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Outline

• Basic definitions and theory of Ehrhart polynomials

• Motivation: Ehrhart polynomials of cyclic polytopes

• Main results
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Basic definitions

A (convex) polytope P in the d-dimensional Euclidean space R
d is the convex hull

of finitely many points V = {v1, v2, . . . , vn} ⊂ R
d. In other words,

P = conv(V ) = {λ1v1+λ2v2+· · ·+λnvn : all λi ≥ 0, and λ1+λ2+· · ·+λn = 1}.
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Basic definitions

A (convex) polytope P in the d-dimensional Euclidean space R
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of finitely many points V = {v1, v2, . . . , vn} ⊂ R
d. In other words,

P = conv(V ) = {λ1v1+λ2v2+· · ·+λnvn : all λi ≥ 0, and λ1+λ2+· · ·+λn = 1}.

Throughout this talk, we assume P is full-dimensional, i.e., dim(P ) = d.
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Basic definitions

A (convex) polytope P in the d-dimensional Euclidean space R
d is the convex hull

of finitely many points V = {v1, v2, . . . , vn} ⊂ R
d. In other words,

P = conv(V ) = {λ1v1+λ2v2+· · ·+λnvn : all λi ≥ 0, and λ1+λ2+· · ·+λn = 1}.

Throughout this talk, we assume P is full-dimensional, i.e., dim(P ) = d.

The d-dimensional lattice Z
d ⊂ R

d is the collection of all points with integer coordi-

nates. Any point in the lattice is called a lattice point or an integral point.
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Basic definitions

A (convex) polytope P in the d-dimensional Euclidean space R
d is the convex hull

of finitely many points V = {v1, v2, . . . , vn} ⊂ R
d. In other words,

P = conv(V ) = {λ1v1+λ2v2+· · ·+λnvn : all λi ≥ 0, and λ1+λ2+· · ·+λn = 1}.

Throughout this talk, we assume P is full-dimensional, i.e., dim(P ) = d.

The d-dimensional lattice Z
d ⊂ R

d is the collection of all points with integer coordi-

nates. Any point in the lattice is called a lattice point or an integral point.

A polytope P is integral if its vertices are all lattice points.
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Lattice points of a polytope

Page 4



Higher integrality conditions and volumes of slices Fu Liu

Lattice points of a polytope

Definition 1. For any polytope P ⊂ R
d and positive integer m ∈ N, the mth dilated

polytope of P is mP = {mx : x ∈ P}. We denote by

i(P, m) = |mP ∩ Z
d|

the number of lattice points in mP.
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Lattice points of a polytope

Definition 1. For any polytope P ⊂ R
d and positive integer m ∈ N, the mth dilated

polytope of P is mP = {mx : x ∈ P}. We denote by

i(P, m) = |mP ∩ Z
d|

the number of lattice points in mP.

Example:

P 3P
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Examples of integral polytopes
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Examples of integral polytopes

(i) When d = 1, P is an interval [a, b], where a, b ∈ Z. Then mP = [ma, mb]

and

i(P, m) = (b − a)m + 1.
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Examples of integral polytopes

(i) When d = 1, P is an interval [a, b], where a, b ∈ Z. Then mP = [ma, mb]

and

i(P, m) = (b − a)m + 1.

(ii) When d = 2, P is an integral polygon, and so is mP. Pick’s theorem states that

for any integral polygon Q:

area(Q) = |Q ∩ Z
2| −

1

2
|∂(Q) ∩ Z

2| − 1.

Hence,

i(P, m) = area(mP ) +
1

2
|∂(mP ) ∩ Z

2| + 1

= area(P )m2 +
1

2
|∂(P ) ∩ Z

2|m + 1
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Examples of integral polytopes

(iii) For any d, let P be the convex hull of the set {(x1, x2, . . . , xd) ∈ R
d : xi =

0 or 1}, i.e. P is the unit cube in R
d. Then it is obvious that

i(P, m) = (m + 1)d.

P 3P

i(P, 3) = (3 + 1)2
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Theorem of Ehrhart (on integral polytopes)

Theorem 2 (Ehrhart). Let P be a d-dimensional integral polytope. Then i(P, m) is a

polynomial in m of degree d.

Therefore, we call i(P, m) the Ehrhart polynomial of P.
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial i(P, m)?
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial i(P, m)?

➠ The leading coefficient of i(P, m) is the volume Vol(P ) of P.
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial i(P, m)?

➠ The leading coefficient of i(P, m) is the volume Vol(P ) of P.

➠ The second coefficient equals 1/2 of the sum of the normalized volumes of each

facet.
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➠ The leading coefficient of i(P, m) is the volume Vol(P ) of P.

➠ The second coefficient equals 1/2 of the sum of the normalized volumes of each

facet.

➠ The constant term of i(P, m) is always 1.
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Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial i(P, m)?

➠ The leading coefficient of i(P, m) is the volume Vol(P ) of P.

➠ The second coefficient equals 1/2 of the sum of the normalized volumes of each

facet.

➠ The constant term of i(P, m) is always 1.

➠ No simple forms known for other coefficients for general polytopes.

• It is NOT even true that all the coefficients are nonnegative. For example, for the

polytope P with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 13), its Ehrhart

polynomial is

i(P, n) =
13

6
n3 + n2−

1

6
n + 1.
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Questions

➠ When can we have simple forms for all coefficients?
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Questions

➠ When can we have simple forms for all coefficients?

➠ When are they positive?
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Questions

➠ When can we have simple forms for all coefficients?

➠ When are they positive?

➠ When can the coefficients be described by volumes?
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Cyclic polytope

Beck, De Loera, Develin, Pfeifle and Stanley conjectured that the Ehrhart polynomial

of an integral cyclic polytope has a simple formula.

Recall that given n > d, and T = {t1 < · · · < tn}, a d-dimensional cyclic poly-

tope Cd(T ) = Cd(t1, . . . , tn) is the convex hull conv{vd(t1), vd(t2), . . . , vd(tn)}

of the n distinct points νd(ti), 1 ≤ i ≤ n, on the moment curve.

The moment curve (also known as rational normal curve) in R
d is defined by

νd : R → R
d, t 7→ νd(t) =

















t

t2

...

td

















.
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Example: T = {1, 2, 3, 4}, d = 3 :

Cd(T ) is the convex polytope whose vertices are
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Theorem 3. Suppose P = Cd(T ) is a d-dimensional integral cyclic polytope. Then

i(P, m) =
d

∑

i=0

Vol(π(d−i)(P ))mi.

where π(d−i) : R
d → R

i is the projection which drops the last d − i coordinates.
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Example: T = {1, 2, 3, 4}, d = 3 :
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Example: T = {1, 2, 3, 4}, d = 3 :

➠ P = Cd(T ) = conv{
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} : Vol(P ) = 2.
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Example: T = {1, 2, 3, 4}, d = 3 :

➠ P = Cd(T ) = conv{
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} : Vol(P ) = 2.

➠ π(1)(P ) = conv{
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} : Vol(π(1)(P )) = 4.
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Example: T = {1, 2, 3, 4}, d = 3 :

➠ P = Cd(T ) = conv{
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} : Vol(P ) = 2.

➠ π(1)(P ) = conv{
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} : Vol(π(1)(P )) = 4.

➠ π(2)(P ) = conv{1, 2, 3, 4} = [1, 4] : Vol(π(2)(P )) = 3.
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Example: T = {1, 2, 3, 4}, d = 3 :

➠ P = Cd(T ) = conv{
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} : Vol(P ) = 2.

➠ π(1)(P ) = conv{
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} : Vol(π(1)(P )) = 4.

➠ π(2)(P ) = conv{1, 2, 3, 4} = [1, 4] : Vol(π(2)(P )) = 3.

➠ π(3)(P ) = R
0 : Vol(π(3)(P )) = 1.
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Example: T = {1, 2, 3, 4}, d = 3 :

➠ P = Cd(T ) = conv{
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} : Vol(P ) = 2.

➠ π(1)(P ) = conv{
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} : Vol(π(1)(P )) = 4.

➠ π(2)(P ) = conv{1, 2, 3, 4} = [1, 4] : Vol(π(2)(P )) = 3.

➠ π(3)(P ) = R
0 : Vol(π(3)(P )) = 1.

➠ The theorem says:

i(P, m) = 2m3 + 4m2 + 3m + 1.
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Question:

Are there other integral polytopes whose Ehrhart polynomials have the same form as

cyclic polytopes?

In other words, what kind of integral polytopes P are there whose Ehrhart polynomials

have the form

i(P, m) =
d

∑

i=0

Vol(π(d−i)(P ))mi?

Page 14



Higher integrality conditions and volumes of slices Fu Liu

Higher integrality conditions for affine spaces

Definition 4. An ℓ-dimensional affine space U ⊂ R
d is integral if

π(d−ℓ)(U ∩ Z
d) = Z

ℓ.

Or equivalently, the projection π(d−ℓ) induces a bijection between U ∩ Z
d and Z

ℓ.
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Definition 4. An ℓ-dimensional affine space U ⊂ R
d is integral if

π(d−ℓ)(U ∩ Z
d) = Z

ℓ.

Or equivalently, the projection π(d−ℓ) induces a bijection between U ∩ Z
d and Z

ℓ.

Example:

(i) ℓ = 0 : U is integral if and only if U is a lattice point.
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Higher integrality conditions for affine spaces

Definition 4. An ℓ-dimensional affine space U ⊂ R
d is integral if

π(d−ℓ)(U ∩ Z
d) = Z

ℓ.

Or equivalently, the projection π(d−ℓ) induces a bijection between U ∩ Z
d and Z

ℓ.

Example:

(i) ℓ = 0 : U is integral if and only if U is a lattice point.

(ii) ℓ = 1 : In R
2,
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Higher integrality conditions for affine spaces

Definition 4. An ℓ-dimensional affine space U ⊂ R
d is integral if

π(d−ℓ)(U ∩ Z
d) = Z

ℓ.

Or equivalently, the projection π(d−ℓ) induces a bijection between U ∩ Z
d and Z

ℓ.

Example:

(i) ℓ = 0 : U is integral if and only if U is a lattice point.

(ii) ℓ = 1 : In R
2,

In general, U is integral if and only if U contains a lattice point and dir(U) =

(1, z2, . . . , zd) ∈ Z
d.
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A property of integral cyclic polytopes

For any integral cyclic polytope P, we have that

any affine space determined by a subset of Vert(P ) is integral. (⋆)
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A property of integral cyclic polytopes

For any integral cyclic polytope P, we have that

any affine space determined by a subset of Vert(P ) is integral. (⋆)

Theorem 5. Suppose P is a polytope satisfing (⋆). Then

i(P, m) =

d
∑

i=0

Vol(π(d−i)(P ))mi.
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A property of integral cyclic polytopes

For any integral cyclic polytope P, we have that

any affine space determined by a subset of Vert(P ) is integral. (⋆)

Theorem 5. Suppose P is a polytope satisfing (⋆). Then

i(P, m) =
d

∑

i=0

Vol(π(d−i)(P ))mi.

Question:

(i) Can we relax (⋆) to the following condition?

Any affine space aff(F ) determined by a face F of P is integral. (△)
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A property of integral cyclic polytopes

For any integral cyclic polytope P, we have that

any affine space determined by a subset of Vert(P ) is integral. (⋆)

Theorem 5. Suppose P is a polytope satisfing (⋆). Then

i(P, m) =
d

∑

i=0

Vol(π(d−i)(P ))mi.

Question:

(i) Can we relax (⋆) to the following condition?

Any affine space aff(F ) determined by a face F of P is integral. (△)

(ii) What if (⋆) or (△) is only satisfied for affine spaces of dimension in a subset

S ⊆ {0, 1, . . . , d}?
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Higher integrality conditions for polytopes

Definition 6. A polytope P is k-integral if for any 0 ≤ ℓ ≤ k, we have that aff(F ) is

integral for any ℓ-dimensional face F of P.

We say P is fully integral if k = d.
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Higher integrality conditions for polytopes

Definition 6. A polytope P is k-integral if for any 0 ≤ ℓ ≤ k, we have that aff(F ) is

integral for any ℓ-dimensional face F of P.

We say P is fully integral if k = d.

Example:

(i) k = 0 : P is 0-integral if and only if P is integral.
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Higher integrality conditions for polytopes

Definition 6. A polytope P is k-integral if for any 0 ≤ ℓ ≤ k, we have that aff(F ) is

integral for any ℓ-dimensional face F of P.

We say P is fully integral if k = d.

Example:

(i) k = 0 : P is 0-integral if and only if P is integral.

(ii) k = 1 : P is 1-integral if and only if P is integral and dir(e) = (1, z2, . . . , zd) ∈

Z
d for any edge e of P.
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Higher integrality conditions for polytopes

Definition 6. A polytope P is k-integral if for any 0 ≤ ℓ ≤ k, we have that aff(F ) is

integral for any ℓ-dimensional face F of P.

We say P is fully integral if k = d.

Example:

(i) k = 0 : P is 0-integral if and only if P is integral.

(ii) k = 1 : P is 1-integral if and only if P is integral and dir(e) = (1, z2, . . . , zd) ∈

Z
d for any edge e of P.

Conjecture 7. If P is k-integral, then for 0 ≤ ℓ ≤ k, the coefficient of mℓ in i(P, m)

is Vol(πd−ℓ(P )).
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Higher integrality conditions for polytopes

Definition 6. A polytope P is k-integral if for any 0 ≤ ℓ ≤ k, we have that aff(F ) is

integral for any ℓ-dimensional face F of P.

We say P is fully integral if k = d.

Example:

(i) k = 0 : P is 0-integral if and only if P is integral.

(ii) k = 1 : P is 1-integral if and only if P is integral and dir(e) = (1, z2, . . . , zd) ∈

Z
d for any edge e of P.

Conjecture 7. If P is k-integral, then for 0 ≤ ℓ ≤ k, the coefficient of mℓ in i(P, m)

is Vol(πd−ℓ(P )).

Example: P = conv{(0, 0, 0), (4, 0, 0), (3, 6, 0), (2, 2, 2)}. One can check that P

is 1-integral.

i(P, m) = 8m3 + 10m2 + 4m + 1,

and Vol(π(d−1)(P )) = Vol([0, 4]) = 4 and Vol(π(d−0)(P )) = Vol(R0) = 1.
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Slices of a polytope

Definition 8. For any y ∈ π(d−k)(P ), we define the slice of P over y, denoted by

πd−k(y, P ), to be the intersection of P with the inverse image of y under π(d−k).
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Slices of a polytope

Definition 8. For any y ∈ π(d−k)(P ), we define the slice of P over y, denoted by

πd−k(y, P ), to be the intersection of P with the inverse image of y under π(d−k).

Example: P = conv{(0, 0, 0), (4, 0, 0), (3, 6, 0), (2, 2, 2)}.

Recall π(d−1)(P ) = [0, 4] and i(P, m) = 8m3 + 10m2 + 4m + 1.

(3,6,0)

(0,0,0)

(2,2,2)

(4,0,0)
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Slices of a polytope

Definition 8. For any y ∈ π(d−k)(P ), we define the slice of P over y, denoted by

πd−k(y, P ), to be the intersection of P with the inverse image of y under π(d−k).

Example: P = conv{(0, 0, 0), (4, 0, 0), (3, 6, 0), (2, 2, 2)}.

Recall π(d−1)(P ) = [0, 4] and i(P, m) = 8m3 + 10m2 + 4m + 1.

(3,6,0)

(0,0,0)

(2,2,2)

(4,0,0)

i(π2(0, P ), m) = 1, i(π2(1, P ), m) = m2 +2m+1, i(π2(2, P ), m) = 4m2 +

4m + 1, i(π2(3, P ), m) = 3m2 + 4m + 1 and i(π2(4, P ), m) = 1. Their sum is

8m2 + 10m + 5.
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Main theorems

Theorem 9. If P is k-integral, then the coefficient of mℓ in i(P, m) is






Vol(πd−ℓ(P )) if 0 ≤ ℓ ≤ k,
∑

y∈π(d−k)(P )∩Zk coefficient of mℓ−k in i(πd−k(y, P ), m) if k + 1 ≤ ℓ ≤ d
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Main theorems

Theorem 9. If P is k-integral, then the coefficient of mℓ in i(P, m) is






Vol(πd−ℓ(P )) if 0 ≤ ℓ ≤ k,
∑

y∈π(d−k)(P )∩Zk coefficient of mℓ−k in i(πd−k(y, P ), m) if k + 1 ≤ ℓ ≤ d

Theorem 10. Suppose k < d. If P is k-integral, then

Vol(P ) =
∑

y∈π(d−k)(P )∩Zk

Vold−k(πd−k(y, P )),

where Vold−k is the volume with respect to the lattice Z
d−k.

Page 19



Higher integrality conditions and volumes of slices Fu Liu

Main theorems

Theorem 9. If P is k-integral, then the coefficient of mℓ in i(P, m) is






Vol(πd−ℓ(P )) if 0 ≤ ℓ ≤ k,
∑

y∈π(d−k)(P )∩Zk coefficient of mℓ−k in i(πd−k(y, P ), m) if k + 1 ≤ ℓ ≤ d

Theorem 10. Suppose k < d. If P is k-integral, then

Vol(P ) =
∑

y∈π(d−k)(P )∩Zk

Vold−k(πd−k(y, P )),

where Vold−k is the volume with respect to the lattice Z
d−k.

Definition 11. We define the kth S-volume of P to be

SVolk(P ) =
∑

y∈π(d−k)(P )∩Zk

Vold−k(πd−k(y, P )).
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Remarks

Remark 12. SVol0(P ) = Vol(P ) and SVold(P ) = |P ∩ Zd|.
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Remarks

Remark 12. SVol0(P ) = Vol(P ) and SVold(P ) = |P ∩ Zd|.

Remark 13. Theorem 10 says if k < d and P is k-integral, then Vol(P ) = SVolk(P ).

Note that P is ℓ-integral for any ℓ ≤ k, so we have

Vol(P ) = SVol0(P ) = SVol1(P ) = · · · = SVolk(P ).
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Remarks

Remark 14. The condition k-integral in Theorem 10 can be relaxed to (k − 1)-integral

and in k-general position.
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Remarks

Remark 14. The condition k-integral in Theorem 10 can be relaxed to (k − 1)-integral

and in k-general position.

Example: 1-dimensional affine space in R
2. integral vs in general position:

In general, U is in general position if and only if dir(U) = (1, y1, . . . , yd) ∈ R
d.

Page 21



Higher integrality conditions and volumes of slices Fu Liu

Remarks

Remark 14. The condition k-integral in Theorem 10 can be relaxed to (k − 1)-integral

and in k-general position.

Example: 1-dimensional affine space in R
2. integral vs in general position:

In general, U is in general position if and only if dir(U) = (1, y1, . . . , yd) ∈ R
d.

Theorem 9 can be reduced to Theorem 10.

Page 21



Higher integrality conditions and volumes of slices Fu Liu

Reduction to volume formula

i. If P is fully integral, then in particular P is (d−1)-integral. For any y ∈ π(1)(P )∩

Z
d−1, the slice π1(y, P ) is either a 1-dimensional integral polytope, or a lattice

point. In either case, we have that |π1(y, P ) ∩ Z
d| = 1 + Vol1(π1(y, P )).
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Reduction to volume formula

i. If P is fully integral, then in particular P is (d−1)-integral. For any y ∈ π(1)(P )∩

Z
d−1, the slice π1(y, P ) is either a 1-dimensional integral polytope, or a lattice

point. In either case, we have that |π1(y, P ) ∩ Z
d| = 1 + Vol1(π1(y, P )).

Then

|P ∩ Z
d| =

∑

y∈π(1)(P )∩Zd−1

|π1(y, P ) ∩ Z
d|

=
∑

y∈π(1)(P )∩Zd−1

(1 + Vol1(π1(y, P ))) = |π(1)(P ) ∩ Z
d−1| + Vol(P ).
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Reduction to volume formula

However, π(1)(P ) is fully integral. Hence,

|P ∩ Z
d| =

d
∑

i=0

Vol(π(d−i)(P )).

Note that P is k-integral ⇒ mP is k-integral as well. Therefore,

i(P, m) = |mP ∩ Z
d| =

d
∑

i=0

Vol(π(d−i)(mP )) =
d

∑

i=0

Vol(π(d−i)(P ))mi.

Page 23



Higher integrality conditions and volumes of slices Fu Liu

Reduction to volume formula

However, π(1)(P ) is fully integral. Hence,

|P ∩ Z
d| =

d
∑

i=0

Vol(π(d−i)(P )).

Note that P is k-integral ⇒ mP is k-integral as well. Therefore,

i(P, m) = |mP ∩ Z
d| =

d
∑

i=0

Vol(π(d−i)(mP )) =
d

∑

i=0

Vol(π(d−i)(P ))mi.

ii. If k ≤ d−1, the projection π(d−k)(P ) is fully integral and for any y ∈ π(d−k)(P )∩

Z
k, the slice πd−k(y, P ) is an integral polytope.
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Reduction to volume formula

However, π(1)(P ) is fully integral. Hence,

|P ∩ Z
d| =

d
∑

i=0

Vol(π(d−i)(P )).

Note that P is k-integral ⇒ mP is k-integral as well. Therefore,

i(P, m) = |mP ∩ Z
d| =

d
∑

i=0

Vol(π(d−i)(mP )) =
d

∑

i=0

Vol(π(d−i)(P ))mi.

ii. If k ≤ d−1, the projection π(d−k)(P ) is fully integral and for any y ∈ π(d−k)(P )∩

Z
k, the slice πd−k(y, P ) is an integral polytope.

We prove Theorem 9 by using the result on fully integral polytopes as well as a

local formula relating the number of lattice points to volumes of faces for integral

polytopes obtained by Morelli, McMullen, Pommersheim-Thomas, Berline-Vergne.
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Sketch of the proof of Theorem 10

Recall the theorem: If P is k-integral, then

Vol(P ) =
∑

y∈π(d−k)(P )∩Zk

Vold−k(πd−k(y, P )) = SVolk(P ).
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Sketch of the proof of Theorem 10

Recall the theorem: If P is k-integral, then

Vol(P ) =
∑

y∈π(d−k)(P )∩Zk

Vold−k(πd−k(y, P )) = SVolk(P ).

i. We reduce the problem to the case of k = 1.
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Sketch of the proof of Theorem 10

Recall the theorem: If P is k-integral, then

Vol(P ) =
∑

y∈π(d−k)(P )∩Zk

Vold−k(πd−k(y, P )) = SVolk(P ).

i. We reduce the problem to the case of k = 1.

Idea: If P is k-integral (with k > 1), then each slice πd−1(y, P ) contributing to

SVol1(P ) is (k − 1)-integral.
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i. We reduce the problem to the case of k = 1.

Idea: If P is k-integral (with k > 1), then each slice πd−1(y, P ) contributing to

SVol1(P ) is (k − 1)-integral.

ii. We reduce the problem to the case of a simplex with k = 1.
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Sketch of the proof of Theorem 10

Recall the theorem: If P is k-integral, then

Vol(P ) =
∑

y∈π(d−k)(P )∩Zk

Vold−k(πd−k(y, P )) = SVolk(P ).

i. We reduce the problem to the case of k = 1.

Idea: If P is k-integral (with k > 1), then each slice πd−1(y, P ) contributing to

SVol1(P ) is (k − 1)-integral.

ii. We reduce the problem to the case of a simplex with k = 1.

iii. Prove the case of a simplex with k = 1.
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Possible Applications

➠ Prove positivity conjectures of special families of polytopes: Birkhoff polytopes, ma-

troid polytopes.
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Possible Applications

➠ Prove positivity conjectures of special families of polytopes: Birkhoff polytopes, ma-

troid polytopes.

➠ Calculate the lower degree coefficients of Ehrhart polynomial quickly.

➠ Algorithm to calculate volumes of rational polytopes: for any rational polytope P ,

one can always choose a coordinate system such that P is in 1-general position.

Choose D ∈ N such that DP is integral. Then

Vol(P ) =
1

D

∑

y∈π(d−1)(P )∩ 1
D

Z1

Vold−1(πd−1(y, P )).
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