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| Outline |

e Basic definitions and theory of Ehrhart polynomials
e Motivation: Ehrhart polynomials of cyclic polytopes

e Main results
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| Basic definitions |

A (convex) polytope P in the d-dimensional Euclidean space R% is the convex hull

of finitely many points V' = {wvy, vo, ..., v,} C R?. In other words,

P = conv(V) = { \jv1+Xovo+- - -+ v, : all \; > 0, and \y+Xo+- -+, = 1}.
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| Basic definitions |

A (convex) polytope P in the d-dimensional Euclidean space R% is the convex hull

of finitely many points V' = {wvy, vo, ..., v,} C R?. In other words,

P = conv(V) = {\v1+Xovo+- - -+ v, - all \; >0, and A\;+Xo+- -+, = 1}.

Throughout this talk, we assume P is full-dimensional, i.e., dim(P) = d.
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| Basic definitions |

A (convex) polytope P in the d-dimensional Euclidean space R% is the convex hull

of finitely many points V' = {wvy, vo, ..., v,} C R?. In other words,

P = conv(V) = {\v1+Xovo+- - -+ v, - all \; >0, and A\;+Xo+- -+, = 1}.

Throughout this talk, we assume P is full-dimensional, i.e., dim(P) = d.

The d-dimensional lattice Z¢ C R is the collection of all points with integer coordi-

nates. Any point in the lattice is called a lattice point or an integral point.
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| Basic definitions |

A (convex) polytope P in the d-dimensional Euclidean space R% is the convex hull

of finitely many points V' = {wvy, vo, ..., v,} C R?. In other words,

P = conv(V) = { \jv1+Xovo+- - -+ v, : all \; > 0, and \y+Xo+- -+, = 1}.

Throughout this talk, we assume P is full-dimensional, i.e., dim(P) = d.

The d-dimensional lattice Z¢ C R is the collection of all points with integer coordi-

nates. Any point in the lattice is called a lattice point or an integral point.

A polytope P is integral if its vertices are all lattice points.
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| Lattice points of a polytope I
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| Lattice points of a polytope I

Definition 1. For any polytope P C R? and positive integer m € N, the mth dilated

polytope of PismP = {mx : x € P}. We denote by
i(P,m) = |mPNZ%

the number of lattice points in m P.
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| Lattice points of a polytope I

Definition 1. For any polytope P C R? and positive integer m € N, the mth dilated

polytope of PismP = {mx : x € P}. We denote by
i(P,m) = |mPNZ%

the number of lattice points in m P.

Example:

S
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| Examples of integral polytopes I
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| Examples of integral polytopes I

(i) When d = 1, P is an interval |a, b], where a,b € Z. Then mP = |ma, mb)

and

i(P,m) = (b—a)m+ 1.
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| Examples of integral polytopes I

(i) When d = 1, P is an interval |a, b], where a,b € Z. Then mP = |[ma, mb]

and
i(P,m) = (b—a)m+ 1.

(i) When d = 2, P is an integral polygon, and so is mP. Pick’s theorem states that

for any integral polygon ():
area(@) = QN 22|~ J1(Q) N 22| ~ 1.
Hence,
i(P,m) = area(mP)+ %\8(mP) N7+ 1

1
— arca(P)m* + 5\8(P) NZ*m+1

Fu Liu
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Examples of integral polytopes

(iii) For any d, let P be the convex hull of the set {(x, 22, ...,24) € R? : 2; =
0or 1}, i.e. Pisthe unit cube in RY. Then it is obvious that

i(P,m) = (m+ 1)%.

1. ..... e
P 3P

i(P,3) = (3+1)°
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| Theorem of Ehrhart (on integral polytopes) I

Theorem 2 (Ehrhart). Let P be a d-dimensional integral polytope. Then i(P, m) IS a

polynomial in m of degree d.

Therefore, we call i( P, m) the Ehrhart polynomial of P.
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| Coefficients of Ehrhart polynomials I

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial (P, m)?
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| Coefficients of Ehrhart polynomials I

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial (P, m)?

[] The leading coefficient of (P, m) is the volume Vol(P) of P.
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| Coefficients of Ehrhart polynomials I

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial (P, m)?
[] The leading coefficient of (P, m) is the volume Vol(P) of P.

[1 The second coefficient equals 1/2 of the sum of the normalized volumes of each

facet.
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| Coefficients of Ehrhart polynomials I

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial (P, m)?

[J The leading coefficient of (P, m) is the volume Vol(P) of P.

[1 The second coefficient equals 1/2 of the sum of the normalized volumes of each

facet.

[1 The constant term of i( P, m) is always 1.
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| Coefficients of Ehrhart polynomials I

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial (P, m)?
[] The leading coefficient of (P, m) is the volume Vol(P) of P.

[1 The second coefficient equals 1/2 of the sum of the normalized volumes of each

facet.
[1 The constant term of (P, m) is always 1.

[1 No simple forms known for other coefficients for general polytopes.
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| Coefficients of Ehrhart polynomials I

If P is an integral polytope, what can we say about the coefficients of its Ehrhart

polynomial (P, m)?
[] The leading coefficient of (P, m) is the volume Vol(P) of P.

[1 The second coefficient equals 1/2 of the sum of the normalized volumes of each

facet.
[1 The constant term of i( P, m) is always 1.

[1 No simple forms known for other coefficients for general polytopes.

e Itis NOT even true that all the coefficients are nonnegative. For example, for the
polytope P with vertices (0, 0,0), (1,0,0), (0,1,0) and (1, 1, 13), its Ehrhart

polynomial is

13 1
i(P,n) = En?’ + nQ—En + 1.
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| Questions |

[1 When can we have simple forms for all coefficients?

Page 9



Higher integrality conditions and volumes of slices Fu Liu

| Questions |

[1 When can we have simple forms for all coefficients?

[1 When are they positive?
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| Questions |

[1 When can we have simple forms for all coefficients?

[1 When are they positive?

[1 When can the coefficients be described by volumes?
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| Cyclic polytope I

Beck, De Loera, Develin, Pfeifle and Stanley conjectured that the Ehrhart polynomial

of an integral cyclic polytope has a simple formula.

Recall that given n > d,and T' = {t; < --- < t,,}, a d-dimensional cyclic poly-
tope Cy(T') = Cy(ty, ..., t,) is the convex hull conv{vy(t1),va(t2), ..., vq(ts)}

of the m distinct points v4(%;), 1 < ¢ < n, on the moment curve.

The moment curve (also known as rational normal curve) in R% is defined by
(1)
42

yd;R%Rd,tHVd(t) =

L

Fu Liu
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Example: T'={1,2,3,4},d = 3 :

(1) (2) [s) [4)

Cd(T) is the convex polytope whose vertices are 1 1 4 1, 9 : 16
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Theorem 3. Suppose P = Cd(T) is a d-dimensional integral cyclic polytope. Then
d
i(P,m) =Y Vol(zx'“")(P))m’
i=0

where 7479 : R? — R s the projection which drops the last d — ¢ coordinates.
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Example: T'={1,2,3,4},d = 3 :
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Example: T'={1,2,3,4},d = 3 :

0 P =Cy(T) = conv{

(1)

1

\ 1

(2)

\ 8

(3

[ 1)

16

\ 27

oy

\:Vol(P) = 2.

Fu Liu
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Example: T'={1,2,3,4},d = 3 :

(1)

0 P=CyT)=conv{| 1

\ 1

(2)

\ 8

1 2 3 4 |
s (1) (2).(2) ()

(3

9

[ 1)

16

\ 27

oy

\:Vol(P) = 2.

Fu Liu
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Example: T'={1,2,3,4},d = 3 :

(1) (2} (3) ()

0 P=CyT)=conv{| 1 9 |,] 16 |}:Vol(P)=2.

STACTACIATY

1 2 3 4 |
s (1) (2).(2) ()

O 7@3)(P) = conv{l,2,3,4} = [1,4] : Vol(?(P)) = 3.
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Example: T'={1,2,3,4},d = 3 :

0 P =Cy(T) = conv{

O 7 (P) = conv{

(1)

1

\ 1

)

(2)

\ 8

(3

9

(4

16

\ 27

oy

1 Vol(#(P)) = 4.

O 7@3)(P) = conv{l,2,3,4} = [1,4] : Vol(?(P)) = 3.

O 7@)(P) =R : Vol(r®)(P)) = 1.

\:Vol(P) = 2.

Fu Liu
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Example: T'={1,2,3,4},d = 3 :

0 P =Cy(T) = conv{

O 7 (P) = conv{

(1)

1

\ 1

)

(2)

\ 8

(3

9

(4

16

\ 27

oy

1 Vol(#(P)) = 4.

O 7@3)(P) = conv{l,2,3,4} = [1,4] : Vol(?(P)) = 3.

O 7@)(P) =R : Vol(r®)(P)) = 1.

[1 The theorem says:

i(P,m) = 2m® + 4m* + 3m + 1.

\:Vol(P) = 2.

Fu Liu
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Question:

Are there other integral polytopes whose Ehrhart polynomials have the same form as
cyclic polytopes?

In other words, what kind of integral polytopes P are there whose Ehrhart polynomials

have the form

d
i(P,m) =Y _Vol(z“ ) (P))m’?
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| Higher integrality conditions for affine spaces I

Definition 4. An {-dimensional affine space U C R%is integral if

r4=U nzd) =7°

(d—£)

Or equivalently, the projection 7 induces a bijection between U N Z% and Z*.
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| Higher integrality conditions for affine spaces I

Definition 4. An {-dimensional affine space U C R%is integral if

r4=U nzd) =7°

(d—£)

Or equivalently, the projection 7 induces a bijection between U N Z% and Z*.

Example:

(i) ¢ = 0 : U is integral if and only if U is a lattice point.
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| Higher integrality conditions for affine spaces I

Definition 4. An {-dimensional affine space U C R%is integral if

r4=U nzd) =7°

(d—£)

Or equivalently, the projection 7 induces a bijection between U N Z% and Z*.

Example:
(i) ¢ = 0 : U is integral if and only if U is a lattice point.
(i) ¢ =1 :1nR2,
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| Higher integrality conditions for affine spaces I

Definition 4. An ¢-dimensional affine space U C R%is integral if

r4=U nzd) =7t

(d—1)

Or equivalently, the projection 7 induces a bijection between U N 7% and Z*.

Example:
() £ = 0 : U isintegral if and only if U is a lattice point.
i)/ =1:InR?

In general, U is integral if and only if U contains a lattice point and dir(U) =
(1,2’2, . ,Zd> < Zd.
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| A property of integral cyclic polytopes I

For any integral cyclic polytope P, we have that

any affine space determined by a subset of Vert(P) IS integral. (%)
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| A property of integral cyclic polytopes I

For any integral cyclic polytope P, we have that

any affine space determined by a subset of Vert(P) IS integral. (%)

Theorem 5. Suppose P is a polytope satisfing (x). Then

d
i(P,m) = Vol(z'"(P))m',
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| A property of integral cyclic polytopes I

For any integral cyclic polytope P, we have that

any affine space determined by a subset of Vert(P) is integral.

Theorem 5. Suppose P is a polytope satisfing (x). Then

i(P,m) = Z Vol(r! =D (P))m!.

Question:

(i) Can we relax (%) to the following condition?

Any affine space aff (F') determined by a face F' of P is integral.

(%)

(A)

Fu Liu
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| A property of integral cyclic polytopes I

For any integral cyclic polytope P, we have that

any affine space determined by a subset of Vert(P) is integral. (%)

Theorem 5. Suppose P is a polytope satisfing (x). Then

i(P,m) = Z Vol(r! =D (P))m!.

Question:

(i) Can we relax (%) to the following condition?
Any affine space aff (F') determined by a face F of P is integral. (D)

(i) What if (x) or (/\) is only satisfied for affine spaces of dimension in a subset

S CH{0,1,...,d}?
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| Higher integrality conditions for polytopes I

Definition 6. A polytope P is k-integral if for any 0 < ¢ < k, we have that aff (F) is

integral for any ¢-dimensional face F' of P.

We say P is fully integral if £ = d.
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| Higher integrality conditions for polytopes I

Definition 6. A polytope P is k-integral if for any 0 < ¢ < k, we have that aff (F) is

integral for any ¢-dimensional face F' of P.
We say P is fully integral if £ = d.

Example:

(i) £ = 0 : Pis O-integral if and only if P is integral.
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| Higher integrality conditions for polytopes I

Definition 6. A polytope P is k-integral if for any 0 < ¢ < k, we have that aff (F) is

integral for any ¢-dimensional face F' of P.
We say P is fully integral if £ = d.
Example:
(i) K = 0 : P is O-integral if and only if P is integral.
(i) kK = 1 : Pis l-integral if and only if P is integral and dir(e) = (1, 29,...,24) €
7% for any edge e of P.
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| Higher integrality conditions for polytopes I

Definition 6. A polytope P is k-integral if for any 0 < ¢ < k, we have that aff (F) is

integral for any ¢-dimensional face F' of P.
We say P is fully integral if £ = d.

Example:

(i) £ = 0 : Pis O-integral if and only if P is integral.

(i) kK = 1 : Pis l-integral if and only if P is integral and dir(e) = (1, 29,...,2q) €
7% for any edge e of P.

Conjecture 7. If P is k-integral, then for 0 < ¢ < k, the coefficient of m" in i(P,m)
is Vol(rd=4(P)).
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| Higher integrality conditions for polytopes I

Definition 6. A polytope P is k-integral if for any 0 < ¢ < k, we have that aff (F) is

integral for any ¢-dimensional face F' of P.

We say P is fully integral if £ = d.
Example:
(i) £ = 0 : Pis O-integral if and only if P is integral.
(i) kK = 1 : Pis l-integral if and only if P is integral and dir(e) = (1, 29,...,2q) €
7% for any edge e of P.
Conjecture 7. If P is k-integral, then for 0 < ¢ < k, the coefficient of m" in i(P,m)
is VOl(?Td_g(P)).
Example: P = conv{(0,0,0), (4,0,0),(3,6,0),(2,2,2)}. One can check that P
is 1-integral.

i(P,m) = 8m?® + 10m* 4 4m + 1,

and Vol(r“=1(P)) = Vol([0, 4]) = 4 and Vol(7'*=9(P)) = Vol(R?) = 1.
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| Slices of a polytope I

Definition 8. For any y € 7T<d_k>(P), we define the slice of I” over y, denoted by

74— (y, P), to be the intersection of P with the inverse image of y under mld=k),
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| Slices of a polytope I

Definition 8. For any y € 7T<d_k>(P>, we define the slice of I” over y, denoted by

ma_1(y, P), to be the intersection of P with the inverse image of y under mld=k),

Example: P = conv{(0,0,0), (4,0,0),(3,6,0),(2,2,2)}.
Recall 7(~D(P) = [0,4] and i(P, m) = 8m?> + 10m? + 4m + 1.

2.2.2) (3,6,0)

(0,0,0)

(4,0,0)
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| Slices of a polytope I

Definition 8. For any y € m(4=%)(P), we define the slice of P over y, denoted by

74— (y, P), to be the intersection of P with the inverse image of y under mld=k),

Example: P = conv{(0,0,0), (4,0,0),(3,6,0),(2,2,2)}.
Recall 7~V (P) = [0,4] and i(P, m) = 8m?> + 10m? + 4m + 1.

2.2.2) (3,6,0)

(0,0,0)

(4,0,0)

i(ﬂ2(07P)7m> — 1,i(7r2(1,P),m) - m2+2m+17i(772(27P>7m) — 4m2+
4m + 1,i(m2(3, P),m) = 3m* + 4m + 1 and i(m(4, P), m) = 1. Their sum is

8m? + 10m + b.
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| Main theorems |

Theorem 9. If P is k-integral, then the coefficient of m" in i (P, m) is

Vol(74=(P)) if0 < ¢ <k,

D _yenta-1(p)nze coefficient of m'Fini(mg_1(y,P),m) ifk+1<0<d
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| Main theorems |

Theorem 9. If P is k-integral, then the coefficient of m" in i (P, m) is
Vol(74=(P)) if0 < ¢ <k,
D _yenta-1(p)nze coefficient of m'Fini(mg_1(y,P),m) ifk+1<0<d

Theorem 10. Suppose k < d. If P is k-integral, then

Vol(Py= > Volg y(ma(y, P)),

yer(d=k)(P)NZk

where Vol,;_;. is the volume with respect to the lattice Z¢*.

Fu Liu
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| Main theorems |

Theorem 9. If P is k-integral, then the coefficient of m" in i (P, m) is

Vol(74=(P)) if0 < ¢ <k,

D _yenta-1(p)nze coefficient of m'Fini(mg_1(y,P),m) ifk+1<0<d

Theorem 10. Suppose k£ < d. If P is k-integral, then

Vol(P)= »  Volg k(mai(y, P)),

yer(d—k (P)NZk

where Vol,_;. is the volume with respect to the lattice Z¢*.

Definition 11. We define the kth S-volume of P to be

SVol"(P) = Y Volg_p(mg_r(y, P)).

yer(d—k (P)NZk

Fu Liu
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| Remarks |

Remark 12. SVol’(P) = Vol(P) and SVol*(P) = |P N Z.
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| Remarks |

Remark 12. SVol’(P) = Vol(P) and SVol*(P) = |P N Z.

Remark 13. Theorem 10 says if k < d and P is k-integral, then Vol(P) = SVol*(P).
Note that P is /-integral for any £ < k, so we have

Vol(P) = SVol’(P) = SVol'(P) = - - - = SVol*(P).
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| Remarks |

Remark 14. The condition k-integral in Theorem 10 can be relaxed to (kK — 1)-integral

and in k-general position.
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| Remarks |

Remark 14. The condition k-integral in Theorem 10 can be relaxed to (kK — 1)-integral

and in k-general position.

Example: 1-dimensional affine space in R2. integral vs in general position:

In general, U is in general position if and only if dir(U) = (1,y1,...,74) € R
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| Remarks |

Remark 14. The condition k-integral in Theorem 10 can be relaxed to (kK — 1)-integral

and in k-general position.

Example: 1-dimensional affine space in R2. integral vs in general position:

In general, U is in general position if and only if dir(U) = (1,y1,...,94) € R%

Theorem 9 can be reduced to Theorem 10.
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Reduction to volume formula

i. If Pis fully integral, then in particular P is (d — 1)-integral. Foranyy € =(1)(P)N
Zd_l, the slice (y, P) is either a 1-dimensional integral polytope, or a lattice

point. In either case, we have that | (y, P) N Z4| = 1 + Vol,(m(y, P)).

\\~“-§‘
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Reduction to volume formula

i. If Pis fully integral, then in particular P is (d — 1)-integral. Foranyy € 7)(P) N
Zd_l, the slice (y, P) is either a 1-dimensional integral polytope, or a lattice

point. In either case, we have that |7 (y, P) N Z4| = 1 + Vol,(m(y, P)).

\\~““§

Then V
PNZ= Y  |m(y,P)nZ
yer(W)(P)NZd-1

- > (14 Vol(m(y, P))) =[x (P)NZ*"| + Vol(P).

yer()(P)nzd-1

Fu Liu
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| Reduction to volume formula |

However, 71 ( P) is fully integral. Hence,

d
[PNZY =) Vol(x'")(P)).
1=0

Note that P is k-integral = m P is k-integral as well. Therefore,

d d
i(P,m) = |mP NZY =Y Vol(x'")(mP)) = > Vol(z'"(P))m'
i=0 1=0
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| Reduction to volume formula |

However, 771 (P) is fully integral. Hence,

d
[PNZY =) Vol(x'")(P)).
1=0

Note that P is k-integral = m P is k-integral as well. Therefore,

d d
i(P,m) = |mPNZ =Y Vol(x'“")(mP)) =Y Vol(z'")(P))m'
i=0 1=0

i. Itk < d—1, the projection 7(“=*) ( P) is fully integral and for any y € 7=%)( P)n
7k, the slice m4_1(y, P) is an integral polytope.
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| Reduction to volume formula |

However, 771 (P) is fully integral. Hence,

d
[PNZY =) Vol(x'")(P)).
1=0

Note that P is k-integral = m P is k-integral as well. Therefore,

d d
i(P,m) = |mPNZ =Y Vol(x'“")(mP)) =Y Vol(z'")(P))m'
i=0 1=0

i. Itk < d—1, the projection 7(“=*) ( P) is fully integral and for any y € 7=%)( P)n
7k, the slice m4_1(y, P) is an integral polytope.
We prove Theorem 9 by using the result on fully integral polytopes as well as a
local formula relating the number of lattice points to volumes of faces for integral

polytopes obtained by Morelli, McMullen, Pommersheim-Thomas, Berline-Vergne.

Fu Liu
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| Sketch of the proof of Theorem 10 I

Recall the theorem: If P is k-integral, then

Vol(P) = Y Volg_(mar(y, P)) = SVol*(P).

yerld—k) (P)NZk
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| Sketch of the proof of Theorem 10 I

Recall the theorem: If P is k-integral, then

Vol(P) = Y Volg_p(mar(y, P)) = SVol*(P).

yer(d=—k)(P)NZFk

i. We reduce the problem to the case of £ = 1.
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Recall the theorem: If P is k-integral, then

Vol(P) = > Volg_p(mar(y, P)) = SVol*(P).

yerld—k) (P)NZk

i. We reduce the problem to the case of £ = 1.

Idea: If P is k-integral (with k& > 1), then each slice 7Td_1(y, P) contributing to
SVol'(P)is (k — 1)-integral.
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Recall the theorem: If P is k-integral, then

Vol(P) = Y Volg_p(mar(y, P)) = SVol*(P).

yer(d=—k)(P)NZFk

i. We reduce the problem to the case of £ = 1.

Idea: If P is k-integral (with k& > 1), then each slice m4_1(y, P) contributing to
SVol'(P) is (k — 1)-integral.

ii. We reduce the problem to the case of a simplex with £ = 1.
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| Sketch of the proof of Theorem 10 I

Recall the theorem: If P is k-integral, then

Vol(P) = Y Volg_p(mar(y, P)) = SVol*(P).

yer(d=—k)(P)NZFk

i. We reduce the problem to the case of £ = 1.

Idea: If P is k-integral (with k& > 1), then each slice m4_1(y, P) contributing to
SVol*(P)is (k — 1)-integral.

ii. We reduce the problem to the case of a simplex with £ = 1.

iii. Prove the case of a simplex with &k = 1.
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| Possible Applications I

[1 Prove positivity conjectures of special families of polytopes: Birkhoff polytopes, ma-

troid polytopes.
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| Possible Applications I

[1 Prove positivity conjectures of special families of polytopes: Birkhoff polytopes, ma-

troid polytopes.
[1 Calculate the lower degree coefficients of Ehrhart polynomial quickly.

[1 Algorithm to calculate volumes of rational polytopes: for any rational polytope P,
one can always choose a coordinate system such that P is in 1-general position.

Choose DD € N such that D P is integral. Then

Vol(P) = % > Volgy(7aaly, P)).

yerld=D(P)N5Z!

Fu Liu
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