Volumes and Ehrhart polynomials of polytopes

by *Fu Liu*

University of California, Davis

East China Normal University

December 25th, 2008

Outline

- Preliminaries
- Ehrhart polynomials of cyclic polytopes and lattice-face polytopes
- Further discussion

PART I:

Preliminaries

Summary: We will go over some basic definitions related to polytopes, and then introduce the theory of Ehrhart polynomials.

Basic definitions related to polytopes

Definition 1 (\mathcal{H} -representation). A *polyhedron* $P \subset \mathbb{R}^d$ is an intersection of finitely many halfspaces:

$$P = \{ \mathbf{x} \in \mathbb{R}^d : A\mathbf{x} \le \mathbf{z} \},\$$

for some $A \in \mathbb{R}^{m \times d}$, $\mathbf{z} \in \mathbb{R}^m$.

A *(convex) polytope* is a bounded polyhedron.

Basic definitions related to polytopes

Definition 1 (\mathcal{H} -representation). A *polyhedron* $P \subset \mathbb{R}^d$ is an intersection of finitely many halfspaces:

$$P = \{ \mathbf{x} \in \mathbb{R}^d : A\mathbf{x} \le \mathbf{z} \},\$$

for some $A \in \mathbb{R}^{m \times d}$, $\mathbf{z} \in \mathbb{R}^m$.

A *(convex) polytope* is a bounded polyhedron.

Given a set of points $S \subset \mathbb{R}^d$, the *affine hull* of S, denoted by $\operatorname{aff}(S)$, is the smallest affine subspace containing S.

Basic definitions related to polytopes

Definition 1 (\mathcal{H} -representation). A *polyhedron* $P \subset \mathbb{R}^d$ is an intersection of finitely many halfspaces:

$$P = \{ \mathbf{x} \in \mathbb{R}^d : A\mathbf{x} \le \mathbf{z} \},\$$

for some $A \in \mathbb{R}^{m \times d}$, $\mathbf{z} \in \mathbb{R}^m$.

A *(convex) polytope* is a bounded polyhedron.

Given a set of points $S \subset \mathbb{R}^d$, the *affine hull* of S, denoted by $\operatorname{aff}(S)$, is the smallest affine subspace containing S.

The *dimension* of a polytope is the dimension of its affine hull. A *d*-polytope is a polytope of dimension d in some \mathbb{R}^e $(e \ge d)$.

Definition 2. A *face* of P is any set of the form

$$F = P \cap \{ \mathbf{x} \in \mathbb{R}^d : \mathbf{c}\mathbf{x} = c_0 \},$$

where $\mathbf{cx} \leq c_0$ is satisfied for all points $x \in P$. The *dimension* of a face is the dimension of its affine hull: $\dim(F) := \dim(\operatorname{aff}(F))$.

The faces of dimension 0, 1, and $\dim(P) - 1$ are called *vertices, edges,* and *facets,* respectively.

Definition 2. A *face* of P is any set of the form

$$F = P \cap \{ \mathbf{x} \in \mathbb{R}^d : \mathbf{c}\mathbf{x} = c_0 \},\$$

where $\mathbf{cx} \leq c_0$ is satisfied for all points $x \in P$. The *dimension* of a face is the dimension of its affine hull: $\dim(F) := \dim(\operatorname{aff}(F))$.

The faces of dimension 0, 1, and $\dim(P) - 1$ are called *vertices, edges,* and *facets,* respectively.

- A 3-dimensional cube has:
 - 8 vertices,
 - 12 edges,
 - 6 facets.

Definition 3 (\mathcal{V} -representation). A *(convex) polytope* P in the d-dimensional Euclidean space \mathbb{R}^d is the convex hull of finitely many points $V = \{v_1, v_2, \ldots, v_n\} \subset \mathbb{R}^d$. In other words,

 $P = \operatorname{conv}(V) = \{\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n : \text{ all } \lambda_i \ge 0, \text{ and } \lambda_1 + \lambda_2 + \dots + \lambda_n = 1\}.$

Definition 3 (\mathcal{V} -representation). A *(convex) polytope* P in the d-dimensional Euclidean space \mathbb{R}^d is the convex hull of finitely many points $V = \{v_1, v_2, \ldots, v_n\} \subset \mathbb{R}^d$. In other words,

 $P = \operatorname{conv}(V) = \{\lambda_1 v_1 + \lambda_2 v_2 + \dots + \lambda_n v_n : \text{ all } \lambda_i \ge 0, \text{ and } \lambda_1 + \lambda_2 + \dots + \lambda_n = 1\}.$

Fact 4. The convex hull of all of the vertices of a convex polytope P is P itself:

 $P = \operatorname{conv}(V(P)),$

where V(P) is the set of vertices of P.

The *d*-dimensional *lattice* $\mathbb{Z}^d \subset \mathbb{R}^d$ is the collection of all points with integer coordinates. Any point in \mathbb{Z}^d is called a *lattice point*.

The *d*-dimensional *lattice* $\mathbb{Z}^d \subset \mathbb{R}^d$ is the collection of all points with integer coordinates. Any point in \mathbb{Z}^d is called a *lattice point*.

An *integral* polytope is a convex polytope whose vertices are all lattice points.

The *d*-dimensional *lattice* $\mathbb{Z}^d \subset \mathbb{R}^d$ is the collection of all points with integer coordinates. Any point in \mathbb{Z}^d is called a *lattice point*.

An *integral* polytope is a convex polytope whose vertices are all lattice points. **Definition 5.** For any polytope $P \subset \mathbb{R}^d$ and some positive integer $m \in \mathbb{N}$, the *mth dilated polytope* of P is $mP = \{m\mathbf{x} : \mathbf{x} \in P\}$. We denote by

 $i(m,P) = |mP \cap \mathbb{Z}^d|$

the number of lattice points in mP.

The *d*-dimensional *lattice* $\mathbb{Z}^d \subset \mathbb{R}^d$ is the collection of all points with integer coordinates. Any point in \mathbb{Z}^d is called a *lattice point*.

An *integral* polytope is a convex polytope whose vertices are all lattice points.

Definition 5. For any polytope $P \subset \mathbb{R}^d$ and some positive integer $m \in \mathbb{N}$, the *mth* dilated polytope of P is $mP = \{m\mathbf{x} : \mathbf{x} \in P\}$. We denote by

 $i(m,P) = |mP \cap \mathbb{Z}^d|$

the number of lattice points in mP.

Example:

(i) When $d=1,\,P$ is an interval [a,b], where $a,b\in\mathbb{Z}.$ Then mP=[ma,mb] and

i(P,m) = (b-a)m + 1.

(i) When $d=1,\,P$ is an interval [a,b], where $a,b\in\mathbb{Z}.$ Then mP=[ma,mb] and

$$i(P,m) = (b-a)m + 1.$$

(ii) When d = 2, P is an integral polygon, and so is mP. Pick's theorem states that for any integral polygon Q:

area
$$(Q) = |Q \cap \mathbb{Z}^2| - \frac{1}{2}|\partial(Q) \cap \mathbb{Z}^2| - 1.$$

Hence,

$$i(P,m) = \operatorname{area}(mP) + \frac{1}{2}|\partial(mP) \cap \mathbb{Z}^d| + 1$$
$$= \operatorname{area}(P)m^2 + \frac{1}{2}|\partial(P) \cap \mathbb{Z}^d|m + 1$$

(iii) For any d, let P be the convex hull of the set $\{(x_1, x_2, \ldots, x_d) \in \mathbb{R}^d : x_i = 0 \text{ or } 1\}$, i.e. P is the *unit cube* in \mathbb{R}^d . Then it is obvious that

 $i(P,m) = (m+1)^d.$

 $i(P,3) = (3+1)^2$

Theorem of Ehrhart (on integral polytopes)

Theorem 6. (Ehrhart) Let P be a d-dimensional integral polytope, then i(P, m) is a polynomial in m of degree d.

Therefore, we call i(P, m) the *Ehrhart polynomial* of P.

Example of a rational polytope

When $P = [\frac{1}{3}, \frac{3}{2}],$ $i(P, m) = \begin{cases} \frac{7}{6}m + 1, & \text{if } m \equiv 0 \mod 6\\ \frac{7}{6}m - \frac{1}{6}, & \text{if } m \equiv 1 \mod 6\\ \frac{7}{6}m + \frac{2}{3}, & \text{if } m \equiv 2 \mod 6\\ \frac{7}{6}m + \frac{1}{2}, & \text{if } m \equiv 3 \mod 6\\ \frac{7}{6}m + \frac{1}{3}, & \text{if } m \equiv 4 \mod 6\\ \frac{7}{6}m + \frac{1}{6}, & \text{if } m \equiv 5 \mod 6 \end{cases}$

Example of a rational polytope

When $P = [\frac{1}{3}, \frac{3}{2}],$ $i(P, m) = \begin{cases} \frac{7}{6}m + 1, & \text{if } m \equiv 0 \mod 6\\ \frac{7}{6}m - \frac{1}{6}, & \text{if } m \equiv 1 \mod 6\\ \frac{7}{6}m + \frac{2}{3}, & \text{if } m \equiv 2 \mod 6\\ \frac{7}{6}m + \frac{1}{2}, & \text{if } m \equiv 3 \mod 6\\ \frac{7}{6}m + \frac{1}{3}, & \text{if } m \equiv 4 \mod 6\\ \frac{7}{6}m + \frac{1}{6}, & \text{if } m \equiv 5 \mod 6 \end{cases}$

A function $f : \mathbb{N} \to \mathbb{C}$ (or $f : \mathbb{Z} \to \mathbb{C}$) is a *quasi-polynomial* if there exists an integer N > 0 and polynomials $f_0, f_1, \ldots, f_{N-1}$ such that

$$f(n) = f_i(n)$$
, if $n \equiv i \mod N$.

The integer N (which is not unique) will be called a *quasi-period* of f.

Theorem of Ehrhart

Theorem 7. (Ehrhart) Let P be a d-dimensional rational polytope, then i(P,m) is a quasi-polynomial in m of degree d with quasi-period D, where D is the least common denominator of the vertices of P.

In particular, when P is an integral polytope, i(P, m) is a polynomial.

If P is an integral polytope, what can we say about the coefficients of its Ehrhart polynomial i(P,m)?

The leading coefficient of i(P, m) is the volume Vol(P) of P.

- The leading coefficient of i(P, m) is the volume Vol(P) of P.
- The second coefficient equals 1/2 times the sum of volumes of each facet, each normalized with respect to the sublattice in the hyperplane spanned by the facet.

- The leading coefficient of i(P, m) is the volume Vol(P) of P.
- The second coefficient equals 1/2 times the sum of volumes of each facet, each normalized with respect to the sublattice in the hyperplane spanned by the facet.
- The constant term of i(P, m) is always 1.

- The leading coefficient of i(P, m) is the volume Vol(P) of P.
- The second coefficient equals 1/2 times the sum of volumes of each facet, each normalized with respect to the sublattice in the hyperplane spanned by the facet.
- The constant term of i(P, m) is always 1.
- No results for other coefficients for general polytopes.

- The leading coefficient of i(P, m) is the volume Vol(P) of P.
- The second coefficient equals 1/2 times the sum of volumes of each facet, each normalized with respect to the sublattice in the hyperplane spanned by the facet.
- The constant term of i(P, m) is always 1.
- No results for other coefficients for general polytopes.
 - It is even NOT true that all the coefficients are nonnegative. For example, for the polytope P with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 13), its Ehrhart polynomial is

$$i(P,n) = \frac{13}{6}n^3 + n^2 - \frac{1}{6}n + 1.$$

PART II:

Ehrhart polynomials of cyclic polytopes

and lattice-face polytopes

Summary: In this part, we introduce families of polytopes. The coefficients of the Ehrhart polynomials of those polytopes can be described in terms of volumes.

Motivation

Beck, De Loera, Develin, Pfeifle and Stanley conjectured that the Ehrhart polynomial of an integral cyclic polytope has a simple formula.

Recall that given $T = \{t_1, \ldots, t_n\}_{<}$ a linearly ordered set, a *d*-dimensional *cyclic* polytope $C_d(T) = C_d(t_1, \ldots, t_n)$ is the convex hull $\operatorname{conv}\{v_d(t_1), v_d(t_2), \ldots, v_d(t_n)\}$ of n > d distinct points $\nu_d(t_i), 1 \le i \le n$, on the moment curve.

The *moment curve* (also known as *rational normal curve*) in \mathbb{R}^d is defined by

$$\nu_d : \mathbb{R} \to \mathbb{R}^d, t \mapsto \nu_d(t) = \begin{pmatrix} t \\ t^2 \\ \vdots \\ t^d \end{pmatrix}$$

Example: $T = \{1, 2, 3, 4\}, d = 3$:

 $C_d(T)$ is the convex polytope whose vertices are

$\left(\begin{array}{c}1\end{array}\right)$		$\left(\begin{array}{c}2\end{array}\right)$		$\left(\begin{array}{c}3\end{array}\right)$		$\left(\begin{array}{c}4\end{array}\right)$
1	,	4	,	9	,	16
$\left(1 \right)$		8		$\left(27 \right)$		64

Theorem 8 (L). For any d-dimensional integral cyclic polytope $C_d(T)$,

 $i(C_d(T), m) = Vol(mC_d(T)) + i(C_{d-1}(T), m).$

Hence,

$$i(C_d(T), m) = \sum_{k=0}^d \operatorname{Vol}_k(mC_k(T))$$
$$= \sum_{k=0}^d \operatorname{Vol}_k(C_k(T))m^k,$$

where $\operatorname{Vol}_k(mC_k(T))$ is the volume of $mC_k(T)$ in k-dimensional space, and by convention we let $\operatorname{Vol}_0(mC_0(T)) = 1$.

Volumes and Ehrhart polynomials of polytopes

Example: $T = \{1, 2, 3, 4\}, d = 3$:

Example:
$$T = \{1, 2, 3, 4\}, d = 3$$
:
 $C_d(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4\\8 \end{pmatrix}, \begin{pmatrix} 3\\9\\27 \end{pmatrix}, \begin{pmatrix} 4\\16\\64 \end{pmatrix}\right\} : i(C_d(T), m) = 2m^3 + 4m^2 + 3m + 1.$

Example:
$$T = \{1, 2, 3, 4\}, d = 3$$
:
 $C_d(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4\\8 \end{pmatrix}, \begin{pmatrix} 3\\9\\27 \end{pmatrix}, \begin{pmatrix} 4\\16\\64 \end{pmatrix}\right\} : i(C_d(T), m) = 2m^3 + 4m^2 + 3m + 1.$
 $C_{d-1}(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4 \end{pmatrix}, \begin{pmatrix} 3\\9 \end{pmatrix}, \begin{pmatrix} 3\\9 \end{pmatrix}, \begin{pmatrix} 4\\16 \end{pmatrix}\right\} : i(C_{d-1}(T), m) = 4m^2 + 3m + 1.$

Example:
$$T = \{1, 2, 3, 4\}, d = 3$$
:

$$C_d(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4\\8 \end{pmatrix}, \begin{pmatrix} 3\\9\\27 \end{pmatrix}, \begin{pmatrix} 4\\16\\64 \end{pmatrix}\right\} : i(C_d(T), m) = 2m^3 + 4m^2 + 3m + 1.$$

$$C_{d-1}(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4\\4 \end{pmatrix}, \begin{pmatrix} 3\\9\\9 \end{pmatrix}, \begin{pmatrix} 4\\16 \end{pmatrix}\right\} : i(C_{d-1}(T), m) = 4m^2 + 3m + 1.$$

$$C_{d-2}(T) = \operatorname{conv}\{1, 2, 3, 4\} = [1, 4] : i(C_{d-2}(T), m) = 3m + 1.$$
Example:
$$T = \{1, 2, 3, 4\}, d = 3$$
:

$$C_d(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4\\8 \end{pmatrix}, \begin{pmatrix} 3\\9\\27 \end{pmatrix}, \begin{pmatrix} 4\\16\\64 \end{pmatrix}\right\} : i(C_d(T), m) = 2m^3 + 4m^2 + 3m + 1.$$

$$C_{d-1}(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4 \end{pmatrix}, \begin{pmatrix} 3\\9 \end{pmatrix}, \begin{pmatrix} 4\\16 \end{pmatrix}\right\} : i(C_{d-1}(T), m) = 4m^2 + 3m + 1.$$

$$C_{d-2}(T) = \operatorname{conv}\{1, 2, 3, 4\} = [1, 4] : i(C_{d-2}(T), m) = 3m + 1.$$

 $\rightarrow C_{d-3}(T) = \mathbb{R}^0 : i(C_{d-3}(T), m) = 1.$

Example:
$$T = \{1, 2, 3, 4\}, d = 3$$
:

$$C_d(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4\\8 \end{pmatrix}, \begin{pmatrix} 3\\9\\27 \end{pmatrix}, \begin{pmatrix} 4\\16\\64 \end{pmatrix}\right\} : i(C_d(T), m) = 2m^3 + 4m^2 + 3m + 1.$$

$$C_{d-1}(T) = \operatorname{conv}\left\{\begin{pmatrix} 1\\1 \end{pmatrix}, \begin{pmatrix} 2\\4 \end{pmatrix}, \begin{pmatrix} 3\\9 \end{pmatrix}, \begin{pmatrix} 4\\16 \end{pmatrix}\right\} : i(C_{d-1}(T), m) = 4m^2 + 3m + 1.$$

- $C_{d-2}(T) = \operatorname{conv}\{1, 2, 3, 4\} = [1, 4] : i(C_{d-2}(T), m) = 3m + 1.$
- $C_{d-3}(T) = \mathbb{R}^0 : i(C_{d-3}(T), m) = 1.$
- \blacksquare 2, 4, 3 and 1 are the volumes of $C_3(T), C_2(T), C_1(T)$ and $C_0(T)$, respectively.

If we define $\pi^k : \mathbb{R}^d \to \mathbb{R}^{d-k}$ to be the map which forgets the last k coordinates of a point, then $\pi^k(C_d(T)) = C_{d-k}(T)$. So when $P = C_d(T)$ is an integral cyclic polytope, we have that

$$i(P,m) = \operatorname{Vol}(mP) + i(\pi(P),m) = \sum_{k=0}^{d} \operatorname{Vol}_k(\pi^{d-k}(P))m^k,$$
 (9)

where $\operatorname{Vol}_k(P)$ is the volume of P in k-dimensional Euclidean space \mathbb{R}^k .

If we define $\pi^k : \mathbb{R}^d \to \mathbb{R}^{d-k}$ to be the map which forgets the last k coordinates of a point, then $\pi^k(C_d(T)) = C_{d-k}(T)$. So when $P = C_d(T)$ is an integral cyclic polytope, we have that

$$i(P,m) = \operatorname{Vol}(mP) + i(\pi(P),m) = \sum_{k=0}^{d} \operatorname{Vol}_k(\pi^{d-k}(P))m^k,$$
 (9)

where $\operatorname{Vol}_k(P)$ is the volume of P in k-dimensional Euclidean space \mathbb{R}^k .

Question: Are there other integral polytopes which have the same form of Ehrhart polynomials as cyclic polytopes? In other words, what kind of integral *d*-polytopes *P* are there whose Ehrhart polynomials will be in the form of (9)?

Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope $C_d(T)$?

When $d = 1, C_d(T)$ is just an integral polytope.

Properties of integral cyclic polytopes

What are some key properties of an integral cyclic polytope $C_d(T)$?

When d = 1, $C_d(T)$ is just an integral polytope.

For $d \ge 2$, for any d-subset $T' \subset T$, let $U = \nu_d(T')$ be the corresponding subset of the vertex set $V = \nu_d(T)$ of $C_d(T)$. Then:

a) $\pi(\operatorname{conv}(U)) = \pi(C_d(T')) = C_{d-1}(T')$ is an integral cyclic polytope, and

b) $\pi(\operatorname{aff}(U) \cap \mathbb{Z}^d) = \mathbb{Z}^{d-1}$. In other words, after dropping the last coordinate of the lattice of $\operatorname{aff}(U)$, we get the (d-1)-dimensional lattice.

Example of condition b):
$$\pi(\operatorname{aff}(U) \cap \mathbb{Z}^d) = \mathbb{Z}^{d-1}$$

Example: $T = \{1, 2, 3, 4\}, d = 2, T' = \{1, 3\}, U = \{(1, 1), (3, 9)\}.$ $P = (4, 16) \quad \text{aff}(U) = \{(x, 1 + 4x) \mid x \in \mathbb{R}\}$ $C_{2}(\{1, 2, 3, 4\}) = (3, 9) \quad \text{aff}(U) \cap \mathbb{Z}^{d} = \{\cdots, (0, -3), (1, 1), (2, 5), (3, 9), (4, 13), \cdots\}$ $(0, -3) \quad (1, 1) \quad (2, 5), (3, 9), (4, 13), \cdots\}$ $\pi(\text{aff}(U) \cap \mathbb{Z}^{d}) = \{\cdots, 0, 1, 2, 3, 4, \cdots, \} = \mathbb{Z}$

Remark: Condition b) is equivalent to saying that for any lattice point $y \in \mathbb{Z}^{d-1}$, we have that $\pi^{-1}(y) \cap \operatorname{aff}(U)$, the intersection of $\operatorname{aff}(U)$ with the inverse image of y under π , is a lattice point.

Remark: Condition b) is equivalent to saying that for any lattice point $y \in \mathbb{Z}^{d-1}$, we have that $\pi^{-1}(y) \cap \operatorname{aff}(U)$, the intersection of $\operatorname{aff}(U)$ with the inverse image of y under π , is a lattice point.

We define *lattice-face* polytopes recursively.

We define *lattice-face* polytopes recursively.

We call a one dimensional polytope a *lattice-face* polytope if it is integral.

We define *lattice-face* polytopes recursively.

We call a one dimensional polytope a *lattice-face* polytope if it is integral.

For $d \geq 2$, we call a d-dimensional polytope P with vertex set V a *lattice-face* polytope if for any subset $U \subset V$ spanning a (d-1)-dimensional affine space,

a) $\pi(\operatorname{conv}(U))$ is a lattice-face polytope, and

b) $\pi(\operatorname{aff}(U) \cap \mathbb{Z}^d) = \mathbb{Z}^{d-1}.$

We define *lattice-face* polytopes recursively.

We call a one dimensional polytope a *lattice-face* polytope if it is integral.

For $d \geq 2$, we call a d-dimensional polytope P with vertex set V a *lattice-face* polytope if for any subset $U \subset V$ spanning a (d-1)-dimensional affine space,

a) $\pi(\operatorname{conv}(U))$ is a lattice-face polytope, and

b) $\pi(\operatorname{aff}(U) \cap \mathbb{Z}^d) = \mathbb{Z}^{d-1}.$

Lemma 10. Any integral cyclic polytope is a lattice-face polytope.

We define *lattice-face* polytopes recursively.

We call a one dimensional polytope a *lattice-face* polytope if it is integral.

For $d \geq 2$, we call a d-dimensional polytope P with vertex set V a *lattice-face* polytope if for any subset $U \subset V$ spanning a (d-1)-dimensional affine space,

a) $\pi(\operatorname{conv}(U))$ is a lattice-face polytope, and

b)
$$\pi(\operatorname{aff}(U) \cap \mathbb{Z}^d) = \mathbb{Z}^{d-1}.$$

Lemma 10. Any integral cyclic polytope is a lattice-face polytope.

Lemma 11. Any lattice-face polytope is an integral polytope.

Ehrhart polynomials of lattice-face polytopes

Theorem 12 (L). Let P be a lattice-face d-polytope, then

$$i(P,m) = \operatorname{Vol}(mP) + i(\pi(P),m) = \sum_{k=0}^{d} \operatorname{Vol}_{k}(\pi^{d-k}(P))m^{k}.$$

Ehrhart polynomials of lattice-face polytopes

Theorem 12 (L). Let P be a lattice-face d-polytope, then

$$i(P,m) = \operatorname{Vol}(mP) + i(\pi(P),m) = \sum_{k=0}^{d} \operatorname{Vol}_{k}(\pi^{d-k}(P))m^{k}.$$

Example: Let d = 3, let P be the polytope with the vertex set $V = \{v_1 = (0,0,0), v_2 = (4,0,0), v_3 = (3,6,0), v_4 = (2,2,10)\}$. One can check that P is a lattice-face polytope.

$$Vol(P) = 40.$$

$$\pi(P) = conv\{(0,0), (4,0), (3,6)\}, \text{ and } Vol(\pi(P)) = 12$$

$$\pi^2(P) = [0,4], \text{ and } Vol(\pi^2(P)) = 4.$$

Thus, by the theorem, the Ehrhart polynomial of P is

$$i(P,m) = 40m^3 + 12m^2 + 4m + 1.$$

Example: Let P_1 be the polytope with vertices $v_1 = (0,0), v_2 = (2,0)$ and $v_3 = (2,1)$.

Example: Let P_1 be the polytope with vertices $v_1 = (0,0), v_2 = (2,0)$ and $v_3 = (2,1)$.

 $U_1 = \{v_1, v_2\}, \operatorname{aff}(U_1) \text{ is } \{(x, 0) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_1) \cap \mathbb{Z}^2) = \mathbb{Z}.$

Example: Let P_1 be the polytope with vertices $v_1 = (0,0), v_2 = (2,0)$ and $v_3 = (2,1)$.

 $U_1 = \{v_1, v_2\}, \operatorname{aff}(U_1) \text{ is } \{(x, 0) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_1) \cap \mathbb{Z}^2) = \mathbb{Z}.$ $U_2 = \{v_1, v_3\}, \operatorname{aff}(U_2) \text{ is } \{(2x, x) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_2) \cap \mathbb{Z}^2) = 2\mathbb{Z}.$

Example: Let P_1 be the polytope with vertices $v_1 = (0,0), v_2 = (2,0)$ and $v_3 = (2,1)$.

 $U_1 = \{v_1, v_2\}, \operatorname{aff}(U_1) \text{ is } \{(x, 0) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_1) \cap \mathbb{Z}^2) = \mathbb{Z}.$ $U_2 = \{v_1, v_3\}, \operatorname{aff}(U_2) \text{ is } \{(2x, x) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_2) \cap \mathbb{Z}^2) = 2\mathbb{Z}.$ $U_3 = \{v_2, v_3\}, \operatorname{aff}(U_3) \text{ is } \{(2, x) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_3) \cap \mathbb{Z}^2) = \{2\}.$

Example: Let P_1 be the polytope with vertices $v_1 = (0,0), v_2 = (2,0)$ and $v_3 = (2,1)$.

 $U_1 = \{v_1, v_2\}, \operatorname{aff}(U_1) \text{ is } \{(x, 0) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_1) \cap \mathbb{Z}^2) = \mathbb{Z}.$ $U_2 = \{v_1, v_3\}, \operatorname{aff}(U_2) \text{ is } \{(2x, x) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_2) \cap \mathbb{Z}^2) = 2\mathbb{Z}.$ $U_3 = \{v_2, v_3\}, \operatorname{aff}(U_3) \text{ is } \{(2, x) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_3) \cap \mathbb{Z}^2) = \{2\}.$

 P_1 is **NOT** a lattice-face polytope.

Example: Let P_2 be the polytope with vertices $v_1 = (0, 0), v_2 = (3, 0), \text{ and } v_3 = (2, 2).$

Example: Let P_2 be the polytope with vertices $v_1 = (0, 0), v_2 = (3, 0)$, and $v_3 = (2, 2)$.

 $U_1 = \{v_1, v_2\}, \operatorname{aff}(U_1) \text{ is } \{(x, 0) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_1) \cap \mathbb{Z}^2) = \mathbb{Z}.$

Example: Let P_2 be the polytope with vertices $v_1 = (0, 0), v_2 = (3, 0)$, and $v_3 = (2, 2)$.

 $U_1 = \{v_1, v_2\}, \operatorname{aff}(U_1) \text{ is } \{(x, 0) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_1) \cap \mathbb{Z}^2) = \mathbb{Z}.$ $U_2 = \{v_1, v_3\}, \operatorname{aff}(U_2) \text{ is } \{(x, x) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_2) \cap \mathbb{Z}^2) = \mathbb{Z}.$

Example: Let P_2 be the polytope with vertices $v_1 = (0, 0), v_2 = (3, 0)$, and $v_3 = (2, 2)$.

 $U_{1} = \{v_{1}, v_{2}\}, \operatorname{aff}(U_{1}) \text{ is } \{(x, 0) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_{1}) \cap \mathbb{Z}^{2}) = \mathbb{Z}.$ $U_{2} = \{v_{1}, v_{3}\}, \operatorname{aff}(U_{2}) \text{ is } \{(x, x) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_{2}) \cap \mathbb{Z}^{2}) = \mathbb{Z}.$ $U_{3} = \{v_{2}, v_{3}\}, \operatorname{aff}(U_{3}) \text{ is } \{(x, 6 - 2x) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_{3}) \cap \mathbb{Z}^{2}) = \mathbb{Z}.$

Example: Let P_2 be the polytope with vertices $v_1 = (0, 0), v_2 = (3, 0)$, and $v_3 = (2, 2)$.

 $U_{1} = \{v_{1}, v_{2}\}, \operatorname{aff}(U_{1}) \text{ is } \{(x, 0) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_{1}) \cap \mathbb{Z}^{2}) = \mathbb{Z}.$ $U_{2} = \{v_{1}, v_{3}\}, \operatorname{aff}(U_{2}) \text{ is } \{(x, x) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_{2}) \cap \mathbb{Z}^{2}) = \mathbb{Z}.$ $U_{3} = \{v_{2}, v_{3}\}, \operatorname{aff}(U_{3}) \text{ is } \{(x, 6 - 2x) \mid x \in \mathbb{R}\}. \text{ So } \pi(\operatorname{aff}(U_{3}) \cap \mathbb{Z}^{2}) = \mathbb{Z}.$ For each U_{i} , condition a) is always satisfied.

 P_2 is a lattice-face polytope.

How big is the family of lattice-face polytopes?

Theorem 13 (L). For any rational polytope P, there exists a lattice-face polytope Q having the same combinatorial type as P, that is, the face lattices of P and Q are the same.

i. We reduce the problem to the case of simplices.

- i. We reduce the problem to the case of simplices.
- ii. We develop a way of decomposing any d-dimensional simplex *in general position* into d! signed sets, each of which corresponds to a permutation in the symmetric group S_n .

- i. We reduce the problem to the case of simplices.
- ii. We develop a way of decomposing any d-dimensional simplex *in general position* into d! signed sets, each of which corresponds to a permutation in the symmetric group S_n .
- iii. When we apply this decomposition to a lattice-face simplex, we are able to write the number of lattice points in each set as a recursive sum.

- i. We reduce the problem to the case of simplices.
- ii. We develop a way of decomposing any d-dimensional simplex *in general position* into d! signed sets, each of which corresponds to a permutation in the symmetric group S_n .
- iii. When we apply this decomposition to a lattice-face simplex, we are able to write the number of lattice points in each set as a recursive sum.
- iv. In the case of cyclic polytopes, the sign of each set is exactly the same as the sign of the corresponding permutation. But this is not true for a general lattice-face polytope. However, we fix this problem by using Bernoulli polynomials.
Sketch of the proof

- i. We reduce the problem to the case of simplices.
- ii. We develop a way of decomposing any d-dimensional simplex *in general position* into d! signed sets, each of which corresponds to a permutation in the symmetric group S_n .
- iii. When we apply this decomposition to a lattice-face simplex, we are able to write the number of lattice points in each set as a recursive sum.
- iv. In the case of cyclic polytopes, the sign of each set is exactly the same as the sign of the corresponding permutation. But this is not true for a general lattice-face polytope. However, we fix this problem by using Bernoulli polynomials.
- v. We show that the number of lattice points is given by a formula involving Bernoulli polynomials, signs of permutations, and determinants. By analyzing this formula further, we are able to derive our main theorem.

Fu Liu

PART III:

Further discussion

Summary: We give an alternative definition of lattice-face polytopes, which leads us to ask a question and give a conjecture.

An alternative definition

We have an alternative definition of lattice-face polytopes, which is equivalent to the original definition we gave earlier. Indeed, a d-polytope on a vertex set V is a lattice-face polytope if and only if for all $k : 0 \le k \le d - 1$,

 $(\star) \quad \text{for any subset } U \subset V \text{ spanning a } k \text{-dimensional space} \\ \pi^{d-k}(\operatorname{aff}(U) \cap \mathbb{Z}^d) = \mathbb{Z}^k,$

In other words, after dropping the last d - k coordinates of the lattice of aff(U), we get the k-dimensional lattice.

An alternative definition

We have an alternative definition of lattice-face polytopes, which is equivalent to the original definition we gave earlier. Indeed, a d-polytope on a vertex set V is a lattice-face polytope if and only if for all $k : 0 \le k \le d - 1$,

 $(\star) \quad \text{for any subset } U \subset V \text{ spanning a } k \text{-dimensional space} \\ \pi^{d-k}(\operatorname{aff}(U) \cap \mathbb{Z}^d) = \mathbb{Z}^k,$

In other words, after dropping the last d - k coordinates of the lattice of aff(U), we get the k-dimensional lattice.

Note that in this definition, when k = 0, satisfying (*) is equivalent to saying that P is an integral polytope, which implies that the last coefficient of the Ehrhart polynomial of P is 1.

An alternative definition

We have an alternative definition of lattice-face polytopes, which is equivalent to the original definition we gave earlier. Indeed, a d-polytope on a vertex set V is a lattice-face polytope if and only if for all $k : 0 \le k \le d - 1$,

(*) for any subset $U \subset V$ spanning a k-dimensional space $\pi^{d-k}(\operatorname{aff}(U) \cap \mathbb{Z}^d) = \mathbb{Z}^k$,

In other words, after dropping the last d - k coordinates of the lattice of aff(U), we get the k-dimensional lattice.

Note that in this definition, when k = 0, satisfying (*) is equivalent to saying that P is an integral polytope, which implies that the last coefficient of the Ehrhart polynomial of P is 1. Therefore, one may ask

Question: If P is a polytope that satisfies (*) for all $k \in K$, where K is a fixed subset of $\{0, 1, \ldots, d-1\}$, can we say something about the Ehrhart polynomial of P?

A conjecture

A special set K can be chosen as the set of consecutive integers from 0 to d', where d' is an integer no greater than d-1. Based on some examples in this case, the Ehrhart polynomials seems to follow a certain pattern, so we conjecture the following:

Conjecture 14. Given $d' \leq d - 1$, if P is a d-polytope with vertex set V such that $\forall k : 0 \leq k \leq d'$, (*) is satisfied, then for $0 \leq k \leq d'$, the coefficient of m^k in i(P,m) is the same as in $i(\pi^{d-d'}(P), m)$. In other words,

$$i(P,m) = i(\pi^{d-d'}(P),m) + \sum_{i=d'+1}^{d} c_i m^i.$$

A conjecture

A special set K can be chosen as the set of consecutive integers from 0 to d', where d' is an integer no greater than d-1. Based on some examples in this case, the Ehrhart polynomials seems to follow a certain pattern, so we conjecture the following:

Conjecture 14. Given $d' \leq d - 1$, if P is a d-polytope with vertex set V such that $\forall k : 0 \leq k \leq d'$, (*) is satisfied, then for $0 \leq k \leq d'$, the coefficient of m^k in i(P,m) is the same as in $i(\pi^{d-d'}(P), m)$. In other words,

$$i(P,m) = i(\pi^{d-d'}(P),m) + \sum_{i=d'+1}^{d} c_i m^i.$$

Example: $P = conv\{(0, 0, 0), (4, 0, 0), (3, 6, 0), (2, 2, 2)\}$. One can check that P satisfies (*) for k = 0, 1 but not for k = 2.

$$i(P,m) = 8m^3 + 10m^2 + 4m + 1,$$

where 4m + 1 is the Ehrhart polynomial of $\pi^2(P) = [0, 4]$.