Higher integrality conditions and volumes of slices

Fu Liu

University of California, Davis

Combinatorics Seminar
University of California, Berkeley
April 5, 2010
Outline

• Basic definitions and theory of Ehrhart polynomials

• Motivation: Ehrhart polynomials of cyclic polytopes

• Main results
A (convex) polytope P in the d-dimensional Euclidean space \mathbb{R}^d is the convex hull of finitely many points $V = \{v_1, v_2, \ldots, v_n\} \subset \mathbb{R}^d$. In other words,

$$P = \text{conv}(V) = \{\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n : \text{all } \lambda_i \geq 0, \text{ and } \lambda_1 + \lambda_2 + \cdots + \lambda_n = 1\}.$$
Basic definitions

A (convex) polytope P in the d-dimensional Euclidean space \mathbb{R}^d is the convex hull of finitely many points $V = \{v_1, v_2, \ldots, v_n\} \subset \mathbb{R}^d$. In other words,

$$P = \text{conv}(V) = \{\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n : \text{all } \lambda_i \geq 0, \text{ and } \lambda_1 + \lambda_2 + \cdots + \lambda_n = 1\}.$$

Throughout this talk, we assume P is full-dimensional, i.e., $\text{dim}(P) = d$.
Basic definitions

A **(convex) polytope** P in the d-dimensional Euclidean space \mathbb{R}^d is the convex hull of finitely many points $V = \{v_1, v_2, \ldots, v_n\} \subset \mathbb{R}^d$. In other words,

$$P = \text{conv}(V) = \{\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n : \text{all } \lambda_i \geq 0, \text{ and } \lambda_1 + \lambda_2 + \cdots + \lambda_n = 1\}.$$

Throughout this talk, we assume P is **full-dimensional**, i.e., $\dim(P) = d$.

The d-dimensional **lattice** $\mathbb{Z}^d \subset \mathbb{R}^d$ is the collection of all points with integer coordinates. Any point in the lattice is called a **lattice point** or an **integral point**.
A \textit{(convex) polytope} P in the d-dimensional Euclidean space \mathbb{R}^d is the convex hull of finitely many points $V = \{v_1, v_2, \ldots, v_n\} \subset \mathbb{R}^d$. In other words,

$$P = \text{conv}(V) = \{\lambda_1 v_1 + \lambda_2 v_2 + \cdots + \lambda_n v_n : \text{all } \lambda_i \geq 0, \text{ and } \lambda_1 + \lambda_2 + \cdots + \lambda_n = 1\}.$$

Throughout this talk, we assume P is \textit{full-dimensional}, i.e., $\dim(P) = d$.

The d-dimensional \textit{lattice} $\mathbb{Z}^d \subset \mathbb{R}^d$ is the collection of all points with integer coordinates. Any point in the lattice is called a \textit{lattice point} or an \textit{integral point}.

A polytope P is \textit{integral} if its vertices are all lattice points.
Higher integrality conditions and volumes of slices

Lattice points of a polytope
Lattice points of a polytope

Definition 1. For any polytope $P \subset \mathbb{R}^d$ and positive integer $m \in \mathbb{N}$, the *mth dilated polytope* of P is $mP = \{mx : x \in P\}$. We denote by

$$i(P, m) = |mP \cap \mathbb{Z}^d|$$

the number of lattice points in mP.
Lattice points of a polytope

Definition 1. For any polytope $P \subset \mathbb{R}^d$ and positive integer $m \in \mathbb{N}$, the *mth dilated polytope* of P is $mP = \{mx : x \in P\}$. We denote by

$$i(P, m) = |mP \cap \mathbb{Z}^d|$$

the number of lattice points in mP.

Example:
Examples of integral polytopes
Examples of integral polytopes

(i) When $d = 1$, P is an interval $[a, b]$, where $a, b \in \mathbb{Z}$. Then $mP = [ma, mb]$ and

\[i(P, m) = (b - a)m + 1. \]
Examples of integral polytopes

(i) When $d = 1$, P is an interval $[a, b]$, where $a, b \in \mathbb{Z}$. Then $mP = [ma, mb]$ and

$$i(P, m) = (b - a)m + 1.$$

(ii) When $d = 2$, P is an integral polygon, and so is mP. Pick’s theorem states that for any integral polygon Q:

$$\text{area}(Q) = |Q \cap \mathbb{Z}^2| - \frac{1}{2}|\partial(Q) \cap \mathbb{Z}^2| - 1.$$

Hence,

$$i(P, m) = \text{area}(mP) + \frac{1}{2}|\partial(mP) \cap \mathbb{Z}^2| + 1 = \text{area}(P)m^2 + \frac{1}{2}|\partial(P) \cap \mathbb{Z}^2|m + 1$$
(iii) For any d, let P be the convex hull of the set $\{(x_1, x_2, \ldots, x_d) \in \mathbb{R}^d : x_i = 0 \text{ or } 1\}$, i.e. P is the unit cube in \mathbb{R}^d. Then it is obvious that

$$i(P, m) = (m + 1)^d.$$
Theorem of Ehrhart (on integral polytopes)

Theorem 2 (Ehrhart). Let P be a d-dimensional integral polytope. Then $i(P, m)$ is a polynomial in m of degree d.

Therefore, we call $i(P, m)$ the *Ehrhart polynomial* of P.
Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart polynomial $i(P, m)$?
If P is an integral polytope, what can we say about the coefficients of its Ehrhart polynomial $i(P, m)$?

The leading coefficient of $i(P, m)$ is the volume $\text{Vol}(P)$ of P.

If P is an integral polytope, what can we say about the coefficients of its Ehrhart polynomial $i(P, m)$?

- The leading coefficient of $i(P, m)$ is the volume $\text{Vol}(P)$ of P.
- The second coefficient equals $1/2$ of the sum of the normalized volumes of each facet.
If P is an integral polytope, what can we say about the coefficients of its Ehrhart polynomial $i(P, m)$?

- The leading coefficient of $i(P, m)$ is the volume $\text{Vol}(P)$ of P.

- The second coefficient equals $1/2$ of the sum of the normalized volumes of each facet.

- The constant term of $i(P, m)$ is always 1.
Coefficients of Ehrhart polynomials

If \(P \) is an integral polytope, what can we say about the coefficients of its Ehrhart polynomial \(i(P, m) \)?

- The leading coefficient of \(i(P, m) \) is the volume \(\text{Vol}(P) \) of \(P \).
- The second coefficient equals \(1/2 \) of the sum of the normalized volumes of each facet.
- The constant term of \(i(P, m) \) is always 1.
- No simple forms known for other coefficients for general polytopes.
Coefficients of Ehrhart polynomials

If P is an integral polytope, what can we say about the coefficients of its Ehrhart polynomial $i(P, m)$?

- The leading coefficient of $i(P, m)$ is the volume $\text{Vol}(P)$ of P.
- The second coefficient equals $1/2$ of the sum of the normalized volumes of each facet.
- The constant term of $i(P, m)$ is always 1.
- No simple forms known for other coefficients for general polytopes.
 - It is **NOT** even true that all the coefficients are nonnegative. For example, for the polytope P with vertices $(0, 0, 0), (1, 0, 0), (0, 1, 0)$ and $(1, 1, 13)$, its Ehrhart polynomial is

 $$i(P, n) = \frac{13}{6}n^3 + n^2 - \frac{1}{6}n + 1.$$
Questions

When can we have simple forms for all coefficients?
Questions

- When can we have simple forms for all coefficients?
- When are they positive?
Questions

➤ When can we have simple forms for all coefficients?
➤ When are they positive?
➤ When can the coefficients be described by volumes?
Beck, De Loera, Develin, Pfeifle and Stanley conjectured that the Ehrhart polynomial of an integral cyclic polytope has a simple formula.

Recall that given $n > d$, and $T = \{t_1 < \cdots < t_n\}$, a d-dimensional cyclic polytope $C_d(T) = C_d(t_1, \ldots, t_n)$ is the convex hull $\text{conv}\{\nu_d(t_1), \nu_d(t_2), \ldots, \nu_d(t_n)\}$ of the n distinct points $\nu_d(t_i), 1 \leq i \leq n$, on the moment curve.

The moment curve (also known as rational normal curve) in \mathbb{R}^d is defined by

$$\nu_d : \mathbb{R} \to \mathbb{R}^d, t \mapsto \nu_d(t) = \begin{pmatrix} t \\ t^2 \\ \vdots \\ t^d \end{pmatrix}.$$
Example: $T = \{1, 2, 3, 4\}$, $d = 3$:

$C_d(T)$ is the convex polytope whose vertices are

$$
\begin{pmatrix}
1 \\
1 \\
1
\end{pmatrix},
\begin{pmatrix}
2 \\
4 \\
8
\end{pmatrix},
\begin{pmatrix}
3 \\
9 \\
27
\end{pmatrix},
\begin{pmatrix}
4 \\
16 \\
64
\end{pmatrix}.
$$
Theorem 3. Suppose $P = C_d(T)$ is a d-dimensional integral cyclic polytope. Then

$$i(P, m) = \sum_{i=0}^{d} \text{Vol}(\pi^{(d-i)}(P))m^i.$$

where $\pi^{(d-i)} : \mathbb{R}^d \rightarrow \mathbb{R}^i$ is the projection which drops the last $d - i$ coordinates.
Example: $T = \{1, 2, 3, 4\}, d = 3$:
Example: \(T = \{1, 2, 3, 4\}, d = 3 \):

\[
\begin{align*}
P = C_d(T) &= \text{conv}\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}, \begin{pmatrix} 3 \\ 9 \\ 27 \end{pmatrix}, \begin{pmatrix} 4 \\ 16 \\ 64 \end{pmatrix} \} : \text{Vol}(P) = 2.
\end{align*}
\]
Example: $T = \{1, 2, 3, 4\}, d = 3$:

\[P = C_d(T) = \text{conv}\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}, \begin{pmatrix} 3 \\ 9 \\ 27 \end{pmatrix}, \begin{pmatrix} 4 \\ 16 \\ 64 \end{pmatrix} \} : \text{Vol}(P) = 2. \]

\[\pi^{(1)}(P) = \text{conv}\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \begin{pmatrix} 3 \\ 9 \end{pmatrix}, \begin{pmatrix} 4 \\ 16 \end{pmatrix} \} : \text{Vol}(\pi^{(1)}(P)) = 4. \]
Example: \(T = \{1, 2, 3, 4\}, d = 3 \):

\[
P = \text{conv}\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}, \begin{pmatrix} 3 \\ 9 \\ 27 \end{pmatrix}, \begin{pmatrix} 4 \\ 16 \\ 64 \end{pmatrix} \} : \text{Vol}(P) = 2.
\]

\[
\pi^{(1)}(P) = \text{conv}\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix}, \begin{pmatrix} 3 \\ 9 \end{pmatrix}, \begin{pmatrix} 4 \\ 16 \end{pmatrix} \} : \text{Vol}(\pi^{(1)}(P)) = 4.
\]

\[
\pi^{(2)}(P) = \text{conv}\{1, 2, 3, 4\} = [1, 4] : \text{Vol}(\pi^{(2)}(P)) = 3.
\]
Example: $T = \{1, 2, 3, 4\}, d = 3$:

\[P = C_d(T) = \text{conv}\{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}, \begin{pmatrix} 3 \\ 9 \\ 27 \end{pmatrix}, \begin{pmatrix} 4 \\ 16 \\ 64 \end{pmatrix}\} : \text{Vol}(P) = 2. \]

\[\pi^{(1)}(P) = \text{conv}\{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}, \begin{pmatrix} 3 \\ 9 \\ 27 \end{pmatrix}, \begin{pmatrix} 4 \\ 16 \\ 64 \end{pmatrix}\} : \text{Vol}(\pi^{(1)}(P)) = 4. \]

\[\pi^{(2)}(P) = \text{conv}\{1, 2, 3, 4\} = [1, 4] : \text{Vol}(\pi^{(2)}(P)) = 3. \]

\[\pi^{(3)}(P) = \mathbb{R}^0 : \text{Vol}(\pi^{(3)}(P)) = 1. \]
Example: $T = \{1, 2, 3, 4\}, d = 3$:

\[
P = C_d(T) = \text{conv}\{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}, \begin{pmatrix} 3 \\ 9 \\ 27 \end{pmatrix}, \begin{pmatrix} 4 \\ 16 \\ 64 \end{pmatrix}\} : \text{Vol}(P) = 2.
\]

\[
\pi^{(1)}(P) = \text{conv}\{\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \\ 4 \end{pmatrix}, \begin{pmatrix} 3 \\ 9 \\ 9 \end{pmatrix}, \begin{pmatrix} 4 \\ 16 \\ 16 \end{pmatrix}\} : \text{Vol}(\pi^{(1)}(P)) = 4.
\]

\[
\pi^{(2)}(P) = \text{conv}\{1, 2, 3, 4\} = [1, 4] : \text{Vol}(\pi^{(2)}(P)) = 3.
\]

\[
\pi^{(3)}(P) = \mathbb{R}^0 : \text{Vol}(\pi^{(3)}(P)) = 1.
\]

The theorem says:

\[
i(P, m) = 2m^3 + 4m^2 + 3m + 1.
\]
Question:

Are there other integral polytopes whose Ehrhart polynomials have the same form as cyclic polytopes? In other words, what kind of integral polytopes P are there whose Ehrhart polynomials have the form

$$i(P, m) = \sum_{i=0}^{d} \text{Vol}(\pi^{(d-i)}(P))m^i?$$
Higher integrality conditions for affine spaces

Definition 4. An ℓ-dimensional affine space $U \subset \mathbb{R}^d$ is *integral* if

$$\pi^{(d-\ell)}(U \cap \mathbb{Z}^d) = \mathbb{Z}^\ell.$$

Or equivalently, the projection $\pi^{(d-\ell)}$ induces a bijection between $U \cap \mathbb{Z}^d$ and \mathbb{Z}^ℓ.
Higher integrality conditions for affine spaces

Definition 4. An \(\ell\)-dimensional affine space \(U \subset \mathbb{R}^d\) is **integral** if

\[
\pi^{(d-\ell)}(U \cap \mathbb{Z}^d) = \mathbb{Z}^\ell.
\]

Or equivalently, the projection \(\pi^{(d-\ell)}\) induces a bijection between \(U \cap \mathbb{Z}^d\) and \(\mathbb{Z}^\ell\).

Example:

(i) \(\ell = 0\) : \(U\) is integral if and only if \(U\) is a lattice point.
Higher integrality conditions for affine spaces

Definition 4. An ℓ-dimensional affine space $U \subset \mathbb{R}^d$ is *integral* if

$$\pi^{(d-\ell)}(U \cap \mathbb{Z}^d) = \mathbb{Z}^\ell.$$

Or equivalently, the projection $\pi^{(d-\ell)}$ induces a bijection between $U \cap \mathbb{Z}^d$ and \mathbb{Z}^ℓ.

Example:

(i) $\ell = 0 : U$ is integral if and only if U is a lattice point.

(ii) $\ell = 1 : \text{In } \mathbb{R}^2$,
Higher integrality conditions for affine spaces

Definition 4. An \(\ell \)-dimensional affine space \(U \subset \mathbb{R}^d \) is **integral** if

\[
\pi^{(d-\ell)}(U \cap \mathbb{Z}^d) = \mathbb{Z}^\ell.
\]

Or equivalently, the projection \(\pi^{(d-\ell)} \) induces a bijection between \(U \cap \mathbb{Z}^d \) and \(\mathbb{Z}^\ell \).

Example:

(i) \(\ell = 0 \): \(U \) is integral if and only if \(U \) is a lattice point.

(ii) \(\ell = 1 \): In \(\mathbb{R}^2 \),

In general, \(U \) is integral if and only if \(U \) contains a lattice point and \(\text{dir}(U) = (1, z_2, \ldots, z_d) \in \mathbb{Z}^d \).
A property of integral cyclic polytopes

For any integral cyclic polytope P, we have that

\[\text{any affine space determined by a subset of } \text{Vert}(P) \text{ is integral}.\]

(★)
A property of integral cyclic polytopes

For any integral cyclic polytope P, we have that

\[
\text{any affine space determined by a subset of Vert}(P) \text{ is integral.} \tag{\star}
\]

Theorem 5. Suppose P is a polytope satisfying (\star). Then

\[
i(P, m) = \sum_{i=0}^{d} \text{Vol}\left(\pi^{(d-i)}(P)\right)m^i.
\]
A property of integral cyclic polytopes

For any integral cyclic polytope \(P \), we have that

\[
\text{any affine space determined by a subset of } \text{Vert}(P) \text{ is integral.} \quad (\star)
\]

Theorem 5. Suppose \(P \) is a polytope satisfying \((\star)\). Then

\[
i(P, m) = \sum_{i=0}^{d} \text{Vol}(\pi^{(d-i)}(P))m^i.
\]

Question:

(i) Can we relax \((\star)\) to the following condition?

\[
\text{Any affine space } \text{aff}(F) \text{ determined by a face } F \text{ of } P \text{ is integral.} \quad (\triangle)
\]
A property of integral cyclic polytopes

For any integral cyclic polytope P, we have that

any affine space determined by a subset of $\text{Vert}(P)$ is integral. \hfill (\star)

Theorem 5. Suppose P is a polytope satisfying (\star). Then

$$i(P, m) = \sum_{i=0}^{d} \text{Vol}(\pi^{(d-i)}(P))m^i.$$

Question:

(i) Can we relax (\star) to the following condition?

Any affine space $\text{aff}(F)$ determined by a face F of P is integral. \hfill (\triangle)

(ii) What if (\star) or (\triangle) is only satisfied for affine spaces of dimension in a subset $S \subseteq \{0, 1, \ldots, d\}$?
Higher integrality conditions for polytopes

Definition 6. A polytope P is k-integral if for any $0 \leq \ell \leq k$, we have that $\text{aff}(F)$ is integral for any ℓ-dimensional face F of P.

We say P is fully integral if $k = d$.

Higher integrality conditions for polytopes

Definition 6. A polytope P is k-integral if for any $0 \leq \ell \leq k$, we have that $\text{aff}(F)$ is integral for any ℓ-dimensional face F of P.

We say P is **fully integral** if $k = d$.

Example:
(i) $k = 0$: P is 0-integral if and only if P is integral.
Higher integrality conditions for polytopes

Definition 6. A polytope \(P \) is \(k \)-integral if for any \(0 \leq \ell \leq k \), we have that \(\text{aff}(F) \) is integral for any \(\ell \)-dimensional face \(F \) of \(P \).

We say \(P \) is fully integral if \(k = d \).

Example:

(i) \(k = 0 \) : \(P \) is 0-integral if and only if \(P \) is integral.

(ii) \(k = 1 \) : \(P \) is 1-integral if and only if \(P \) is integral and \(\text{dir}(e) = (1, z_2, \ldots, z_d) \in \mathbb{Z}^d \) for any edge \(e \) of \(P \).
Higher integrality conditions for polytopes

Definition 6. A polytope P is k-integral if for any $0 \leq \ell \leq k$, we have that $\text{aff}(F)$ is integral for any ℓ-dimensional face F of P.

We say P is fully integral if $k = d$.

Example:

(i) $k = 0$: P is 0-integral if and only if P is integral.

(ii) $k = 1$: P is 1-integral if and only if P is integral and $\text{dir}(e) = (1, z_2, \ldots, z_d) \in \mathbb{Z}^d$ for any edge e of P.

Conjecture 7. If P is k-integral, then for $0 \leq \ell \leq k$, the coefficient of m^ℓ in $i(P, m)$ is $\text{Vol}(\pi^{d-\ell}(P))$.
Higher integrality conditions for polytopes

Definition 6. A polytope P is *k-integral* if for any $0 \leq \ell \leq k$, we have that $\text{aff}(F)$ is integral for any ℓ-dimensional face F of P.

We say P is *fully integral* if $k = d$.

Example:

(i) $k = 0 : P$ is 0-integral if and only if P is integral.

(ii) $k = 1 : P$ is 1-integral if and only if P is integral and $\text{dir}(e) = (1, z_2, \ldots, z_d) \in \mathbb{Z}^d$ for any edge e of P.

Conjecture 7. If P is k-integral, then for $0 \leq \ell \leq k$, the coefficient of m^ℓ in $i(P, m)$ is $\text{Vol}(\pi^{d-\ell}(P))$.

Example: $P = \text{conv}\{(0, 0, 0), (4, 0, 0), (3, 6, 0), (2, 2, 2)\}$. One can check that P is 1-integral.

$$i(P, m) = 8m^3 + 10m^2 + 4m + 1,$$

and $\text{Vol}(\pi^{d-1}(P)) = \text{Vol}([0, 4]) = 4$ and $\text{Vol}(\pi^{(d-0)}(P)) = \text{Vol}(\mathbb{R}^0) = 1$.
Definition 8. For any $y \in \pi^{(d-k)}(P)$, we define *the slice of P over y*, denoted by $\pi_{d-k}(y, P)$, to be the intersection of P with the inverse image of y under $\pi^{(d-k)}$.
Slices of a polytope

Definition 8. For any $y \in \pi^{(d-k)}(P)$, we define the slice of P over y, denoted by $\pi_{d-k}(y, P)$, to be the intersection of P with the inverse image of y under $\pi^{(d-k)}$.

Example: $P = \text{conv}\{(0, 0, 0), (4, 0, 0), (3, 6, 0), (2, 2, 2)\}$.
Recall $\pi^{(d-1)}(P) = [0, 4]$ and $i(P, m) = 8m^3 + 10m^2 + 4m + 1$.
Definition 8. For any \(y \in \pi^{(d-k)}(P) \), we define the slice of \(P \) over \(y \), denoted by \(\pi_{d-k}(y, P) \), to be the intersection of \(P \) with the inverse image of \(y \) under \(\pi^{(d-k)} \).

Example: \(P = \text{conv}\{(0, 0, 0), (4, 0, 0), (3, 6, 0), (2, 2, 2)\} \).

Recall \(\pi^{(d-1)}(P) = [0, 4] \) and \(i(P, m) = 8m^3 + 10m^2 + 4m + 1 \).

\[
\begin{align*}
i(\pi_2(0, P), m) &= 1, \\
i(\pi_2(1, P), m) &= m^2 + 2m + 1, \\
i(\pi_2(2, P), m) &= 4m^2 + 4m + 1, \\
i(\pi_2(3, P), m) &= 3m^2 + 4m + 1 \quad \text{and} \\
i(\pi_2(4, P), m) &= 1. \\
\end{align*}
\]

Their sum is \(8m^2 + 10m + 5 \).
Main theorems

Theorem 9. If P is k-integral, then the coefficient of m^ℓ in $i(P, m)$ is

$$
\begin{cases}
\text{Vol}(\pi^{d-\ell}(P)) & \text{if } 0 \leq \ell \leq k, \\
\sum_{y \in \pi^{(d-k)}(P) \cap \mathbb{Z}^k} \text{coefficient of } m^{\ell-k} \text{ in } i(\pi_{d-k}(y, P), m) & \text{if } k + 1 \leq \ell \leq d
\end{cases}
$$
Main theorems

Theorem 9. If P is k-integral, then the coefficient of m^ℓ in $i(P, m)$ is

$$
\begin{cases}
\text{Vol}(\pi^{d-\ell}(P)) & \text{if } 0 \leq \ell \leq k, \\
\sum_{y \in \pi^{(d-k)}(P) \cap \mathbb{Z}^k} \text{coefficient of } m^{\ell-k} \text{ in } i(\pi_{d-k}(y, P), m) & \text{if } k + 1 \leq \ell \leq d
\end{cases}
$$

Theorem 10. Suppose $k < d$. If P is k-integral, then

$$
\text{Vol}(P) = \sum_{y \in \pi^{(d-k)}(P) \cap \mathbb{Z}^k} \text{Vol}_{d-k}(\pi_{d-k}(y, P))
$$

where Vol_{d-k} is the volume with respect to the lattice \mathbb{Z}^{d-k}.
Main theorems

Theorem 9. If \(P \) is \(k \)-integral, then the coefficient of \(m^{\ell} \) in \(i(P, m) \) is

\[
\begin{cases}
\text{Vol}(\pi^{d-\ell}(P)) & \text{if } 0 \leq \ell \leq k, \\
\sum_{y \in \pi^{(d-k)}(P) \cap \mathbb{Z}^k} \text{coefficient of } m^{\ell-k} \text{ in } i(\pi_{d-k}(y, P), m) & \text{if } k + 1 \leq \ell \leq d
\end{cases}
\]

Theorem 10. Suppose \(k < d \). If \(P \) is \(k \)-integral, then

\[
\text{Vol}(P) = \sum_{y \in \pi^{(d-k)}(P) \cap \mathbb{Z}^k} \text{Vol}_{d-k}(\pi_{d-k}(y, P)),
\]

where \(\text{Vol}_{d-k} \) is the volume with respect to the lattice \(\mathbb{Z}^{d-k} \).

Definition 11. We define the \(k \)-th \(S \)-volume of \(P \) to be

\[
\text{SVol}_k(P) = \sum_{y \in \pi^{(d-k)}(P) \cap \mathbb{Z}^k} \text{Vol}_{d-k}(\pi_{d-k}(y, P)).
\]
Remark 12. $SVol^0(P) = Vol(P)$ and $SVol^d(P) = |P \cap Z^d|$.
Remarks

Remark 12. $S\text{Vol}^0(P) = \text{Vol}(P)$ and $S\text{Vol}^d(P) = |P \cap Z^d|$.

Remark 13. Theorem 10 says if $k < d$ and P is k-integral, then $\text{Vol}(P) = S\text{Vol}^k(P)$. Note that P is ℓ-integral for any $\ell \leq k$, so we have

$$\text{Vol}(P) = S\text{Vol}^0(P) = S\text{Vol}^1(P) = \cdots = S\text{Vol}^k(P).$$
Remark 14. The condition k-integral in Theorem 10 can be relaxed to $(k - 1)$-integral and in k-general position.
Remark 14. The condition k-integral in Theorem 10 can be relaxed to $(k - 1)$-integral and in k-general position.

Example: 1-dimensional affine space in \mathbb{R}^2. integral vs in general position:

In general, U is in general position if and only if $\text{dir}(U) = (1, y_1, \ldots, y_d) \in \mathbb{R}^d$.
Remark 14. The condition k-integral in Theorem 10 can be relaxed to $(k - 1)$-integral and \textit{in k-general position}.

Example: 1-dimensional affine space in \mathbb{R}^2. integral vs in general position:

In general, U is in general position if and only if $\text{dir}(U) = (1, y_1, \ldots, y_d) \in \mathbb{R}^d$.

Theorem 9 can be reduced to Theorem 10.
Higher integrality conditions and volumes of slices

Fu Liu

Reduction to volume formula

i. If P is fully integral, then in particular P is $(d - 1)$-integral. For any $y \in \pi^{(1)}(P) \cap \mathbb{Z}^{d-1}$, the slice $\pi_1(y, P)$ is either a 1-dimensional integral polytope, or a lattice point. In either case, we have that $|\pi_1(y, P) \cap \mathbb{Z}^d| = 1 + \text{Vol}_1(\pi_1(y, P))$.
i. If P is fully integral, then in particular P is $(d - 1)$-integral. For any $y \in \pi^{(1)}(P) \cap \mathbb{Z}^{d-1}$, the slice $\pi_1(y, P)$ is either a 1-dimensional integral polytope, or a lattice point. In either case, we have that $|\pi_1(y, P) \cap \mathbb{Z}^d| = 1 + \text{Vol}_1(\pi_1(y, P))$.

Then

$$|P \cap \mathbb{Z}^d| = \sum_{y \in \pi^{(1)}(P) \cap \mathbb{Z}^{d-1}} |\pi_1(y, P) \cap \mathbb{Z}^d|$$

$$= \sum_{y \in \pi^{(1)}(P) \cap \mathbb{Z}^{d-1}} (1 + \text{Vol}_1(\pi_1(y, P))) = |\pi^{(1)}(P) \cap \mathbb{Z}^{d-1}| + \text{Vol}(P).$$
However, $\pi^{(1)}(P)$ is fully integral. Hence,

$$|P \cap \mathbb{Z}^d| = \sum_{i=0}^{d} \text{Vol} (\pi^{(d-i)}(P)).$$

Note that P is k-integral $\Rightarrow mP$ is k-integral as well. Therefore,

$$i(P, m) = |mP \cap \mathbb{Z}^d| = \sum_{i=0}^{d} \text{Vol} (\pi^{(d-i)}(mP)) = \sum_{i=0}^{d} \text{Vol} (\pi^{(d-i)}(P))m^i.$$
However, $\pi^{(1)}(P)$ is fully integral. Hence,

$$|P \cap \mathbb{Z}^d| = \sum_{i=0}^{d} \text{Vol}(\pi^{(d-i)}(P)).$$

Note that P is k-integral $\Rightarrow mP$ is k-integral as well. Therefore,

$$i(P, m) = |mP \cap \mathbb{Z}^d| = \sum_{i=0}^{d} \text{Vol}(\pi^{(d-i)}(mP)) = \sum_{i=0}^{d} \text{Vol}(\pi^{(d-i)}(P))m^i.$$

ii. If $k \leq d-1$, the projection $\pi^{(d-k)}(P)$ is fully integral and for any $y \in \pi^{(d-k)}(P) \cap \mathbb{Z}^k$, the slice $\pi_{d-k}(y, P)$ is an integral polytope.
Higher integrality conditions and volumes of slices

Reduction to volume formula

However, $\pi^{(1)}(P)$ is fully integral. Hence,

$$|P \cap \mathbb{Z}^d| = \sum_{i=0}^{d} \text{Vol}(\pi^{(d-i)}(P)).$$

Note that P is k-integral $\implies mP$ is k-integral as well. Therefore,

$$i(P, m) = |mP \cap \mathbb{Z}^d| = \sum_{i=0}^{d} \text{Vol}(\pi^{(d-i)}(mP)) = \sum_{i=0}^{d} \text{Vol}(\pi^{(d-i)}(P))m^i.$$

ii. If $k \leq d-1$, the projection $\pi^{(d-k)}(P)$ is fully integral and for any $y \in \pi^{(d-k)}(P) \cap \mathbb{Z}^k$, the slice $\pi_{d-k}(y, P)$ is an integral polytope.

We prove Theorem 9 by using the result on fully integral polytopes as well as a local formula relating the number of lattice points to volumes of faces for integral polytopes obtained by Morelli, McMullen, Pommersheim-Thomas, Berline-Vergne.
Sketch of the proof of Theorem 10

Recall the theorem: If P is k-integral, then

$$
\text{Vol}(P) = \sum_{y \in \pi^{(d-k)}(P) \cap \mathbb{Z}^k} \text{Vol}_{d-k}(\pi_{d-k}(y, P)) = S\text{Vol}^k(P).
$$
Sketch of the proof of Theorem 10

Recall the theorem: If P is k-integral, then

$$\text{Vol}(P) = \sum_{y \in \pi^{(d-k)}(P) \cap \mathbb{Z}^k} \text{Vol}_{d-k}(\pi_{d-k}(y, P)) = S\text{Vol}^k(P).$$

i. We reduce the problem to the case of $k^i = 1$.
Sketch of the proof of Theorem 10

Recall the theorem: If P is k-integral, then

$$\text{Vol}(P) = \sum_{y \in \pi^{(d-k)}(P) \cap \mathbb{Z}^k} \text{Vol}_{d-k}(\pi_{d-k}(y, P)) = S\text{Vol}^k(P).$$

i. We reduce the problem to the case of $k = 1$.

Idea: If P is k-integral (with $k > 1$), then each slice $\pi_{d-1}(y, P)$ contributing to $S\text{Vol}^1(P)$ is $(k - 1)$-integral.
Sketch of the proof of Theorem 10

Recall the theorem: If P is k-integral, then

$$\text{Vol}(P) = \sum_{y \in \pi_{d-k}(P) \cap \mathbb{Z}^k} \text{Vol}_{d-k}(\pi_{d-k}(y, P)) = \text{SVol}^k(P).$$

i. We reduce the problem to the case of $k = 1$.

Idea: If P is k-integral (with $k > 1$), then each slice $\pi_{d-1}(y, P)$ contributing to $\text{SVol}^1(P)$ is $(k - 1)$-integral.

ii. We reduce the problem to the case of a simplex with $k = 1$.
Sketch of the proof of Theorem 10

Recall the theorem: If P is k-integral, then

$$\text{Vol}(P) = \sum_{y \in \pi^{(d-k)}(P) \cap \mathbb{Z}^k} \text{Vol}_{d-k}(\pi_{d-k}(y, P)) = \text{SVol}^k(P).$$

i. We reduce the problem to the case of $k = 1$.

Idea: If P is k-integral (with $k > 1$), then each slice $\pi_{d-1}(y, P)$ contributing to $\text{SVol}^1(P)$ is $(k - 1)$-integral.

ii. We reduce the problem to the case of a simplex with $k = 1$.

iii. Prove the case of a simplex with $k = 1$.
Possible Applications

Prove positivity conjectures of special families of polytopes: Birkhoff polytopes, matroid polytopes.
Possible Applications

- Prove positivity conjectures of special families of polytopes: Birkhoff polytopes, matroid polytopes.
- Calculate the lower degree coefficients of Ehrhart polynomial quickly.
Possible Applications

- Prove positivity conjectures of special families of polytopes: Birkhoff polytopes, matroid polytopes.
- Calculate the lower degree coefficients of Ehrhart polynomial quickly.
- Algorithm to calculate volumes of rational polytopes: for any rational polytope P, one can always choose a coordinate system such that P is in 1-general position.

Choose $D \in \mathbb{N}$ such that DP is integral. Then

$$\text{Vol}(P) = \frac{1}{D} \sum_{y \in \pi^{(d-1)}(P) \cap \frac{1}{D}\mathbb{Z}^1} \text{Vol}_{d-1}(\pi_{d-1}(y, P)).$$