Lawrence, 1991). Let P be a rational polyhedron and let $V(P)$ be the vertex set of P. Then, considered as rational functions,

$$f(P, z) = \sum_{v \in V(P)} f(C(P, v), z),$$

where $C(P, v)$ is the **supporting cone** of P at v, i.e., the smallest cone with vertex v containing P.

Remark: We only need to find the MGF for one of the vertices of B_n, then apply the action of symmetric group to get the others. We will do this at the vertex associated to the identity permutation matrix, denoted by I. We denote by C_n the supporting cone of B_n at I.

Our goal is then to find $f(C_n, z)$.
If \(K \) is a \(d \)-dimensional cone in \(\mathbb{R}^e \), generated by vectors \(\{r_i\}_{1 \leq i \leq d} \) such that the \(r_i \)'s form a \(\mathbb{Z} \)-basis of the lattice \(\text{span}(\{r_i\}) \cap \mathbb{Z}^e \), then we say \(K \) is a \textit{unimodular cone}.

\textbf{Lemma 5.} \textit{If} \(K \) \textit{is a} \(d \)-\textit{dimensional unimodular cone at an integral vertex} \(v \) \textit{generated by the vectors} \(\{r_i\}_{1 \leq i \leq d} \), \textit{then we have}

\[
f(K, z) = z^v \prod_{i=1}^{d} \frac{1}{1 - z^{r_i}}.
\]
Example of the lemmas
Example of the lemmas

Example: Let P be the polytope with vertices $v_1 = (0, 0)$, $v_2 = (2, 0)$ and $v_3 = (0, 2)$.

Recall that $f(P, z) = 1 + z_1 + z_1^2 + z_2 + z_1z_2 + z_2^2$.

Example: Let P be the polytope with vertices $v_1 = (0, 0), v_2 = (2, 0)$ and $v_3 = (0, 2)$.

Recall that $f(P, z) = 1 + z_1 + z_1^2 + z_2 + z_1z_2 + z_2^2$.

A unimodular cone generated by vectors $r_1 = (1, 0)$ and $r_2 = (0, 1)$.

\[
f(C(P, v_1), z) = z^{(0,0)} \prod_{i=1}^{2} \frac{1}{1-z^r_i} = \frac{1}{(1-z_1)(1-z_2)}.
\]
Example: Let P be the polytope with vertices $v_1 = (0, 0)$, $v_2 = (2, 0)$ and $v_3 = (0, 2)$.

Recall that $f(P, z) = 1 + z_1 + z_1^2 + z_2 + z_1z_2 + z_2^2$.

A unimodular cone generated by vectors $r_1 = (1, 0)$ and $r_2 = (0, 1)$.

$$f(C(P, v_1), z) = z^{(0,0)} \prod_{i=1}^{2} \frac{1}{1 - z^{r_i}} = \frac{1}{(1-z_1)(1-z_2)}.$$

A unimodular cone generated by vectors $r_1 = (-1, 0)$ and $r_2 = (-1, 1)$.

$$f(C(P, v_2), z) = z^{(2,0)} \prod_{i=1}^{2} \frac{1}{1 - z^{r_i}} = \frac{z_1^2}{(1-z_1^{-1})(1-z_1^{-1}z_2)} = \frac{z_1^4}{(z_1-1)(z_1-z_2)}.$$
Example of the lemmas

Example: Let P be the polytope with vertices $v_1 = (0, 0)$, $v_2 = (2, 0)$ and $v_3 = (0, 2)$.

Recall that $f(P, z) = 1 + z_1 + z_1^2 + z_2 + z_1z_2 + z_2^2$.

\begin{align*}
C(P, v_1) & : \\
& \text{A unimodular cone generated by vectors } r_1 = (1, 0) \text{ and } r_2 = (0, 1). \\
& f(C(P, v_1), z) = z^{(0,0)} \prod_{i=1}^{2} \frac{1}{1-z_i} = \frac{1}{(1-z_1)(1-z_2)}.
\end{align*}

\begin{align*}
C(P, v_2) & : \\
& \text{A unimodular cone generated by vectors } r_1 = (-1, 0) \text{ and } r_2 = (-1, 1). \\
& f(C(P, v_2), z) = z^{(2,0)} \prod_{i=1}^{2} \frac{1}{1-z_i} = \frac{z_1^2}{(1-z_1^{-1})(1-z_1z_2^{-1})} = \frac{z_1^4}{(z_1-1)(z_1-z_2)}.
\end{align*}

\begin{align*}
C(P, v_3) & : \\
& \text{A unimodular cone generated by vectors } r_1 = (0, -1) \text{ and } r_2 = (1, -1). \\
& f(C(P, v_3), z) = z^{(0,2)} \prod_{i=1}^{2} \frac{1}{1-z_i} = \frac{z_2^2}{(1-z_2^{-1})(1-z_1z_2^{-1})} = \frac{z_2^4}{(z_2-1)(z_2-z_1)}.
\end{align*}
Example: Let P be the polytope with vertices $v_1 = (0, 0), v_2 = (2, 0)$ and $v_3 = (0, 2)$.

Recall that $f(P, z) = 1 + z_1 + z_1^2 + z_2 + z_1 z_2 + z_2^2$.

$$
\sum_{i=1}^{3} f(C(P, v_i), z) = \frac{(z_1-z_2)-z_1^4(1-z_2)+z_2^4(1-z_1)}{(1-z_1)(1-z_2)(z_1-z_2)} = 1 + z_1 + z_1^2 + z_2 + z_1 z_2 + z_2^2 = f(P, z).
$$
Barvinok’s algorithm

- Barvinok gave an algorithm to decompose a cone C' as a signed sum of simple unimodular cones.

- Using the Brion’s polarization trick, we can ignore the lower dimensional cones. This trick involves using the dual cone of C' instead.
Barvinok’s algorithm

- Barvinok gave an algorithm to decompose a cone C as a signed sum of simple unimodular cones.
- Using the Brion’s polarization trick, we can ignore the lower dimensional cones. This trick involves using the *dual cone* of C instead.

Algorithm: Input a cone C with vertex v

1. Find a dual cone K to C.
2. Apply the Barvinok decomposition to K and get a set of signed unimodular cones K_i.
3. Find dual cone C_i of each K_i. (Note C_i is unimodular as well.)
4. $f(C, z) = \sum_i \epsilon_i f(C_i, z)$, where ϵ_i is the sign of C_i.
Apply the algorithm to C_n

For step (ii) in the algorithm, we show that any triangulation of the dual cone of C_n gives a set of unimodular cones. Therefore, instead of using Barvinok’s method, we use the idea of Gröbner bases of toric ideals to produce triangulations.
The volume of the Birkhoff polytope

Apply the algorithm to C_n

For step (ii) in the algorithm, we show that any triangulation of the dual cone of C_n gives a set of unimodular cones. Therefore, instead of using Barvinok’s method, we use the idea of Gröbner bases of toric ideals to produce triangulations.

The multivariate generating function of C_n is given by

$$f(C_n, z) = \sum_{T \in \text{Arb}(\ell, n)} z^I \prod_{e \notin E(T)} \frac{1}{(1 - \prod_z z^{w^{T,e}})}.$$
The MGF of the dilation mB_n

We get the multivariate generating function of B_n:

$$f(B_n, z) = \sum_{\sigma \in S_n} \sum_{T \in \text{Arb}(\ell, n)} z^{\sigma} \prod_{e \notin E(T)} \frac{1}{(1 - \prod z^{WT,e}^{T,\sigma})}.$$
The volume of the Birkhoff polytope

The MGF of the dilation mB_n

We get the multivariate generating function of B_n:

$$f(B_n, z) = \sum_{\sigma \in S_n} \sum_{T \in \text{Arb}(\ell,n)} z^\sigma \prod_{e \notin E(T)} \frac{1}{(1 - \prod z^{W_T,e \sigma})}.$$

Theorem 6 (DeLoera–L–Yoshida). The multivariate generating function of mB_n is given by

$$f(mB_n, z) = \sum_{\sigma \in S_n} \sum_{T \in \text{Arb}(\ell,n)} z^{m\sigma} \prod_{e \notin E(T)} \frac{1}{(1 - \prod z^{W_T,e \sigma})},$$
Corollary 7. The Ehrhart polynomial $i(B_n, m)$ of B_n is given by the formula

$$i(B_n, m) = \sum_{k=0}^{(n-1)^2} m^k \frac{1}{k!} \sum_{\sigma \in S_n} \sum_{T \in \text{Arb}(\ell, n)} \frac{(\langle c, \sigma \rangle)^k \text{td}_{(n-1)^2-k}(\{\langle c, W^T, e \sigma \rangle, e \notin E(T)\})}{\prod_{e \notin E(T)} \langle c, W^T, e \sigma \rangle}.$$

The symbol $\text{td}_j(S')$ is the j-th Todd polynomial evaluated at the numbers in the set S'. The vector $c \in \mathbb{R}^{n^2}$ is any vector such that $\langle c, W^T, e \sigma \rangle$ is non-zero for all pairs (T, e) of an ℓ-arborescence T and an arc $e \notin E(T)$ and all $\sigma \in S_n$.
Corollary 7. The Ehrhart polynomial \(i(B_n, m)\) of \(B_n\) is given by the formula

\[
i(B_n, m) = \sum_{k=0}^{(n-1)^2} m^k \frac{1}{k!} \sum_{\sigma \in S_n} \sum_{T \in \text{Arb}(\ell, n)} \frac{(\langle c, \sigma \rangle)^k \text{td}_{(n-1)^2-k}(\{\langle c, W^T_e \sigma \rangle, e \notin E(T)\})}{\prod_{e \notin E(T)} \langle c, W^T_e \sigma \rangle}.
\]

The symbol \(\text{td}_j(S)\) is the \(j\)-th Todd polynomial evaluated at the numbers in the set \(S\). The vector \(c \in \mathbb{R}^{n^2}\) is any vector such that \(\langle c, W^T_e \sigma \rangle\) is non-zero for all pairs \((T, e)\) of an \(\ell\)-arborescence \(T\) and an arc \(e \notin E(T)\) and all \(\sigma \in S_n\).

As a special case, the normalized volume of \(B_n\) is given by

\[
\text{Vol}(B_n) = \frac{1}{((n-1)^2)!} \sum_{\sigma \in S_n} \sum_{T \in \text{Arb}(\ell, n)} \frac{(\langle c, \sigma \rangle)^{(n-1)^2}}{\prod_{e \notin E(T)} \langle c, W^T_e \sigma \rangle}.
\]
We can get more from the MGF

Observation: If P is an integral polytope in $\mathbb{R}^d_{\geq 0}$, and F is a face of P obtained by setting a collection of variables $\{x_i\}_{i \in \text{ind}}$ to zero, i.e.,

$$F = P \cap \{(x_1, \ldots, x_d) \mid x_i = 0, \forall i \in \text{ind}\},$$

then

$$f(F, z) = f(P, z) \text{ evaluated at } z_i = 0, \forall i \in \text{ind}.$$
We can get more from the MGF

Observation: If P is an integral polytope in $\mathbb{R}^d_{\geq 0}$, and F is a face of P obtained by setting a collection of variables $\{x_i\}_{i \in \text{ind}}$ to zero, i.e.,

$$F = P \cap \{(x_1, \ldots, x_d) \mid x_i = 0, \forall i \in \text{ind}\},$$

then

$$f(F, z) = f(P, z) \text{ evaluated at } z_i = 0, \forall i \in \text{ind}.$$

Example: Let P be the polytope with vertices $v_1 = (0, 0)$, $v_2 = (2, 0)$ and $v_3 = (0, 2)$.

$$f(P, z) = 1 + z_1 + z_1^2 + z_2 + z_1z_2 + z_2^2.$$
We can get more from the MGF

Observation: If P is an integral polytope in $\mathbb{R}^d_{\geq 0}$, and F is a face of P obtained by setting a collection of variables $\{x_i\}_{i \in \text{ind}}$ to zero, i.e.,

$$F = P \cap \{(x_1, \ldots, x_d) \mid x_i = 0, \forall i \in \text{ind}\},$$

then

$$f(F, z) = f(P, z) \text{ evaluated at } z_i = 0, \forall i \in \text{ind}.$$

Example: Let P be the polytope with vertices $v_1 = (0, 0), v_2 = (2, 0)$ and $v_3 = (0, 2)$.

\begin{align*}
P &: \quad f(P, z) = 1 + z_1 + z_2 + z_1z_2 + z_2^2. \\
f(F, z) &= 1 + z_2 + z_2^2.
\end{align*}
We can get more from the MGF

Observation: If P is an integral polytope in $\mathbb{R}^d_{\geq 0}$, and F is a face of P obtained by setting a collection of variables $\{x_i\}_{i \in \text{ind}}$ to zero, i.e.,

$$F = P \cap \{(x_1, \ldots, x_d) \mid x_i = 0, \forall i \in \text{ind}\},$$

then

$$f(F, z) = f(P, z)$$
 evaluated at $z_i = 0, \forall i \in \text{ind}$.

Example: Let P be the polytope with vertices $v_1 = (0, 0), v_2 = (2, 0)$ and $v_3 = (0, 2)$.

$$P : \quad f(P, z) = 1 + z_1 + z_1^2 + z_2 + z_1z_2 + z_2^2.$$

$$F = P \cap \{x_1 = 0\}, \text{ and } f(F, z) = 1 + z_2 + z_2^2.$$

$$v_1 = P \cap \{x_1 = 0, x_2 = 0\}, \text{ and } f(v_1, z) = 1.$$
Recall that every face of B_n can be obtained by setting a collection of variables $\{x_{i,j}\}$ to zero. Therefore, for each face F of B_n we can compute the MGF of each dilation mF from $f(mB_n, z)$, and thus we obtain the Ehrhart polynomial of F as well.