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PART I:

Definitions and Backgrounds

Summary: We will introduce δ-vectors, Eulerian numbers, s-lecture-hall polytopes

and parallelepiped, and discuss our goal.
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Ehrhart polynomials and δ-vectors

Suppose that P is an n-dimensional integral polytope, i.e., a (convex) polytope

whose vertices have integer coordinates. Let

i(P, t) ∶= ∣tP ∩ZD∣
be the number of lattice points in the tth dilation tP of P .

Then i(P, t) is a polynomial in t of degree n, called the Ehrhart polynomial of P .
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Ehrhart polynomials and δ-vectors

Suppose that P is an n-dimensional integral polytope, i.e., a (convex) polytope

whose vertices have integer coordinates. Let

i(P, t) ∶= ∣tP ∩ZD∣
be the number of lattice points in the tth dilation tP of P .

Then i(P, t) is a polynomial in t of degree n, called the Ehrhart polynomial of P .

It is well-known that the generating function of i(P, t) has the form

∑
t≥0

i(P, t)zt = δP(z)(1 − z)n+1 ,
where δP(z) is a polynomial of degree at most n with nonnegative integer coefficients.

We denote by δP,i the coefficient of zi in δP(z), for 0 ≤ i ≤ n.
We call (δP,0, δP,1, . . . , δP,n) the δ-vector or h∗-vector of P .
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Descents, inversion sequences and Eulerian numbers

Let r = (r1, . . . , rn) be a sequence of nonnegative integers. We say that i is a

(regular) descent of r if ri > ri+1. Define the descent set Des(r) of r by

Des(r) = {i ∣ ri > ri+1},
and define its size des(r) =#Des(r).
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Descents, inversion sequences and Eulerian numbers

Let r = (r1, . . . , rn) be a sequence of nonnegative integers. We say that i is a

(regular) descent of r if ri > ri+1. Define the descent set Des(r) of r by

Des(r) = {i ∣ ri > ri+1},
and define its size des(r) =#Des(r).

For any nonnegative integer n, let ⟨n⟩ ∶= {0, 1, . . . , n}.
An inversion sequence of length n is any element in the set

⟨n − 1⟩ × ⋯ × ⟨1⟩ × ⟨0⟩.
We refer to the above set as the set of inversion sequences of length n.
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Descents, inversion sequences and Eulerian numbers

Let r = (r1, . . . , rn) be a sequence of nonnegative integers. We say that i is a

(regular) descent of r if ri > ri+1. Define the descent set Des(r) of r by

Des(r) = {i ∣ ri > ri+1},
and define its size des(r) =#Des(r).

For any nonnegative integer n, let ⟨n⟩ ∶= {0, 1, . . . , n}.
An inversion sequence of length n is any element in the set

⟨n − 1⟩ × ⋯ × ⟨1⟩ × ⟨0⟩.
We refer to the above set as the set of inversion sequences of length n.

The Eulerian number A(n, i) is the number of inversion sequences of length n with

i − 1 descents.
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An example

Example. There are 3! = 6 inversion sequences of length 3 ∶
r Des(r) des(r)

(0, 0, 0) ∅ 0;

(0, 1, 0) {2} 1;

(1, 0, 0) {1} 1;

(1, 1, 0) {2} 1;

(2, 0, 0) {1} 1;

(2, 1, 0) {1, 2} 2.

Hence, A(3, 1) = 1,A(3, 2) = 4,A(3, 3) = 1, and A(3, i) = 0 for i ≥ 4.
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The δ-vector of a unit cube

The δ-vector of the n-dimensional unit cube, denoted by ◻n, is given by

δ◻n,i = A(n, i + 1) =#inversion sequences of length n with i descents.

Example.

δ◻3 = (1, 4, 1, 0).
Hence,

∑
t≥0

i(◻3, t) zt = 1 + 4z + z2(1 − z)4 .
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The s-lecture hall polytope

Let s = (s1, . . . , sn) be a sequence of positive integers. The s-lecture hall polytope,

denoted by Ps, is the polytope in Rn defined by the inequalities

0 ≤ x1
s1
≤ x2
s2
≤ ⋯ ≤ xn

sn
≤ 1.
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The s-lecture hall polytope

Let s = (s1, . . . , sn) be a sequence of positive integers. The s-lecture hall polytope,

denoted by Ps, is the polytope in Rn defined by the inequalities

0 ≤ x1
s1
≤ x2
s2
≤ ⋯ ≤ xn

sn
≤ 1.

Corteel-Lee-Savage showed that P(1,2,...,n) and P(n,n−1,...,1) have the same Ehrhart

polynomials as the n-dimensional unit cube ◻n.
Hence,

δP(1,2,...,n),i = δP(n,n−1,...,1),i = δ◻n,i = A(n, i + 1)
= #inversion sequences of length n with i descents .
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The s-lecture hall polytope

Let s = (s1, . . . , sn) be a sequence of positive integers. The s-lecture hall polytope,

denoted by Ps, is the polytope in Rn defined by the inequalities

0 ≤ x1
s1
≤ x2
s2
≤ ⋯ ≤ xn

sn
≤ 1.

Corteel-Lee-Savage showed that P(1,2,...,n) and P(n,n−1,...,1) have the same Ehrhart

polynomials as the n-dimensional unit cube ◻n.
Hence,

δP(1,2,...,n),i = δP(n,n−1,...,1),i = δ◻n,i = A(n, i + 1)
= #inversion sequences of length n with i descents .

Goal :

Give a bijective proof for the above fact.

Page 7



The lecture hall parallelopiped Fu Liu

The s-lecture hall polytope

Let s = (s1, . . . , sn) be a sequence of positive integers. The s-lecture hall polytope,

denoted by Ps, is the polytope in Rn defined by the inequalities

0 ≤ x1
s1
≤ x2
s2
≤ ⋯ ≤ xn

sn
≤ 1.

Corteel-Lee-Savage showed that P(1,2,...,n) and P(n,n−1,...,1) have the same Ehrhart

polynomials as the n-dimensional unit cube ◻n.
Hence,

δP(1,2,...,n),i = δP(n,n−1,...,1),i = δ◻n,i = A(n, i + 1)
= #inversion sequences of length n with i descents .

Goal :

Give a bijective proof for the above fact.

In this talk, we will only discuss the bijection for s = (n,n − 1, . . . , 1).
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The s-lecture hall polytope (cont’d)

It is easy to see that Ps has the vertex set

{(0, 0, 0, . . . , 0), (0, 0, . . . , 0, sn), (0, 0, . . . , 0, sn−1, sn), . . . , (s1, s2, . . . , sn)}.
Hence Ps is a simplex.

The δ-vector of a simplex P can be described in terms of number of lattice points in

a fundamental parallelepiped associated to P.
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δ-vector of simplices

For a set of independent vectors W = {w1, . . . ,wn}, we define the fundamental

(half-open) parallelepiped generated by W to be

Par(W ) = Par(w1, . . . ,wn) ∶= { n∑
i=1

ciwi ∣ 0 ≤ ci < 1}.
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δ-vector of simplices

For a set of independent vectors W = {w1, . . . ,wn}, we define the fundamental

(half-open) parallelepiped generated by W to be

Par(W ) = Par(w1, . . . ,wn) ∶= { n∑
i=1

ciwi ∣ 0 ≤ ci < 1}.
For any set S ⊂ RN , we denote by Li(S) the set of lattice points in S whose last

coordinates are i ∶
L
i(S) ∶= {x ∈ S ∩ZN ∣ last coordinate of x is i},

and let ℓi(S) ∶=#Li(S) be the cardinality of Li(S).
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δ-vector of simplices

For a set of independent vectors W = {w1, . . . ,wn}, we define the fundamental

(half-open) parallelepiped generated by W to be

Par(W ) = Par(w1, . . . ,wn) ∶= { n∑
i=1

ciwi ∣ 0 ≤ ci < 1}.
For any set S ⊂ RN , we denote by Li(S) the set of lattice points in S whose last

coordinates are i ∶
L
i(S) ∶= {x ∈ S ∩ZN ∣ last coordinate of x is i},

and let ℓi(S) ∶=#Li(S) be the cardinality of Li(S).
For convenience, for any vector v ∈ RN , we let v∗ ∶= (v, 1) be the vector obtained

by appending 1 to the end of v.
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δ-vector of simplices (cont’d)

Suppose P is an n-dimensional simplex with vertices v0,v1, . . . ,vn. Then the

δ-vector of P is given by

δP,i = ℓ
i(Par(v∗0, . . . ,v∗n)), 0 ≤ i ≤ n.

Example.

P

-1 0 1 2

v0 v1

Par(v∗
0
,v∗

1
)

-2 -1 0 1 2 3
0

1

2

3

v
∗
0

v
∗
1

i(P, t) = 3t + 1, ∑
t≥0

i(P, t)zt = 2t + 1
(1 − t)2 .
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s-lecture hall parallelepiped

Definition 1. Given a sequence s = (s1, . . . , sn) of positive integers, the s-lecture hall

parallelepiped, denoted by Pars, is the fundamental parallelepiped generated by the

non-origin vertices of the s-lecture hall polytope Ps ∶
Pars ∶= Par((0, 0, . . . , 0, sn), (0, 0, . . . , 0, sn−1, sn), . . . , (s1, s2, . . . , sn)).
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s-lecture hall parallelepiped

Definition 1. Given a sequence s = (s1, . . . , sn) of positive integers, the s-lecture hall

parallelepiped, denoted by Pars, is the fundamental parallelepiped generated by the

non-origin vertices of the s-lecture hall polytope Ps ∶
Pars ∶= Par((0, 0, . . . , 0, sn), (0, 0, . . . , 0, sn−1, sn), . . . , (s1, s2, . . . , sn)).

Lemma 2. The δ-vector of Ps is given by

δPs,i = ℓ
i(Pars∗), 0 ≤ i ≤ n.
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s-lecture hall parallelepiped

Definition 1. Given a sequence s = (s1, . . . , sn) of positive integers, the s-lecture hall

parallelepiped, denoted by Pars, is the fundamental parallelepiped generated by the

non-origin vertices of the s-lecture hall polytope Ps ∶
Pars ∶= Par((0, 0, . . . , 0, sn), (0, 0, . . . , 0, sn−1, sn), . . . , (s1, s2, . . . , sn)).

Lemma 2. The δ-vector of Ps is given by

δPs,i = ℓ
i(Pars∗), 0 ≤ i ≤ n.

Furthermore, if sn = 1, then

ℓi(Pars) = ℓi(Pars∗), 0 ≤ i ≤ n.

Hence,
δPs,i = ℓ

i(Pars), 0 ≤ i ≤ n.
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s-lecture hall parallelepiped

Definition 1. Given a sequence s = (s1, . . . , sn) of positive integers, the s-lecture hall

parallelepiped, denoted by Pars, is the fundamental parallelepiped generated by the

non-origin vertices of the s-lecture hall polytope Ps ∶
Pars ∶= Par((0, 0, . . . , 0, sn), (0, 0, . . . , 0, sn−1, sn), . . . , (s1, s2, . . . , sn)).

Lemma 2. The δ-vector of Ps is given by

δPs,i = ℓ
i(Pars∗), 0 ≤ i ≤ n.

Furthermore, if sn = 1, then

ℓi(Pars) = ℓi(Pars∗), 0 ≤ i ≤ n.

Hence,
δPs,i = ℓ

i(Pars), 0 ≤ i ≤ n.

We will present results on the cases where sn = 1, where s = (n,n− 1, . . . , 1) is a

special case.
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Detailed Goal

Detailed Goal :

When s = (n,n − 1, . . . , 1), can we give a nice bijection between Li(Pars) and

inversion sequences of length n with i descents?

In fact, we will construct bijections between Li(Pars) and certain sequences with i

s-descents, for any s with sn = 1.
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PART II:

The Bijection

Summary: We will construct a bijection from lattice points in Pars to certain family

of sequences, and show it has the desired property.
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The map REMs

Assume that s = (s1, . . . , sn) is a sequence of positive integers. We associate the

following set to s:
Ψs = ⟨s1 − 1⟩ ×⋯ × ⟨sn − 1⟩.

Notice that Ψs is the set of inversion sequences of length n if s = (n,n− 1, . . . , 1).
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The map REMs

Assume that s = (s1, . . . , sn) is a sequence of positive integers. We associate the

following set to s:
Ψs = ⟨s1 − 1⟩ ×⋯ × ⟨sn − 1⟩.

Notice that Ψs is the set of inversion sequences of length n if s = (n,n− 1, . . . , 1).
Definition 3. We define a map

REMs ∶ Pars ∩Zn
→ Ψs

in the following way. Let x = (x1, . . . , xn) ∈ Pars ∩Zn. For each xi, let ki = ⌊xi

si
⌋ be

the quotient of dividing xi by si, and ri be the remainder. Hence

xi = kisi + ri,
where ki ∈ ⟨n − 1⟩ and ri ∈ ⟨si − 1⟩. Let k = (k1, . . . , kn) be the quotient sequence

and r = (r1, . . . , rn) be the remainder sequence. Then we define REMs(x) = r.
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An example of the map REMs

Example. Let s = (3, 2, 1). We have

x ∈ Pars ∩Zn k r = REMs(x)
(0, 0, 0) (0, 0, 0) (0, 0, 0)
(0, 1, 1) (0, 0, 1) (0, 1, 0)
(1, 2, 1) (0, 1, 1) (1, 0, 0)
(1, 1, 1) (0, 0, 1) (1, 1, 0)
(2, 2, 1) (0, 1, 1) (2, 0, 0)
(2, 3, 2) (0, 1, 2) (2, 1, 0)

Page 15



The lecture hall parallelopiped Fu Liu

An example of the map REMs

Example. Let s = (3, 2, 1). We have

x ∈ Pars ∩Zn k r = REMs(x)
(0, 0, 0) (0, 0, 0) (0, 0, 0)
(0, 1, 1) (0, 0, 1) (0, 1, 0)
(1, 2, 1) (0, 1, 1) (1, 0, 0)
(1, 1, 1) (0, 0, 1) (1, 1, 0)
(2, 2, 1) (0, 1, 1) (2, 0, 0)
(2, 3, 2) (0, 1, 2) (2, 1, 0)

Note that the last column consists of each element of Ψs = ⟨2⟩ × ⟨1⟩ × ⟨0⟩ exactly

once.
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An example of the map REMs

Example. Let s = (3, 2, 1). We have

x ∈ Pars ∩Zn k r = REMs(x)
(0, 0, 0) (0, 0, 0) (0, 0, 0)
(0, 1, 1) (0, 0, 1) (0, 1, 0)
(1, 2, 1) (0, 1, 1) (1, 0, 0)
(1, 1, 1) (0, 0, 1) (1, 1, 0)
(2, 2, 1) (0, 1, 1) (2, 0, 0)
(2, 3, 2) (0, 1, 2) (2, 1, 0)

Note that the last column consists of each element of Ψs = ⟨2⟩ × ⟨1⟩ × ⟨0⟩ exactly

once.

Lemma 4. REMs is a bijection from Pars ∩Zn to Ψs.
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An example of the map REMs

Example. Let s = (3, 2, 1). We have

x ∈ Pars ∩Zn k r = REMs(x)
(0, 0, 0) (0, 0, 0) (0, 0, 0)
(0, 1, 1) (0, 0, 1) (0, 1, 0)
(1, 2, 1) (0, 1, 1) (1, 0, 0)
(1, 1, 1) (0, 0, 1) (1, 1, 0)
(2, 2, 1) (0, 1, 1) (2, 0, 0)
(2, 3, 2) (0, 1, 2) (2, 1, 0)

Note that the last column consists of each element of Ψs = ⟨2⟩ × ⟨1⟩ × ⟨0⟩ exactly

once.

Lemma 4. REMs is a bijection from Pars ∩Zn to Ψs.

Question How do we recover the quotient sequence k?
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s-descents

Definition 5. Let r = (r1, . . . , rn). We say that i is an s-descent of r if
ri

si
>
ri+1

si+1
.

We denote by Dess(r) the set of s-descents of r, and let dess(r) =#Dess(r)
be its cardinality. For any 1 ≤ i ≤ n, we let

des<i
s
(r) =#s-descents of r that are smaller than i
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s-descents

Definition 5. Let r = (r1, . . . , rn). We say that i is an s-descent of r if
ri

si
>
ri+1

si+1
.

We denote by Dess(r) the set of s-descents of r, and let dess(r) =#Dess(r)
be its cardinality. For any 1 ≤ i ≤ n, we let

des<i
s
(r) =#s-descents of r that are smaller than i

Example. Let r = (1, 1, 0).
For s = (3, 2, 1) ∶ since

1

3
<
1

2
>
0

1
, we have

Dess(r) = {2}, and des<1
s
(r) = 0,des<2

s
(r) = 0,des<3

s
(r) = 1.
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s-descents

Definition 5. Let r = (r1, . . . , rn). We say that i is an s-descent of r if
ri

si
>
ri+1

si+1
.

We denote by Dess(r) the set of s-descents of r, and let dess(r) =#Dess(r)
be its cardinality. For any 1 ≤ i ≤ n, we let

des<i
s
(r) =#s-descents of r that are smaller than i

Example. Let r = (1, 1, 0).
For s = (3, 2, 1) ∶ since

1

3
<
1

2
>
0

1
, we have

Dess(r) = {2}, and des<1
s
(r) = 0,des<2

s
(r) = 0,des<3

s
(r) = 1.

Note that Des(r) = {2}.
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s-descents

Definition 5. Let r = (r1, . . . , rn). We say that i is an s-descent of r if
ri

si
>
ri+1

si+1
.

We denote by Dess(r) the set of s-descents of r, and let dess(r) =#Dess(r)
be its cardinality. For any 1 ≤ i ≤ n, we let

des<i
s
(r) =#s-descents of r that are smaller than i

Example. Let r = (1, 1, 0).
For s = (3, 2, 1) ∶ since

1

3
<
1

2
>
0

1
, we have

Dess(r) = {2}, and des<1
s
(r) = 0,des<2

s
(r) = 0,des<3

s
(r) = 1.

Note that Des(r) = {2}.
Lemma 6. If s = (n,n−1, . . . , 1), then s-descents of r ∈ Ψs are the same as regular

descents of r.
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An example of s-descents

Example. Let s = (3, 2, 1). We have

r ∈ Ψs Dess(r) = Des(r) (des<s 1(r),des<2s (r),des<3s (r))
(0, 0, 0) ∅ (0, 0, 0);
(0, 1, 0) {2} (0, 0, 1);
(1, 0, 0) {1} (0, 1, 1);
(1, 1, 0) {2} (0, 0, 1);
(2, 0, 0) {1} (0, 1, 1);
(2, 1, 0) {1, 2} (0, 1, 2).
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An example of s-descents

Example. Let s = (3, 2, 1). We have

r ∈ Ψs Dess(r) = Des(r) (des<s 1(r),des<2s (r),des<3s (r))
(0, 0, 0) ∅ (0, 0, 0);
(0, 1, 0) {2} (0, 0, 1);
(1, 0, 0) {1} (0, 1, 1);
(1, 1, 0) {2} (0, 0, 1);
(2, 0, 0) {1} (0, 1, 1);
(2, 1, 0) {1, 2} (0, 1, 2).

Lemma 7. Suppose r = REMs(x) is the remainder sequence of dividing x by s.

Then the quotient sequence is given by

k = (des<
s
1(r),des<2

s
(r), . . . ,des<n

s
(r)).
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Inverse of REMs

Since xi = kisi + ri, we construct the inverse of REMs.

Theorem 8. The inverse of the map REMs is:

REM−1
s
∶ Ψs → Pars ∩Zn

r = (r1, . . . , rn) ↦ (des<1
s
(r)s1 + r1, . . . ,des<ns (r)sn + rn)
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Inverse of REMs

Since xi = kisi + ri, we construct the inverse of REMs.

Theorem 8. The inverse of the map REMs is:

REM−1
s
∶ Ψs → Pars ∩Zn

r = (r1, . . . , rn) ↦ (des<1
s
(r)s1 + r1, . . . ,des<ns (r)sn + rn)

Note that des<n
s
(r) = dess(r). When sn = 1, we have rn = 0, and thus the last

entry in REM−1
s
(r) is dess(r).
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Inverse of REMs

Since xi = kisi + ri, we construct the inverse of REMs.

Theorem 8. The inverse of the map REMs is:

REM−1
s
∶ Ψs → Pars ∩Zn

r = (r1, . . . , rn) ↦ (des<1
s
(r)s1 + r1, . . . ,des<ns (r)sn + rn)

Note that des<n
s
(r) = dess(r). When sn = 1, we have rn = 0, and thus the last

entry in REM−1
s
(r) is dess(r).

Corollary 9. If sn = 1, the map REMs induces a bijection from Li(Pars) to the

elements r ∈ Ψs with exactly i s-descents. Hence,

ℓi(Pars) =#{r ∈ Ψs ∣ dess(r) = i}.
In particular, if s = (n,n − 1, . . . , 1), the map REMs gives a bijection between

Li(Pars) and inversion sequences of length n with i descents.
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Results on δ-vectors

Theorem 10. Suppose that s = (s1, . . . , sn) is a sequence of positive integers with

sn = 1. Then the δ-vector of the s-lecture hall polytope Ps is given by

δPs,i =#{r ∈ Ψs ∣ dess(r) = i}, 0 ≤ i ≤ n.
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Results on δ-vectors

Theorem 10. Suppose that s = (s1, . . . , sn) is a sequence of positive integers with

sn = 1. Then the δ-vector of the s-lecture hall polytope Ps is given by

δPs,i =#{r ∈ Ψs ∣ dess(r) = i}, 0 ≤ i ≤ n.

Theorem 11. Suppose that s = (s1, . . . , sn) is a sequence of positive integers. Then

the δ-vector of the s-lecture hall polytope Ps is given by

δPs,i =#{r ∈ Ψs × ⟨0⟩ ∣ dess∗(r) = i}, 0 ≤ i ≤ n.
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