The lecture hall parallelopiped

Fu Liu University of California, Davis

AMS sectional meeting, San Francisco, CA October 25, 2014

This is joint work with Richard Stanley.

PART I:

Definitions and Backgrounds

Summary: We will introduce δ -vectors, Eulerian numbers, s-lecture-hall polytopes and parallelepiped, and discuss our goal.

Fu Liu

Ehrhart polynomials and δ -vectors

Suppose that P is an n-dimensional integral polytope, i.e., a (convex) polytope whose vertices have integer coordinates. Let

 $i(P,t) \coloneqq |tP \cap \mathbb{Z}^D|$

be the number of lattice points in the tth dilation tP of P.

Then i(P, t) is a polynomial in t of degree n, called the *Ehrhart polynomial* of P.

Ehrhart polynomials and δ -vectors

Suppose that P is an n-dimensional integral polytope, i.e., a (convex) polytope whose vertices have integer coordinates. Let

 $i(P,t) \coloneqq |tP \cap \mathbb{Z}^D|$

be the number of lattice points in the tth dilation tP of P.

Then i(P, t) is a polynomial in t of degree n, called the *Ehrhart polynomial* of P.

It is well-known that the generating function of i(P, t) has the form

$$\sum_{t\geq 0} i(P,t)z^{t} = \frac{\delta_{P}(z)}{(1-z)^{n+1}},$$

where $\delta_P(z)$ is a polynomial of degree at most n with nonnegative integer coefficients. We denote by $\delta_{P,i}$ the coefficient of z^i in $\delta_P(z)$, for $0 \le i \le n$. We call $(\delta_{P,0}, \delta_{P,1}, \dots, \delta_{P,n})$ the δ -vector or h^* -vector of P.

Descents, inversion sequences and Eulerian numbers

Let $r = (r_1, ..., r_n)$ be a sequence of nonnegative integers. We say that i is a *(regular) descent* of r if $r_i > r_{i+1}$. Define the *descent set* Des(r) of r by

 $\mathrm{Des}(\boldsymbol{r}) = \{i \mid r_i > r_{i+1}\},\$

and define its size des(r) = # Des(r).

Descents, inversion sequences and Eulerian numbers

Let $r = (r_1, ..., r_n)$ be a sequence of nonnegative integers. We say that i is a *(regular) descent* of r if $r_i > r_{i+1}$. Define the *descent set* Des(r) of r by

$$\mathrm{Des}(\boldsymbol{r}) = \{i \mid r_i > r_{i+1}\},\$$

and define its size des(r) = # Des(r).

For any nonnegative integer n, let $\langle n \rangle \coloneqq \{0, 1, \dots, n\}$.

An *inversion sequence of length* n is any element in the set

$$\langle n-1 \rangle \times \cdots \times \langle 1 \rangle \times \langle 0 \rangle.$$

We refer to the above set as *the set of inversion sequences of length* n.

Descents, inversion sequences and Eulerian numbers

Let $r = (r_1, ..., r_n)$ be a sequence of nonnegative integers. We say that i is a *(regular) descent* of r if $r_i > r_{i+1}$. Define the *descent set* Des(r) of r by

$$\mathrm{Des}(\boldsymbol{r}) = \{i \mid r_i > r_{i+1}\},\$$

and define its size des(r) = # Des(r).

For any nonnegative integer n, let $\langle n \rangle \coloneqq \{0, 1, \dots, n\}$.

An *inversion sequence of length* n is any element in the set

$$\langle n-1 \rangle \times \cdots \times \langle 1 \rangle \times \langle 0 \rangle.$$

We refer to the above set as the set of inversion sequences of length n.

The *Eulerian number* A(n, i) is the number of inversion sequences of length n with i-1 descents.

An example

Example. There are 3! = 6 inversion sequences of length 3:

r	$\mathrm{Des}(r)$	$\mathrm{des}(m{r})$
(0, 0, 0)	Ø	0;
(0, 1, 0)	$\{2\}$	1;
(1, 0, 0)	{1}	1;
(1, 1, 0)	$\{2\}$	1;
(2, 0, 0)	{1}	1;
(2, 1, 0)	$\{1, 2\}$	2.

Hence, A(3,1) = 1, A(3,2) = 4, A(3,3) = 1, and A(3,i) = 0 for $i \ge 4$.

The δ -vector of a unit cube

The δ -vector of the *n*-dimensional unit cube, denoted by \Box_n , is given by

 $\delta_{\square_n,i} = A(n,i+1) = \#$ inversion sequences of length n with i descents.

Example.

$$\delta_{\Box_3} = (1, 4, 1, 0).$$

Hence,

$$\sum_{t \ge 0} i(\Box_3, t) \ z^t = \frac{1 + 4z + z^2}{(1 - z)^4}$$

Let $s = (s_1, ..., s_n)$ be a sequence of positive integers. The s-lecture hall polytope, denoted by P_s , is the polytope in \mathbb{R}^n defined by the inequalities

$$0 \le \frac{x_1}{s_1} \le \frac{x_2}{s_2} \le \dots \le \frac{x_n}{s_n} \le 1.$$

The s-lecture hall polytope

Let $s = (s_1, ..., s_n)$ be a sequence of positive integers. The s-lecture hall polytope, denoted by P_s , is the polytope in \mathbb{R}^n defined by the inequalities

$$0 \le \frac{x_1}{s_1} \le \frac{x_2}{s_2} \le \dots \le \frac{x_n}{s_n} \le 1.$$

Corteel-Lee-Savage showed that $P_{(1,2,...,n)}$ and $P_{(n,n-1,...,1)}$ have the same Ehrhart polynomials as the *n*-dimensional unit cube \Box_n .

Hence,

$$\delta_{P_{(1,2,...,n)},i} = \delta_{P_{(n,n-1,...,1)},i} = \delta_{\Box_n,i} = A(n,i+1)$$

= #inversion sequences of length n with i descents.

The s-lecture hall polytope

Let $s = (s_1, ..., s_n)$ be a sequence of positive integers. The s-lecture hall polytope, denoted by P_s , is the polytope in \mathbb{R}^n defined by the inequalities

$$0 \le \frac{x_1}{s_1} \le \frac{x_2}{s_2} \le \dots \le \frac{x_n}{s_n} \le 1.$$

Corteel-Lee-Savage showed that $P_{(1,2,...,n)}$ and $P_{(n,n-1,...,1)}$ have the same Ehrhart polynomials as the *n*-dimensional unit cube \Box_n .

Hence,

$$\delta_{P_{(1,2,...,n)},i} = \delta_{P_{(n,n-1,...,1)},i} = \delta_{\Box_n,i} = A(n,i+1)$$

= #inversion sequences of length n with i descents.

Goal:

Give a bijective proof for the above fact.

The s-lecture hall polytope

Let $s = (s_1, ..., s_n)$ be a sequence of positive integers. The s-lecture hall polytope, denoted by P_s , is the polytope in \mathbb{R}^n defined by the inequalities

$$0 \le \frac{x_1}{s_1} \le \frac{x_2}{s_2} \le \dots \le \frac{x_n}{s_n} \le 1.$$

Corteel-Lee-Savage showed that $P_{(1,2,...,n)}$ and $P_{(n,n-1,...,1)}$ have the same Ehrhart polynomials as the *n*-dimensional unit cube \Box_n .

Hence,

$$\delta_{P_{(1,2,\dots,n)},i} = \delta_{P_{(n,n-1,\dots,1)},i} = \delta_{\Box_n,i} = A(n,i+1)$$

= #inversion sequences of length n with i descents.

Goal:

Give a bijective proof for the above fact.

In this talk, we will only discuss the bijection for s = (n, n - 1, ..., 1).

Fu Liu

The s-lecture hall polytope (cont'd)

It is easy to see that $P_{\mathbf{s}}$ has the vertex set

 $\{(0,0,0,\ldots,0),(0,0,\ldots,0,s_n),(0,0,\ldots,0,s_{n-1},s_n),\ldots,(s_1,s_2,\ldots,s_n)\}.$

Hence $P_{\mathbf{s}}$ is a simplex.

The δ -vector of a simplex P can be described in terms of number of lattice points in a fundamental parallelepiped associated to P.

δ -vector of simplices

For a set of independent vectors $W = \{w_1, \dots, w_n\}$, we define the *fundamental (half-open) parallelepiped generated by* W to be

$$\operatorname{Par}(W) = \operatorname{Par}(\boldsymbol{w}_1, \ldots, \boldsymbol{w}_n) \coloneqq \left\{ \sum_{i=1}^n c_i \boldsymbol{w}_i \mid 0 \le c_i < 1 \right\}.$$

δ -vector of simplices

For a set of independent vectors $W = \{w_1, \dots, w_n\}$, we define the *fundamental (half-open) parallelepiped generated by* W to be

$$\operatorname{Par}(W) = \operatorname{Par}(\boldsymbol{w}_1, \dots, \boldsymbol{w}_n) \coloneqq \left\{ \sum_{i=1}^n c_i \boldsymbol{w}_i \mid 0 \le c_i < 1 \right\}.$$

For any set $S \subset \mathbb{R}^N$, we denote by $\mathcal{L}^i(S)$ the set of lattice points in S whose last coordinates are i:

 $\mathcal{L}^{i}(S) \coloneqq \{ \mathbf{x} \in S \cap \mathbb{Z}^{N} \mid \text{last coordinate of } \mathbf{x} \text{ is } i \},\$

and let $\ell^i(S) \coloneqq \# \mathcal{L}^i(S)$ be the cardinality of $\mathcal{L}^i(S)$.

δ -vector of simplices

For a set of independent vectors $W = \{w_1, \dots, w_n\}$, we define the *fundamental (half-open) parallelepiped generated by* W to be

$$\operatorname{Par}(W) = \operatorname{Par}(\boldsymbol{w}_1, \dots, \boldsymbol{w}_n) \coloneqq \left\{ \sum_{i=1}^n c_i \boldsymbol{w}_i \mid 0 \le c_i < 1 \right\}.$$

For any set $S \subset \mathbb{R}^N$, we denote by $\mathcal{L}^i(S)$ the set of lattice points in S whose last coordinates are i:

 $\mathcal{L}^{i}(S) \coloneqq \{ \mathbf{x} \in S \cap \mathbb{Z}^{N} \mid \text{last coordinate of } \mathbf{x} \text{ is } i \},\$

and let $\ell^i(S) \coloneqq \# \mathcal{L}^i(S)$ be the cardinality of $\mathcal{L}^i(S)$.

For convenience, for any vector $v \in \mathbb{R}^N$, we let $v^* := (v, 1)$ be the vector obtained by appending 1 to the end of v.

Fu Liu

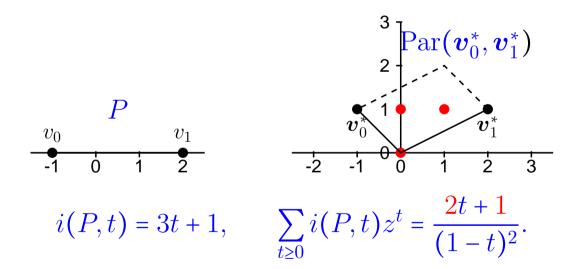
Fu Liu

δ -vector of simplices (cont'd)

Suppose P is an n-dimensional simplex with vertices v_0, v_1, \ldots, v_n . Then the δ -vector of P is given by

$$\delta_{P,i} = \ell^i(\operatorname{Par}(\boldsymbol{v}_0^*,\ldots,\boldsymbol{v}_n^*)), \quad 0 \leq i \leq n.$$

Example.



Definition 1. Given a sequence $\mathbf{s} = (s_1, \dots, s_n)$ of positive integers, the s-lecture hall parallelepiped, denoted by $\operatorname{Par}_{\mathbf{s}}$, is the fundamental parallelepiped generated by the non-origin vertices of the s-lecture hall polytope $P_{\mathbf{s}}$:

 $Par_{s} := Par((0, 0, \dots, 0, s_{n}), (0, 0, \dots, 0, s_{n-1}, s_{n}), \dots, (s_{1}, s_{2}, \dots, s_{n})).$

Definition 1. Given a sequence $\mathbf{s} = (s_1, \ldots, s_n)$ of positive integers, the s-lecture hall parallelepiped, denoted by $\operatorname{Par}_{\mathbf{s}}$, is the fundamental parallelepiped generated by the non-origin vertices of the s-lecture hall polytope $P_{\mathbf{s}}$:

 $Par_{s} \coloneqq Par((0, 0, \dots, 0, s_{n}), (0, 0, \dots, 0, s_{n-1}, s_{n}), \dots, (s_{1}, s_{2}, \dots, s_{n})).$

Lemma 2. The δ -vector of $P_{\mathbf{s}}$ is given by

 $\delta_{P_{\mathbf{s}},i} = \ell^i(\operatorname{Par}_{\mathbf{s}^*}), \quad 0 \le i \le n.$

Definition 1. Given a sequence $\mathbf{s} = (s_1, \ldots, s_n)$ of positive integers, the s-lecture hall parallelepiped, denoted by $\operatorname{Par}_{\mathbf{s}}$, is the fundamental parallelepiped generated by the non-origin vertices of the s-lecture hall polytope $P_{\mathbf{s}}$:

 $Par_{s} \coloneqq Par((0, 0, \dots, 0, s_{n}), (0, 0, \dots, 0, s_{n-1}, s_{n}), \dots, (s_{1}, s_{2}, \dots, s_{n})).$

Lemma 2. The δ -vector of $P_{\mathbf{s}}$ is given by

 $\delta_{P_{\mathbf{s}},i} = \ell^i(\operatorname{Par}_{\mathbf{s}^*}), \quad 0 \le i \le n.$

Furthermore, if $s_n = 1$, then

$$\ell^i(\operatorname{Par}_{\mathbf{s}}) = \ell^i(\operatorname{Par}_{\mathbf{s}^*}), \quad 0 \le i \le n.$$

Hence,

$$\delta_{P_{\mathbf{s}},i} = \ell^i(\operatorname{Par}_{\mathbf{s}}), \quad 0 \le i \le n.$$

Definition 1. Given a sequence $\mathbf{s} = (s_1, \ldots, s_n)$ of positive integers, the s-lecture hall parallelepiped, denoted by $\operatorname{Par}_{\mathbf{s}}$, is the fundamental parallelepiped generated by the non-origin vertices of the s-lecture hall polytope $P_{\mathbf{s}}$:

 $Par_{\mathbf{s}} \coloneqq Par((0, 0, \dots, 0, s_n), (0, 0, \dots, 0, s_{n-1}, s_n), \dots, (s_1, s_2, \dots, s_n)).$

Lemma 2. The δ -vector of $P_{\mathbf{s}}$ is given by

 $\delta_{P_{\mathbf{s}},i} = \ell^i(\operatorname{Par}_{\mathbf{s}^*}), \quad 0 \le i \le n.$

Furthermore, if $s_n = 1$, then

$$\ell^i(\operatorname{Par}_{\mathbf{s}}) = \ell^i(\operatorname{Par}_{\mathbf{s}^*}), \quad 0 \le i \le n.$$

Hence,

$$\delta_{P_{\mathbf{s}},i} = \ell^i(\operatorname{Par}_{\mathbf{s}}), \quad 0 \le i \le n.$$

We will present results on the cases where $s_n = 1$, where s = (n, n - 1, ..., 1) is a special case.

Detailed Goal

Detailed Goal:

When s = (n, n - 1, ..., 1), can we give a nice bijection between $\mathcal{L}^i(\operatorname{Par}_s)$ and inversion sequences of length n with i descents?

In fact, we will construct bijections between $\mathcal{L}^i(\operatorname{Par}_s)$ and certain sequences with i s-descents, for any s with $s_n = 1$.

PART II:

The **Bijection**

Summary: We will construct a bijection from lattice points in Par_s to certain family of sequences, and show it has the desired property.

The map $\operatorname{REM}_{\mathbf{s}}$

Assume that $\mathbf{s} = (s_1, \dots, s_n)$ is a sequence of positive integers. We associate the following set to \mathbf{s} : $\Psi_{\mathbf{s}} = \langle s_1 - 1 \rangle \times \dots \times \langle s_n - 1 \rangle.$

Notice that Ψ_s is the set of inversion sequences of length n if s = (n, n-1, ..., 1).

Assume that $s = (s_1, ..., s_n)$ is a sequence of positive integers. We associate the following set to s: $\Psi_s = \langle s_1 - 1 \rangle \times \cdots \times \langle s_n - 1 \rangle.$

Notice that Ψ_{s} is the set of inversion sequences of length n if s = (n, n - 1, ..., 1). **Definition 3.** We define a map

$$\operatorname{REM}_{\mathbf{s}}:\operatorname{Par}_{\mathbf{s}}\cap\mathbb{Z}^n\to\Psi_{\mathbf{s}}$$

in the following way. Let $\mathbf{x} = (x_1, \dots, x_n) \in \operatorname{Par}_{\mathbf{s}} \cap \mathbb{Z}^n$. For each x_i , let $k_i = \lfloor \frac{x_i}{s_i} \rfloor$ be the quotient of dividing x_i by s_i , and r_i be the remainder. Hence

$$x_i = k_i s_i + r_i,$$

where $k_i \in \langle n-1 \rangle$ and $r_i \in \langle s_i - 1 \rangle$. Let $\mathbf{k} = (k_1, \dots, k_n)$ be the *quotient sequence* and $\mathbf{r} = (r_1, \dots, r_n)$ be the *remainder sequence*. Then we define $\text{REM}_{\mathbf{s}}(\mathbf{x}) = \mathbf{r}$.

Example. Let s = (3, 2, 1). We have

$\mathbf{x} \in \operatorname{Par}_{\mathbf{s}} \cap \mathbb{Z}^n$	k	r = REM $_{ m s}({f x})$
(0, 0, 0)	(0, 0, 0)	(0, 0, 0)
(0, 1, 1)	(0, 0, 1)	(0, 1, 0)
(1, 2, 1)	(0, 1, 1)	(1, 0, 0)
(1, 1, 1)	(0, 0, 1)	(1, 1, 0)
(2, 2, 1)	(0, 1, 1)	(2, 0, 0)
(2, 3, 2)	(0, 1, 2)	(2, 1, 0)

Example. Let s = (3, 2, 1). We have

$\mathbf{x} \in \operatorname{Par}_{\mathbf{s}} \cap \mathbb{Z}^n$	k	r = REM _s (x)
(0, 0, 0)	(0, 0, 0)	(0, 0, 0)
(0, 1, 1)	(0, 0, 1)	(0, 1, 0)
(1, 2, 1)	(0, 1, 1)	(1, 0, 0)
(1, 1, 1)	(0, 0, 1)	(1, 1, 0)
(2, 2, 1)	(0, 1, 1)	(2, 0, 0)
(2, 3, 2)	(0, 1, 2)	(2, 1, 0)

Note that the last column consists of each element of $\Psi_s = \langle 2 \rangle \times \langle 1 \rangle \times \langle 0 \rangle$ exactly once.

Example. Let s = (3, 2, 1). We have

$\mathbf{x} \in \operatorname{Par}_{\mathbf{s}} \cap \mathbb{Z}^n$	k	r = REM _s (x)
(0, 0, 0)	(0, 0, 0)	(0, 0, 0)
(0, 1, 1)	(0, 0, 1)	(0, 1, 0)
(1, 2, 1)	(0, 1, 1)	(1, 0, 0)
(1, 1, 1)	(0, 0, 1)	(1, 1, 0)
(2, 2, 1)	(0, 1, 1)	(2, 0, 0)
(2, 3, 2)	(0, 1, 2)	(2, 1, 0)

Note that the last column consists of each element of $\Psi_s = \langle 2 \rangle \times \langle 1 \rangle \times \langle 0 \rangle$ exactly once.

Lemma 4. REM_s is a bijection from $\operatorname{Par}_{s} \cap \mathbb{Z}^{n}$ to Ψ_{s} .

Example. Let s = (3, 2, 1). We have

$\mathbf{x} \in \operatorname{Par}_{\mathbf{s}} \cap \mathbb{Z}^n$	k	r = REM _s (x)
(0, 0, 0)	(0, 0, 0)	(0, 0, 0)
(0, 1, 1)	(0, 0, 1)	(0, 1, 0)
(1, 2, 1)	(0, 1, 1)	(1, 0, 0)
(1, 1, 1)	(0, 0, 1)	(1, 1, 0)
(2, 2, 1)	(0, 1, 1)	(2, 0, 0)
(2, 3, 2)	(0, 1, 2)	(2, 1, 0)

Note that the last column consists of each element of $\Psi_s = \langle 2 \rangle \times \langle 1 \rangle \times \langle 0 \rangle$ exactly once.

Lemma 4. REM_s is a bijection from $\operatorname{Par}_{s} \cap \mathbb{Z}^{n}$ to Ψ_{s} .

Question How do we recover the quotient sequence k?

Definition 5. Let $\boldsymbol{r} = (r_1, \dots, r_n)$. We say that i is an s-descent of \boldsymbol{r} if $\frac{r_i}{s_i} > \frac{r_{i+1}}{s_{i+1}}$. We denote by $\text{Des}_s(\boldsymbol{r})$ the set of s-descents of \boldsymbol{r} , and let $\text{des}_s(\boldsymbol{r}) = \# \text{Des}_s(\boldsymbol{r})$ be its cardinality. For any $1 \le i \le n$, we let

 $\mathrm{des}_{\mathbf{s}}^{< i}(\boldsymbol{r})$ = $\#\mathbf{s}$ -descents of \boldsymbol{r} that are smaller than i

Definition 5. Let $\boldsymbol{r} = (r_1, \dots, r_n)$. We say that i is an s-descent of \boldsymbol{r} if $\frac{r_i}{s_i} > \frac{r_{i+1}}{s_{i+1}}$.

We denote by $\text{Des}_{s}(r)$ the set of s-descents of r, and let $\text{des}_{s}(r) = \# \text{Des}_{s}(r)$ be its cardinality. For any $1 \le i \le n$, we let

 $\mathrm{des}_{\mathbf{s}}^{< i}(\boldsymbol{r})$ = $\#\mathbf{s}$ -descents of \boldsymbol{r} that are smaller than i

Example. Let
$$r = (1, 1, 0)$$
.
For $s = (3, 2, 1)$: since $\frac{1}{3} < \frac{1}{2} > \frac{0}{1}$, we have
 $Des_s(r) = \{2\}$, and $des_s^{<1}(r) = 0$, $des_s^{<2}(r) = 0$, $des_s^{<3}(r) = 1$.

Definition 5. Let $\boldsymbol{r} = (r_1, \ldots, r_n)$. We say that i is an s-descent of \boldsymbol{r} if $\frac{r_i}{s_i} > \frac{r_{i+1}}{s_{i+1}}$.

We denote by $\text{Des}_{s}(r)$ the set of s-descents of r, and let $\text{des}_{s}(r) = \# \text{Des}_{s}(r)$ be its cardinality. For any $1 \le i \le n$, we let

 $\mathrm{des}_{\mathbf{s}}^{< i}(\boldsymbol{r})$ = $\#\mathbf{s}$ -descents of \boldsymbol{r} that are smaller than i

Example. Let
$$r = (1, 1, 0)$$
.
For $s = (3, 2, 1)$: since $\frac{1}{3} < \frac{1}{2} > \frac{0}{1}$, we have
 $Des_{s}(r) = \{2\}$, and $des_{s}^{<1}(r) = 0$, $des_{s}^{<2}(r) = 0$, $des_{s}^{<3}(r) = 1$.
Note that $Des(r) = \{2\}$.

Definition 5. Let $\boldsymbol{r} = (r_1, \ldots, r_n)$. We say that i is an s-descent of \boldsymbol{r} if $\frac{r_i}{s_i} > \frac{r_{i+1}}{s_{i+1}}$.

We denote by $\text{Des}_{s}(r)$ the set of s-descents of r, and let $\text{des}_{s}(r) = \# \text{Des}_{s}(r)$ be its cardinality. For any $1 \le i \le n$, we let

 $\mathrm{des}_{\mathbf{s}}^{< i}(\boldsymbol{r})$ = $\#\mathbf{s}$ -descents of \boldsymbol{r} that are smaller than i

Example. Let
$$r = (1, 1, 0)$$
.
For $s = (3, 2, 1)$: since $\frac{1}{3} < \frac{1}{2} > \frac{0}{1}$, we have
 $Des_s(r) = \{2\}$, and $des_s^{<1}(r) = 0$, $des_s^{<2}(r) = 0$, $des_s^{<3}(r) = 1$.

Note that $Des(r) = \{2\}$.

Lemma 6. If s = (n, n-1, ..., 1), then s-descents of $r \in \Psi_s$ are the same as regular descents of r.

An example of s-descents

Example. Let s = (3, 2, 1). We have

$oldsymbol{r}\in\Psi_{\mathbf{s}}$	$ ext{Des}_{\mathbf{s}}(m{r})$ = $ ext{Des}(m{r})$	$(\mathrm{des}_{\mathbf{s}}^{<}1(oldsymbol{r}),\mathrm{des}_{\mathbf{s}}^{<2}(oldsymbol{r}),\mathrm{des}_{\mathbf{s}}^{<3}(oldsymbol{r}))$
(0, 0, 0)	Ø	(0, 0, 0);
(0, 1, 0)	$\{2\}$	(0, 0, 1);
(1, 0, 0)	$\{1\}$	(0, 1, 1);
(1, 1, 0)	$\{2\}$	(0, 0, 1);
(2, 0, 0)	$\{1\}$	(0, 1, 1);
(2, 1, 0)	$\{1,2\}$	(0, 1, 2).

An example of s-descents

Example. Let s = (3, 2, 1). We have

$oldsymbol{r} \in \Psi_{\mathbf{s}}$	$ ext{Des}_{\mathbf{s}}(m{r})$ = $ ext{Des}(m{r})$	$(\mathrm{des}_{\mathbf{s}}^{<}1(oldsymbol{r}),\mathrm{des}_{\mathbf{s}}^{<2}(oldsymbol{r}),\mathrm{des}_{\mathbf{s}}^{<3}(oldsymbol{r}))$
(0, 0, 0)	Ø	(0, 0, 0);
(0, 1, 0)	$\{2\}$	(0, 0, 1);
(1, 0, 0)	$\{1\}$	(0, 1, 1);
(1, 1, 0)	$\{2\}$	(0, 0, 1);
(2, 0, 0)	$\{1\}$	(0, 1, 1);
(2, 1, 0)	$\{1, 2\}$	(0, 1, 2).

Lemma 7. Suppose $r = \text{REM}_s(x)$ is the remainder sequence of dividing x by s. Then the quotient sequence is given by

 $\mathbf{k} = (\mathrm{des}_{\mathbf{s}}^{<} 1(\boldsymbol{r}), \mathrm{des}_{\mathbf{s}}^{<2}(\boldsymbol{r}), \ldots, \mathrm{des}_{\mathbf{s}}^{<n}(\boldsymbol{r})).$

Inverse of $\operatorname{REM}_{\mathbf{s}}$

Since $x_i = k_i s_i + r_i$, we construct the inverse of REM_s.

Theorem 8. The inverse of the map $REM_{\mathbf{s}}$ is:

 $\operatorname{REM}_{\mathbf{s}}^{-1} : \Psi_{\mathbf{s}} \to \operatorname{Par}_{\mathbf{s}} \cap \mathbb{Z}^{n}$ $\boldsymbol{r} = (r_{1}, \dots, r_{n}) \mapsto (\operatorname{des}_{\mathbf{s}}^{<1}(\boldsymbol{r})s_{1} + r_{1}, \dots, \operatorname{des}_{\mathbf{s}}^{<n}(\boldsymbol{r})s_{n} + r_{n})$ Fu Liu

Inverse of $\operatorname{REM}_{\mathbf{s}}$

Since $x_i = k_i s_i + r_i$, we construct the inverse of REM_s.

Theorem 8. The inverse of the map $REM_{\mathbf{s}}$ is:

 $\operatorname{REM}_{\mathbf{s}}^{-1} : \Psi_{\mathbf{s}} \to \operatorname{Par}_{\mathbf{s}} \cap \mathbb{Z}^{n}$ $\boldsymbol{r} = (r_{1}, \dots, r_{n}) \mapsto (\operatorname{des}_{\mathbf{s}}^{<1}(\boldsymbol{r})s_{1} + r_{1}, \dots, \operatorname{des}_{\mathbf{s}}^{<n}(\boldsymbol{r})s_{n} + r_{n})$

Note that $des_s^{<n}(r) = des_s(r)$. When $s_n = 1$, we have $r_n = 0$, and thus the last entry in $REM_s^{-1}(r)$ is $des_s(r)$.

Inverse of $\operatorname{REM}_{\mathbf{s}}$

Since $x_i = k_i s_i + r_i$, we construct the inverse of REM_s.

Theorem 8. The inverse of the map $REM_{\mathbf{s}}$ is:

 $\operatorname{REM}_{\mathbf{s}}^{-1} : \Psi_{\mathbf{s}} \to \operatorname{Par}_{\mathbf{s}} \cap \mathbb{Z}^{n}$ $\boldsymbol{r} = (r_{1}, \dots, r_{n}) \mapsto (\operatorname{des}_{\mathbf{s}}^{<1}(\boldsymbol{r})s_{1} + r_{1}, \dots, \operatorname{des}_{\mathbf{s}}^{<n}(\boldsymbol{r})s_{n} + r_{n})$

Note that $des_s^{< n}(r) = des_s(r)$. When $s_n = 1$, we have $r_n = 0$, and thus the last entry in $REM_s^{-1}(r)$ is $des_s(r)$.

Corollary 9. If $s_n = 1$, the map REM_s induces a bijection from $\mathcal{L}^i(\text{Par}_s)$ to the elements $r \in \Psi_s$ with exactly *i s*-descents. Hence,

 $\ell^{i}(\operatorname{Par}_{\mathbf{s}}) = \#\{\mathbf{r} \in \Psi_{\mathbf{s}} \mid \operatorname{des}_{\mathbf{s}}(\mathbf{r}) = i\}.$

In particular, if s = (n, n - 1, ..., 1), the map REM_s gives a bijection between $\mathcal{L}^i(\text{Par}_s)$ and inversion sequences of length n with i descents.

Results on δ -vectors

Theorem 10. Suppose that $s = (s_1, ..., s_n)$ is a sequence of positive integers with $s_n = 1$. Then the δ -vector of the s-lecture hall polytope P_s is given by

 $\delta_{P_{\mathbf{s}},i} = \#\{\mathbf{r} \in \Psi_{\mathbf{s}} \mid \operatorname{des}_{\mathbf{s}}(\mathbf{r}) = i\}, \quad 0 \le i \le n.$

Results on δ -vectors

Theorem 10. Suppose that $s = (s_1, ..., s_n)$ is a sequence of positive integers with $s_n = 1$. Then the δ -vector of the s-lecture hall polytope P_s is given by

 $\delta_{P_{\mathbf{s}},i} = \#\{\mathbf{r} \in \Psi_{\mathbf{s}} \mid \operatorname{des}_{\mathbf{s}}(\mathbf{r}) = i\}, \quad 0 \le i \le n.$

Theorem 11. Suppose that $s = (s_1, ..., s_n)$ is a sequence of positive integers. Then the δ -vector of the s-lecture hall polytope P_s is given by

 $\delta_{P_{\mathbf{s}},i} = \#\{\boldsymbol{r} \in \Psi_{\mathbf{s}} \times \langle 0 \rangle \mid \operatorname{des}_{\mathbf{s}^*}(\boldsymbol{r}) = i\}, \quad 0 \le i \le n.$