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PART I:

Preliminaries

Summary: We will go over some basic definitions related to polytopes, and then

introduce the theory of Ehrhart polynomials.
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Basic definitions related to polytopes

Definition 1 (H-representation). A polyhedron P ⊂ R
d is an intersection of finitely

many halfspaces:

P = {x ∈ R
d : Ax ≤ z},

for some A ∈ Rm×d, z ∈ Rm.

A (convex) polytope is a bounded polyhedron.
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Basic definitions related to polytopes

Definition 1 (H-representation). A polyhedron P ⊂ R
d is an intersection of finitely

many halfspaces:

P = {x ∈ R
d : Ax ≤ z},

for some A ∈ Rm×d, z ∈ Rm.

A (convex) polytope is a bounded polyhedron.

Given a set of points S ⊂ R
d, the affine hull of S, denoted by aff(S), is the smallest

affine subspace containing S.
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Basic definitions related to polytopes

Definition 1 (H-representation). A polyhedron P ⊂ R
d is an intersection of finitely

many halfspaces:

P = {x ∈ R
d : Ax ≤ z},

for some A ∈ Rm×d, z ∈ Rm.

A (convex) polytope is a bounded polyhedron.

Given a set of points S ⊂ R
d, the affine hull of S, denoted by aff(S), is the smallest

affine subspace containing S.

The dimension of a polytope is the dimension of its affine hull. A d-polytope is a

polytope of dimension d in some R
e (e ≥ d).
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Definition 2. A face of P is any set of the form

F = P ∩ {x ∈ R
d : cx = c0},

where cx ≤ c0 is satisfied for all points x ∈ P. The dimension of a face is the

dimension of its affine hull: dim(F ) := dim(aff(F )).

The faces of dimension 0, 1, and dim(P )−1 are called vertices, edges, and facets,

respectively.
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Definition 2. A face of P is any set of the form

F = P ∩ {x ∈ R
d : cx = c0},

where cx ≤ c0 is satisfied for all points x ∈ P. The dimension of a face is the

dimension of its affine hull: dim(F ) := dim(aff(F )).

The faces of dimension 0, 1, and dim(P )−1 are called vertices, edges, and facets,

respectively.

Example:
A 3-dimensional cube has:

8 vertices,

12 edges,

6 facets.
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Definition 3 (V-representation). A (convex) polytope P in the d-dimensional Euclidean

space R
d is the convex hull of finitely many points V = {v1, v2, . . . , vn} ⊂ R

d. In

other words,

P = conv(V ) = {λ1v1+λ2v2+· · ·+λnvn : all λi ≥ 0, and λ1+λ2+· · ·+λn = 1}.
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Definition 3 (V-representation). A (convex) polytope P in the d-dimensional Euclidean

space R
d is the convex hull of finitely many points V = {v1, v2, . . . , vn} ⊂ R

d. In

other words,

P = conv(V ) = {λ1v1+λ2v2+· · ·+λnvn : all λi ≥ 0, and λ1+λ2+· · ·+λn = 1}.

Fact 4. The convex hull of all of the vertices of a convex polytope P is P itself:

P = conv(V (P )),

where V (P ) is the set of vertices of P.
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Lattice points

The d-dimensional lattice Z
d ⊂ R

d is the collection of all points with integer coordi-

nates. Any point in Z
d is called a lattice point.
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Lattice points

The d-dimensional lattice Zd ⊂ Rd is the collection of all points with integer coordi-

nates. Any point in Z
d is called a lattice point.

An integral polytope is a convex polytope whose vertices are all lattice points.
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Lattice points

The d-dimensional lattice Z
d ⊂ R

d is the collection of all points with integer coordi-

nates. Any point in Z
d is called a lattice point.

An integral polytope is a convex polytope whose vertices are all lattice points.

Definition 5. For any polytope P ⊂ R
d and some positive integer m ∈ N, the mth

dilated polytope of P is mP = {mx : x ∈ P}. We denote by

i(m, P ) = |mP ∩ Z
d|

the number of lattice points in mP.
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Lattice points

The d-dimensional lattice Zd ⊂ Rd is the collection of all points with integer coordi-

nates. Any point in Z
d is called a lattice point.

An integral polytope is a convex polytope whose vertices are all lattice points.

Definition 5. For any polytope P ⊂ R
d and some positive integer m ∈ N, the mth

dilated polytope of P is mP = {mx : x ∈ P}. We denote by

i(m, P ) = |mP ∩ Z
d|

the number of lattice points in mP.
Example:

P 3P
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Examples of integral polytopes
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Examples of integral polytopes

(i) When d = 1, P is an interval [a, b], where a, b ∈ Z. Then mP = [ma, mb]

and

i(P, m) = (b − a)m + 1.
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Examples of integral polytopes

(i) When d = 1, P is an interval [a, b], where a, b ∈ Z. Then mP = [ma, mb]

and

i(P, m) = (b − a)m + 1.

(ii) When d = 2, P is an integral polygon, and so is mP. Pick’s theorem states that

for any integral polygon Q:

area(Q) = |Q ∩ Z
2| −

1

2
|∂(Q) ∩ Z

2| − 1.

Hence,

i(P, m) = area(mP ) +
1

2
|∂(mP ) ∩ Z

d| + 1

= area(P )m2 +
1

2
|∂(P ) ∩ Z

d|m + 1
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Examples of integral polytopes

(iii) For any d, let P be the convex hull of the set {(x1, x2, . . . , xd) ∈ Rd : xi =

0 or 1}, i.e. P is the unit cube in Rd. Then it is obvious that

i(P, m) = (m + 1)d.

P 3P

i(P, 3) = (3 + 1)2
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Theorem of Ehrhart (on integral polytopes)

Theorem 6. (Ehrhart) Let P be a d-dimensional integral polytope, then i(P, m) is a

polynomial in m of degree d.

Therefore, we call i(P, m) the Ehrhart polynomial of P.
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Example of a rational polytope

When P = [1
3
, 3

2
],

i(P, m) =























































7
6m + 1, if m ≡ 0 mod 6

7
6m − 1

6 , if m ≡ 1 mod 6

7
6m + 2

3 , if m ≡ 2 mod 6

7
6
m + 1

2
, if m ≡ 3 mod 6

7
6m + 1

3 , if m ≡ 4 mod 6

7
6m + 1

6 , if m ≡ 5 mod 6
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Example of a rational polytope

When P = [1
3
, 3

2
],

i(P, m) =























































7
6m + 1, if m ≡ 0 mod 6

7
6m − 1

6 , if m ≡ 1 mod 6

7
6m + 2

3 , if m ≡ 2 mod 6

7
6
m + 1

2
, if m ≡ 3 mod 6

7
6m + 1

3 , if m ≡ 4 mod 6

7
6m + 1

6 , if m ≡ 5 mod 6

A function f : N → C (or f : Z → C) is a quasi-polynomial if there exists an

integer N > 0 and polynomials f0, f1, . . . , fN−1 such that

f(n) = fi(n), if n ≡ i mod N.

The integer N (which is not unique) will be called a quasi-period of f.
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Theorem of Ehrhart

Theorem 7. (Ehrhart) Let P be a d-dimensional rational polytope, then i(P, m) is a

quasi-polynomial in m of degree d with quasi-period D, where D is the least common

denominator of the vertices of P.

In particular, when P is an integral polytope, i(P, m) is a polynomial.
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial i(P, m)?
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial i(P, m)?

➠ The leading coefficient of i(P, m) is the volume Vol(P ) of P.
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial i(P, m)?

➠ The leading coefficient of i(P, m) is the volume Vol(P ) of P.

➠ The second coefficient equals 1/2 times the sum of volumes of each facet, each

normalized with respect to the sublattice in the hyperplane spanned by the facet.
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial i(P, m)?

➠ The leading coefficient of i(P, m) is the volume Vol(P ) of P.

➠ The second coefficient equals 1/2 times the sum of volumes of each facet, each

normalized with respect to the sublattice in the hyperplane spanned by the facet.

➠ The constant term of i(P, m) is always 1.
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial i(P, m)?

➠ The leading coefficient of i(P, m) is the volume Vol(P ) of P.

➠ The second coefficient equals 1/2 times the sum of volumes of each facet, each

normalized with respect to the sublattice in the hyperplane spanned by the facet.

➠ The constant term of i(P, m) is always 1.

➠ No results for other coefficients for general polytopes.
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial i(P, m)?

➠ The leading coefficient of i(P, m) is the volume Vol(P ) of P.

➠ The second coefficient equals 1/2 times the sum of volumes of each facet, each

normalized with respect to the sublattice in the hyperplane spanned by the facet.

➠ The constant term of i(P, m) is always 1.

➠ No results for other coefficients for general polytopes.

• It is even NOT true that all the coefficients are nonnegative. For example, for the

polytope P with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 13), its Ehrhart

polynomial is

i(P, n) =
13

6
n3 + n2−

1

6
n + 1.
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PART II:

Ehrhart polynomials of cyclic polytopes

and lattice-face polytopes

Summary: In this part, we introduce families of polytopes. The coefficients of the

Ehrhart polynomials of those polytopes can be described in terms of volumes.
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Motivation

Beck, De Loera, Develin, Pfeifle and Stanley conjectured that the Ehrhart polynomial

of an integral cyclic polytope has a simple formula.

Recall that given T = {t1, . . . , tn}< a linearly ordered set, a d-dimensional cyclic

polytope Cd(T ) = Cd(t1, . . . , tn) is the convex hull conv{vd(t1), vd(t2), . . . , vd(tn)}

of n > d distinct points νd(ti), 1 ≤ i ≤ n, on the moment curve.

The moment curve (also known as rational normal curve) in Rd is defined by

νd : R → R
d, t 7→ νd(t) =

















t

t2

...

td

















.
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Example: T = {1, 2, 3, 4}, d = 3 :

Cd(T ) is the convex polytope whose vertices are
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Theorem 8 (L). For any d-dimensional integral cyclic polytope Cd(T ),

i(Cd(T ), m) = Vol(mCd(T )) + i(Cd−1(T ), m).

Hence,

i(Cd(T ), m) =
d

∑

k=0

Volk(mCk(T ))

=
d

∑

k=0

Volk(Ck(T ))mk,

where Volk(mCk(T )) is the volume of mCk(T ) in k-dimensional space, and by

convention we let Vol0(mC0(T )) = 1.
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Example: T = {1, 2, 3, 4}, d = 3 :
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Example: T = {1, 2, 3, 4}, d = 3 :

➠ Cd(T ) = conv{
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64











} : i(Cd(T ), m) = 2m3+

4m2 + 3m + 1.
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Example: T = {1, 2, 3, 4}, d = 3 :

➠ Cd(T ) = conv{
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64











} : i(Cd(T ), m) = 2m3+

4m2 + 3m + 1.

➠ Cd−1(T ) = conv{
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} : i(Cd−1(T ), m) =

4m2 + 3m + 1.
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Example: T = {1, 2, 3, 4}, d = 3 :

➠ Cd(T ) = conv{
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} : i(Cd(T ), m) = 2m3+

4m2 + 3m + 1.

➠ Cd−1(T ) = conv{
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2

4



 ,





3

9



 ,





4

16



} : i(Cd−1(T ), m) =

4m2 + 3m + 1.

➠ Cd−2(T ) = conv{1, 2, 3, 4} = [1, 4] : i(Cd−2(T ), m) = 3m + 1.
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Example: T = {1, 2, 3, 4}, d = 3 :

➠ Cd(T ) = conv{
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} : i(Cd(T ), m) = 2m3+

4m2 + 3m + 1.

➠ Cd−1(T ) = conv{
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1



 ,
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4



 ,





3

9



 ,





4

16



} : i(Cd−1(T ), m) =

4m2 + 3m + 1.

➠ Cd−2(T ) = conv{1, 2, 3, 4} = [1, 4] : i(Cd−2(T ), m) = 3m + 1.

➠ Cd−3(T ) = R
0 : i(Cd−3(T ), m) = 1.
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Example: T = {1, 2, 3, 4}, d = 3 :

➠ Cd(T ) = conv{
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} : i(Cd(T ), m) = 2m3+

4m2 + 3m + 1.

➠ Cd−1(T ) = conv{





1

1



 ,





2

4



 ,





3

9



 ,





4

16



} : i(Cd−1(T ), m) =

4m2 + 3m + 1.

➠ Cd−2(T ) = conv{1, 2, 3, 4} = [1, 4] : i(Cd−2(T ), m) = 3m + 1.

➠ Cd−3(T ) = R
0 : i(Cd−3(T ), m) = 1.

➠ 2, 4, 3 and 1 are the volumes of C3(T ), C2(T ), C1(T ) and C0(T ), respectively.
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If we define πk : R
d → R

d−k to be the map which forgets the last k coordinates

of a point, then πk(Cd(T )) = Cd−k(T ). So when P = Cd(T ) is an integral cyclic

polytope, we have that

i(P, m) = Vol(mP ) + i(π(P ), m) =
d

∑

k=0

Volk(π
d−k(P ))mk, (9)

where Volk(P ) is the volume of P in k-dimensional Euclidean space R
k.
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If we define πk : R
d → R

d−k to be the map which forgets the last k coordinates

of a point, then πk(Cd(T )) = Cd−k(T ). So when P = Cd(T ) is an integral cyclic

polytope, we have that

i(P, m) = Vol(mP ) + i(π(P ), m) =
d

∑

k=0

Volk(π
d−k(P ))mk, (9)

where Volk(P ) is the volume of P in k-dimensional Euclidean space R
k.

Question: Are there other integral polytopes which have

the same form of Ehrhart polynomials as cyclic polytopes?

In other words, what kind of integral d-polytopes P

are there whose Ehrhart polynomials will be in the form of (9)?
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Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope Cd(T )?

When d = 1, Cd(T ) is just an integral polytope.
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Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope Cd(T )?

When d = 1, Cd(T ) is just an integral polytope.

For d ≥ 2, for any d-subset T ′ ⊂ T, let U = νd(T
′) be the corresponding subset

of the vertex set V = νd(T ) of Cd(T ). Then:

a) π(conv(U)) = π(Cd(T
′)) = Cd−1(T

′) is an integral cyclic polytope, and

b) π(aff(U) ∩ Z
d) = Z

d−1. In other words, after dropping the last coordinate of the

lattice of aff(U), we get the (d − 1)-dimensional lattice.
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Example of condition b): π(aff(U) ∩ Z
d) = Z

d−1
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Example of condition b): π(aff(U) ∩ Z
d) = Z

d−1

Example: T = {1, 2, 3, 4}, d = 2, T ′ = {1, 3}, U = {(1, 1), (3, 9)}.

P =

C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
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Example of condition b): π(aff(U) ∩ Z
d) = Z

d−1

Example: T = {1, 2, 3, 4}, d = 2, T ′ = {1, 3}, U = {(1, 1), (3, 9)}.

P =

C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
aff(U) = {(x, 1 + 4x) | x ∈ R}
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Example of condition b): π(aff(U) ∩ Z
d) = Z

d−1

Example: T = {1, 2, 3, 4}, d = 2, T ′ = {1, 3}, U = {(1, 1), (3, 9)}.

P =

C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
aff(U) = {(x, 1 + 4x) | x ∈ R}

(0,−3)
(1, 1)

(2, 5)

(3, 9)

(4, 13)

aff(U) ∩ Z
d

= {· · · , (0,−3), (1, 1), (2, 5), (3, 9), (4, 13), · · · }
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Example of condition b): π(aff(U) ∩ Z
d) = Z

d−1

Example: T = {1, 2, 3, 4}, d = 2, T ′ = {1, 3}, U = {(1, 1), (3, 9)}.

P =

C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
aff(U) = {(x, 1 + 4x) | x ∈ R}

(0,−3)
(1, 1)

(2, 5)

(3, 9)

(4, 13)

aff(U) ∩ Z
d

= {· · · , (0,−3), (1, 1), (2, 5), (3, 9), (4, 13), · · · }

0 1 2 3 4

π(aff(U) ∩ Zd) = {· · · , 0, 1, 2, 3, 4, · · · , } = Z
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Example of condition b): π(aff(U) ∩ Z
d) = Z

d−1

Example: T = {1, 2, 3, 4}, d = 2, T ′ = {1, 3}, U = {(1, 1), (3, 9)}.

P =

C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
aff(U) = {(x, 1 + 4x) | x ∈ R}

(0,−3)
(1, 1)

(2, 5)

(3, 9)

(4, 13)

aff(U) ∩ Z
d

= {· · · , (0,−3), (1, 1), (2, 5), (3, 9), (4, 13), · · · }

0 1 2 3 4

π(aff(U) ∩ Zd) = {· · · , 0, 1, 2, 3, 4, · · · , } = Z

Remark: Condition b) is equivalent to saying that for any lattice point y ∈ Zd−1, we have that

π−1(y) ∩ aff(U), the intersection of aff(U) with the inverse image of y under π, is a lattice point.
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Example of condition b): π(aff(U) ∩ Z
d) = Z

d−1

Example: T = {1, 2, 3, 4}, d = 2, T ′ = {1, 3}, U = {(1, 1), (3, 9)}.

P =

C2({1, 2, 3, 4}) =

(1, 1)

(2, 4)

(3, 9)

(4, 16)
aff(U) = {(x, 1 + 4x) | x ∈ R}

(0,−3)
(1, 1)

(2, 5)

(3, 9)

(4, 13)

aff(U) ∩ Z
d

= {· · · , (0,−3), (1, 1), (2, 5), (3, 9), (4, 13), · · · }

0 1 2 3 4

π(aff(U) ∩ Zd) = {· · · , 0, 1, 2, 3, 4, · · · , } = Z

Remark: Condition b) is equivalent to saying that for any lattice point y ∈ Zd−1, we have that

π−1(y) ∩ aff(U), the intersection of aff(U) with the inverse image of y under π, is a lattice point.

y

π−1(y)
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Definition of lattice-face polytopes

We define lattice-face polytopes recursively.
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Definition of lattice-face polytopes

We define lattice-face polytopes recursively.

We call a one dimensional polytope a lattice-face polytope if it is integral.
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Definition of lattice-face polytopes

We define lattice-face polytopes recursively.

We call a one dimensional polytope a lattice-face polytope if it is integral.

For d ≥ 2, we call a d-dimensional polytope P with vertex set V a lattice-face

polytope if for any subset U ⊂ V spanning a (d − 1)-dimensional affine space,

a) π(conv(U)) is a lattice-face polytope, and

b) π(aff(U) ∩ Z
d) = Z

d−1.
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Definition of lattice-face polytopes

We define lattice-face polytopes recursively.

We call a one dimensional polytope a lattice-face polytope if it is integral.

For d ≥ 2, we call a d-dimensional polytope P with vertex set V a lattice-face

polytope if for any subset U ⊂ V spanning a (d − 1)-dimensional affine space,

a) π(conv(U)) is a lattice-face polytope, and

b) π(aff(U) ∩ Zd) = Zd−1.

Lemma 10. Any integral cyclic polytope is a lattice-face polytope.
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Definition of lattice-face polytopes

We define lattice-face polytopes recursively.

We call a one dimensional polytope a lattice-face polytope if it is integral.

For d ≥ 2, we call a d-dimensional polytope P with vertex set V a lattice-face

polytope if for any subset U ⊂ V spanning a (d − 1)-dimensional affine space,

a) π(conv(U)) is a lattice-face polytope, and

b) π(aff(U) ∩ Z
d) = Z

d−1.

Lemma 10. Any integral cyclic polytope is a lattice-face polytope.

Lemma 11. Any lattice-face polytope is an integral polytope.
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Ehrhart polynomials of lattice-face polytopes

Theorem 12 (L). Let P be a lattice-face d-polytope, then

i(P, m) = Vol(mP ) + i(π(P ), m) =
d

∑

k=0

Volk(π
d−k(P ))mk.
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Ehrhart polynomials of lattice-face polytopes

Theorem 12 (L). Let P be a lattice-face d-polytope, then

i(P, m) = Vol(mP ) + i(π(P ), m) =
d

∑

k=0

Volk(π
d−k(P ))mk.

Example: Let d = 3, let P be the polytope with the vertex set V = {v1 =

(0, 0, 0), v2 = (4, 0, 0), v3 = (3, 6, 0), v4 = (2, 2, 10)}. One can check that P

is a lattice-face polytope.

Vol(P ) = 40.

π(P ) = conv{(0, 0), (4, 0), (3, 6)}, and Vol(π(P )) = 12.

π2(P ) = [0, 4], and Vol(π2(P )) = 4.

Thus, by the theorem, the Ehrhart polynomial of P is

i(P, m) = 40m3 + 12m2 + 4m + 1.
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Examples of 2-polytopes
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Examples of 2-polytopes

Example: Let P1 be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (2, 1).

P1 :

(0, 0)
(2, 0)

(2, 1)
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Examples of 2-polytopes

Example: Let P1 be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (2, 1).

P1 :

(0, 0)
(2, 0)

(2, 1)

U1 = {v1, v2}, aff(U1) is {(x, 0) | x ∈ R}. So π(aff(U1) ∩ Z
2) = Z.
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Examples of 2-polytopes

Example: Let P1 be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (2, 1).

P1 :

(0, 0)
(2, 0)

(2, 1)

U1 = {v1, v2}, aff(U1) is {(x, 0) | x ∈ R}. So π(aff(U1) ∩ Z
2) = Z.

U2 = {v1, v3}, aff(U2) is {(2x, x) | x ∈ R}. So π(aff(U2) ∩ Z2) = 2Z.
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Examples of 2-polytopes

Example: Let P1 be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (2, 1).

P1 :

(0, 0)
(2, 0)

(2, 1)

U1 = {v1, v2}, aff(U1) is {(x, 0) | x ∈ R}. So π(aff(U1) ∩ Z
2) = Z.

U2 = {v1, v3}, aff(U2) is {(2x, x) | x ∈ R}. So π(aff(U2) ∩ Z2) = 2Z.

U3 = {v2, v3}, aff(U3) is {(2, x) | x ∈ R}. So π(aff(U3) ∩ Z2) = {2}.
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Examples of 2-polytopes

Example: Let P1 be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (2, 1).

P1 :

(0, 0)
(2, 0)

(2, 1)

U1 = {v1, v2}, aff(U1) is {(x, 0) | x ∈ R}. So π(aff(U1) ∩ Z
2) = Z.

U2 = {v1, v3}, aff(U2) is {(2x, x) | x ∈ R}. So π(aff(U2) ∩ Z2) = 2Z.

U3 = {v2, v3}, aff(U3) is {(2, x) | x ∈ R}. So π(aff(U3) ∩ Z2) = {2}.

P1 is NOT a lattice-face polytope.

Page 24



Volumes and Ehrhart polynomials of polytopes Fu Liu

Examples of 2-polytopes

Example: Let P2 be the polytope with vertices v1 = (0, 0), v2 = (3, 0), and v3 = (2, 2).

P2 :

(0, 0) (3, 0)

(2, 2)
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Examples of 2-polytopes

Example: Let P2 be the polytope with vertices v1 = (0, 0), v2 = (3, 0), and v3 = (2, 2).

P2 :

(0, 0) (3, 0)

(2, 2)

U1 = {v1, v2}, aff(U1) is {(x, 0) | x ∈ R}. So π(aff(U1) ∩ Z2) = Z.
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Examples of 2-polytopes

Example: Let P2 be the polytope with vertices v1 = (0, 0), v2 = (3, 0), and v3 = (2, 2).

P2 :

(0, 0) (3, 0)

(2, 2)

U1 = {v1, v2}, aff(U1) is {(x, 0) | x ∈ R}. So π(aff(U1) ∩ Z2) = Z.

U2 = {v1, v3}, aff(U2) is {(x, x) | x ∈ R}. So π(aff(U2) ∩ Z
2) = Z.
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Examples of 2-polytopes

Example: Let P2 be the polytope with vertices v1 = (0, 0), v2 = (3, 0), and v3 = (2, 2).

P2 :

(0, 0) (3, 0)

(2, 2)

U1 = {v1, v2}, aff(U1) is {(x, 0) | x ∈ R}. So π(aff(U1) ∩ Z2) = Z.

U2 = {v1, v3}, aff(U2) is {(x, x) | x ∈ R}. So π(aff(U2) ∩ Z
2) = Z.

U3 = {v2, v3}, aff(U3) is {(x, 6 − 2x) | x ∈ R}. So π(aff(U3) ∩ Z
2) = Z.

Page 25



Volumes and Ehrhart polynomials of polytopes Fu Liu

Examples of 2-polytopes

Example: Let P2 be the polytope with vertices v1 = (0, 0), v2 = (3, 0), and v3 = (2, 2).

P2 :

(0, 0) (3, 0)

(2, 2)

U1 = {v1, v2}, aff(U1) is {(x, 0) | x ∈ R}. So π(aff(U1) ∩ Z2) = Z.

U2 = {v1, v3}, aff(U2) is {(x, x) | x ∈ R}. So π(aff(U2) ∩ Z
2) = Z.

U3 = {v2, v3}, aff(U3) is {(x, 6 − 2x) | x ∈ R}. So π(aff(U3) ∩ Z
2) = Z.

For each Ui, condition a) is always satisfied.

P2 is a lattice-face polytope.
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How big is the family of lattice-face polytopes?

Theorem 13 (L). For any rational polytope P , there exists a lattice-face polytope Q

having the same combinatorial type as P, that is, the face lattices of P and Q are the

same.
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Sketch of the proof

i. We reduce the problem to the case of simplices.
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Sketch of the proof

i. We reduce the problem to the case of simplices.

ii. We develop a way of decomposing any d-dimensional simplex in general position

into d! signed sets, each of which corresponds to a permutation in the symmetric

group Sn.
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Sketch of the proof

i. We reduce the problem to the case of simplices.

ii. We develop a way of decomposing any d-dimensional simplex in general position

into d! signed sets, each of which corresponds to a permutation in the symmetric

group Sn.

iii. When we apply this decomposition to a lattice-face simplex, we are able to write the

number of lattice points in each set as a recursive sum.
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Sketch of the proof

i. We reduce the problem to the case of simplices.

ii. We develop a way of decomposing any d-dimensional simplex in general position

into d! signed sets, each of which corresponds to a permutation in the symmetric

group Sn.

iii. When we apply this decomposition to a lattice-face simplex, we are able to write the

number of lattice points in each set as a recursive sum.

iv. In the case of cyclic polytopes, the sign of each set is exactly the same as the

sign of the corresponding permutation. But this is not true for a general lattice-face

polytope. However, we fix this problem by using Bernoulli polynomials.
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Sketch of the proof

i. We reduce the problem to the case of simplices.

ii. We develop a way of decomposing any d-dimensional simplex in general position

into d! signed sets, each of which corresponds to a permutation in the symmetric

group Sn.

iii. When we apply this decomposition to a lattice-face simplex, we are able to write the

number of lattice points in each set as a recursive sum.

iv. In the case of cyclic polytopes, the sign of each set is exactly the same as the

sign of the corresponding permutation. But this is not true for a general lattice-face

polytope. However, we fix this problem by using Bernoulli polynomials.

v. We show that the number of lattice points is given by a formula involving Bernoulli

polynomials, signs of permutations, and determinants. By analyzing this formula

further, we are able to derive our main theorem.

Page 27



Volumes and Ehrhart polynomials of polytopes Fu Liu

PART III:

Further discussion

Summary: We give an alternative definition of lattice-face polytopes, which leads us

to ask a question and give a conjecture.
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An alternative definition

We have an alternative definition of lattice-face polytopes, which is equivalent to the

original definition we gave earlier. Indeed, a d-polytope on a vertex set V is a lattice-

face polytope if and only if for all k : 0 ≤ k ≤ d − 1,

(⋆) for any subset U ⊂ V spanning a k-dimensional space

πd−k(aff(U) ∩ Z
d) = Z

k,

In other words, after dropping the last d − k coordinates of the lattice of aff(U), we

get the k-dimensional lattice.
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An alternative definition

We have an alternative definition of lattice-face polytopes, which is equivalent to the

original definition we gave earlier. Indeed, a d-polytope on a vertex set V is a lattice-

face polytope if and only if for all k : 0 ≤ k ≤ d − 1,

(⋆) for any subset U ⊂ V spanning a k-dimensional space

πd−k(aff(U) ∩ Z
d) = Z

k,

In other words, after dropping the last d − k coordinates of the lattice of aff(U), we

get the k-dimensional lattice.

Note that in this definition, when k = 0, satisfying (⋆) is equivalent to saying that P

is an integral polytope, which implies that the last coefficient of the Ehrhart polynomial

of P is 1.
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An alternative definition

We have an alternative definition of lattice-face polytopes, which is equivalent to the

original definition we gave earlier. Indeed, a d-polytope on a vertex set V is a lattice-

face polytope if and only if for all k : 0 ≤ k ≤ d − 1,

(⋆) for any subset U ⊂ V spanning a k-dimensional space

πd−k(aff(U) ∩ Z
d) = Z

k,

In other words, after dropping the last d − k coordinates of the lattice of aff(U), we

get the k-dimensional lattice.

Note that in this definition, when k = 0, satisfying (⋆) is equivalent to saying that P

is an integral polytope, which implies that the last coefficient of the Ehrhart polynomial

of P is 1. Therefore, one may ask

Question: If P is a polytope that satisfies (⋆) for all k ∈ K, where K is a fixed

subset of {0, 1, . . . , d − 1}, can we say something about the Ehrhart polynomial of

P?
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A conjecture

A special set K can be chosen as the set of consecutive integers from 0 to d′, where

d′ is an integer no greater than d−1. Based on some examples in this case, the Ehrhart

polynomials seems to follow a certain pattern, so we conjecture the following:

Conjecture 14. Given d′ ≤ d − 1, if P is a d-polytope with vertex set V such that

∀k : 0 ≤ k ≤ d′, (⋆) is satisfied, then for 0 ≤ k ≤ d′, the coefficient of mk in

i(P, m) is the same as in i(πd−d′(P ), m). In other words,

i(P, m) = i(πd−d′(P ), m) +

d
∑

i=d′+1

cim
i.
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A conjecture

A special set K can be chosen as the set of consecutive integers from 0 to d′, where

d′ is an integer no greater than d−1. Based on some examples in this case, the Ehrhart

polynomials seems to follow a certain pattern, so we conjecture the following:

Conjecture 14. Given d′ ≤ d − 1, if P is a d-polytope with vertex set V such that

∀k : 0 ≤ k ≤ d′, (⋆) is satisfied, then for 0 ≤ k ≤ d′, the coefficient of mk in

i(P, m) is the same as in i(πd−d′(P ), m). In other words,

i(P, m) = i(πd−d′(P ), m) +

d
∑

i=d′+1

cim
i.

Example: P = conv{(0, 0, 0), (4, 0, 0), (3, 6, 0), (2, 2, 2)}. One can check that

P satisfies (⋆) for k = 0, 1 but not for k = 2.

i(P, m) = 8m3 + 10m2 + 4m + 1,

where 4m + 1 is the Ehrhart polynomial of π2(P ) = [0, 4].
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