A combinatorial analysis of Severi degrees

Fu Liu
University of California, Davis

The 7th International Congress of Chinese Mathematicians
Beijing, P. R. China
August 9, 2016

Outline

- Background on Severi degrees (classical and generalized ones)
- Computing Severi degrees via long-edge graphs
 - Introduce combinatorial objects in Fomin-Mikhalkin's formula for computing classical Severi degrees
 - Two main results: Vanishing Lemma and Linearity Theorem
 - First application
- Severi degrees on toric surfaces (joint work with Brian Osserman)
 - Introduce Ardila-Block's formula for computing Severi degrees for certain toric surfaces
 - Second application

PART I:

Background on Severi degrees

Summary: We introduce classical and generalized Severi degrees and relevant results, finishing with the original motivation of this work.

Classical Severi degree

- $N^{d,\delta}$ counts the number of curves of degree d with δ nodes passing through $\frac{d(d+3)}{2} \delta$ general points in \mathbb{CP}^2 .
- $N^{d,\delta}$ is the degree of the Severi variety.
- $N^{d,\delta} = N_{d,\frac{(d-1)(d-2)}{2}-\delta}$ (Gromov-Witten invariant) when $d \ge \delta + 2$.

Classical Severi degree

- $N^{d,\delta}$ counts the number of curves of degree d with δ nodes passing through $\frac{d(d+3)}{2} \delta$ general points in \mathbb{CP}^2 .
- $N^{d,\delta}$ is the degree of the Severi variety.
- $N^{d,\delta} = N_{d,\frac{(d-1)(d-2)}{2}-\delta}$ (Gromov-Witten invariant) when $d \ge \delta + 2$.

Generalized Severi degree

Let \mathcal{L} be a line bundle on a complex projective smooth surface Y.

- $N^{\delta}(Y, \mathcal{L})$ counts the number of δ -nodal curves in \mathcal{L} passing through $\dim |\mathcal{L}| \delta$ points in general position.
- $\bullet \ N^{\delta}(\mathbb{CP}^2, \mathscr{O}_{\mathbb{CP}^2}(d)) = N^{d,\delta}.$

• In 1994, Di Francesco and Itzykson conjectured that for fixed δ , the Severi degree $N^{d,\delta}$ is given by a node polynomial $N_{\delta}(d)$ for sufficiently large d.

- In 1994, Di Francesco and Itzykson conjectured that for fixed δ , the Severi degree $N^{d,\delta}$ is given by a node polynomial $N_{\delta}(d)$ for sufficiently large d.
- In 2009, Fomin and Mikhalkin showed that $N^{d,\delta}$ is given by a node polynomial $N_{\delta}(d)$ for $d \geq 2\delta$.

We call $d \geq 2\delta$ the threshold bound for polynomiality of $N^{d,\delta}$.

- In 1994, Di Francesco and Itzykson conjectured that for fixed δ , the Severi degree $N^{d,\delta}$ is given by a node polynomial $N_{\delta}(d)$ for sufficiently large d.
- In 2009, Fomin and Mikhalkin showed that $N^{d,\delta}$ is given by a node polynomial $N_{\delta}(d)$ for $d \geq 2\delta$.
 - We call $d \geq 2\delta$ the threshold bound for polynomiality of $N^{d,\delta}$.
- In 2011, Block improved the threshold bound to $d \geq \delta$.

- In 1994, Di Francesco and Itzykson conjectured that for fixed δ , the Severi degree $N^{d,\delta}$ is given by a node polynomial $N_{\delta}(d)$ for sufficiently large d.
- In 2009, Fomin and Mikhalkin showed that $N^{d,\delta}$ is given by a node polynomial $N_{\delta}(d)$ for $d \geq 2\delta$.
 - We call $d \geq 2\delta$ the threshold bound for polynomiality of $N^{d,\delta}$.
- In 2011, Block improved the threshold bound to $d \geq \delta$.
- In 2012, Kleiman and Shende lowered the bound further to $d \geq \lceil \delta/2 \rceil + 1$.

Göttsche's conjecture

In 1998, Göttsche conjectured the following:

(i) For every fixed δ , there exists a **universal polynomial** $T_{\delta}(w, x, y, z)$ of degree δ such that

$$N^{\delta}(Y, \mathcal{L}) = T_{\delta}(\mathcal{L}^2, \mathcal{L} \cdot \mathcal{K}, \mathcal{K}^2, c_2)$$

whenever Y is smooth and \mathcal{L} is $(5\delta - 1)$ -ample, where \mathcal{K} and c_2 are the canonical class and second Chern class of Y, respectively.

Göttsche's conjecture

In 1998, Göttsche conjectured the following:

(i) For every fixed δ , there exists a **universal polynomial** $T_{\delta}(w, x, y, z)$ of degree δ such that

$$N^{\delta}(Y, \mathcal{L}) = T_{\delta}(\mathcal{L}^2, \mathcal{L} \cdot \mathcal{K}, \mathcal{K}^2, c_2)$$

whenever Y is smooth and \mathcal{L} is $(5\delta - 1)$ -ample, where \mathcal{K} and c_2 are the canonical class and second Chern class of Y, respectively.

(ii) Moreover, there exist power series $B_1(q)$ and $B_2(q)$ such that

$$\sum_{\delta>0} T_{\delta}(x, y, z, w) (DG_2(q))^{\delta} = \frac{(DG_2(q)/q)^{\frac{z+w}{12} + \frac{x-y}{2}} B_1(q)^z B_2(q)^y}{(\Delta(q)D^2 G_2(q)/q^2)^{\frac{z+w}{24}}},$$

where $G_2(q) = -\frac{1}{24} + \sum_{n>0} \left(\sum_{d|n} d\right) q^n$ is the second Eisenstein series, $D = q \frac{d}{dq}$ and $\Delta(q) = q \prod_{k>0} (1 - q^k)^{24}$ is the modular discriminant. The above formula is known as the *Göttsche-Yau-Zaslow formula*.

Göttsche's conjecture (cont'd)

- In 2010, Tzeng proved Göttsche's conjecture (both parts).
- In 2011, Kool, Shende and Thomas proved part (i) of Göttsche's conjecture, i.e., the assertion of the existence of a universal polynomial, with a sharper bound on the necessary threshold on the ampleness of \mathcal{L} .

Göttsche's conjecture (cont'd)

- In 2010, Tzeng proved Göttsche's conjecture (both parts).
- In 2011, Kool, Shende and Thomas proved part (i) of Göttsche's conjecture, i.e., the assertion of the existence of a universal polynomial, with a sharper bound on the necessary threshold on the ampleness of \mathcal{L} .

Connection to node polynomial

 $N^{d,\delta}=N^{\delta}(Y,\mathscr{L})$ when $Y=\mathbb{CP}^2,\mathscr{L}=\mathscr{O}_{\mathbb{CP}^2}(d)$, in which case the four topological numbers become:

$$\mathcal{L}^2 = d^2, \mathcal{L} \cdot \mathcal{K} = -3d, \mathcal{K}^2 = 9, c_2 = 3.$$

Thus,

$$N_{\delta}(d) = T_{\delta}(d^2, -3d, 9, 3).$$

A consequence of the GYZ formula

Recall the Göttsche-Yau-Zaslow's formula

$$\sum_{\delta>0} T_{\delta}(x,y,z,w) (DG_2(q))^{\delta} = \frac{(DG_2(q)/q)^{\frac{z+w}{12} + \frac{x-y}{2}} B_1(q)^z B_2(q)^y}{(\Delta(q)D^2 G_2(q)/q^2)^{\frac{z+w}{24}}},$$

Proposition (Göttsche). If we form the generating function

$$\mathcal{N}(t) := \sum_{\delta \geq 0} T_{\delta}(w, x, y, z) t^{\delta},$$

and set $Q(t) := \log \mathcal{N}(t)$, then

$$Q(t) = wA_1(t) + xA_2(t) + yA_3(t) + zA_4(t).$$

for some $A_1, A_2, A_3, A_4 \in \mathbb{Q}[[t]]$.

In other words, $Q_{\delta}(w, x, y, z) := [t^{\delta}] \mathcal{Q}(t)$ is a linear function in w, x, y, z.

A consequence of the GYZ formula

Recall the Göttsche-Yau-Zaslow's formula

$$\sum_{\delta>0} T_{\delta}(x,y,z,w) (DG_2(q))^{\delta} = \frac{(DG_2(q)/q)^{\frac{z+w}{12} + \frac{x-y}{2}} B_1(q)^z B_2(q)^y}{(\Delta(q)D^2 G_2(q)/q^2)^{\frac{z+w}{24}}},$$

Proposition (Göttsche). If we form the generating function

$$\mathcal{N}(t) := \sum_{\delta \geq 0} T_{\delta}(w, x, y, z) t^{\delta},$$

and set $Q(t) := \log \mathcal{N}(t)$, then

$$Q(t) = wA_1(t) + xA_2(t) + yA_3(t) + zA_4(t).$$

for some $A_1, A_2, A_3, A_4 \in \mathbb{Q}[[t]]$.

In other words, $Q_{\delta}(w, x, y, z) := [t^{\delta}] \mathcal{Q}(t)$ is a linear function in w, x, y, z.

We call $Q_{\delta}(w, x, y, z)$ the *logarithmic version* of $T_{\delta}(w, x, y, z)$.

Logarithmic versions of Severi degrees

We let $Q^{\delta}(Y, \mathcal{L})$ be the *logarithmic version* of the generalized Severi degree $N^{\delta}(Y, \mathcal{L})$, that is,

$$\sum_{\delta \geq 1} Q^{\delta}(Y, \mathcal{L}) t^{\delta} = \log \left(\sum_{\delta \geq 0} N^{\delta}(Y, \mathcal{L}) t^{\delta} \right).$$

Logarithmic versions of Severi degrees

We let $Q^{\delta}(Y, \mathcal{L})$ be the *logarithmic version* of the generalized Severi degree $N^{\delta}(Y, \mathcal{L})$, that is,

$$\sum_{\delta \geq 1} Q^{\delta}(Y, \mathcal{L}) t^{\delta} = \log \left(\sum_{\delta \geq 0} N^{\delta}(Y, \mathcal{L}) t^{\delta} \right).$$

Corollary. For any fixed δ , there is a linear function $Q_{\delta}(w, x, y, z)$ (as we defined earlier) such that

$$Q^{\delta}(Y, \mathcal{L}) = Q_{\delta}(\mathcal{L}^2, \mathcal{L} \cdot \mathcal{K}, \mathcal{K}^2, c_2)$$

whenever Y is smooth and \mathcal{L} is sufficiently ample, where \mathcal{K} and c_2 are the canonical class and second Chern class of Y, respectively.

Similarly, we let $Q^{d,\delta}$ be the *logarithmic version* of the classical Severi degree $N^{d,\delta}$, and $Q_{\delta}(d)$ the *logarithmic version* of the node polynomial $N_{\delta}(d)$.

Corollary. For fixed δ and sufficiently large d, $Q^{d,\delta}$ is given by $Q_{\delta}(d)$

Similarly, we let $Q^{d,\delta}$ be the *logarithmic version* of the classical Severi degree $N^{d,\delta}$, and $Q_{\delta}(d)$ the *logarithmic version* of the node polynomial $N_{\delta}(d)$.

Corollary. For fixed δ and sufficiently large d, $Q^{d,\delta}$ is given by $Q_{\delta}(d)$ which is a quadratic polynomial in d.

Similarly, we let $Q^{d,\delta}$ be the *logarithmic version* of the classical Severi degree $N^{d,\delta}$, and $Q_{\delta}(d)$ the *logarithmic version* of the node polynomial $N_{\delta}(d)$.

Corollary. For fixed δ and sufficiently large d, $Q^{d,\delta}$ is given by $Q_{\delta}(d)$ which is a quadratic polynomial in d.

Proof. Recall that

$$N_{\delta}(d) = T_{\delta}(d^2, -3d, 9, 3).$$

Hence,

$$Q_{\delta}(d) = Q_{\delta}(d^2, -3d, 9, 3).$$

Similarly, we let $Q^{d,\delta}$ be the *logarithmic version* of the classical Severi degree $N^{d,\delta}$, and $Q_{\delta}(d)$ the *logarithmic version* of the node polynomial $N_{\delta}(d)$.

Corollary. For fixed δ and sufficiently large d, $Q^{d,\delta}$ is given by $Q_{\delta}(d)$ which is a quadratic polynomial in d.

Proof. Recall that

$$N_{\delta}(d) = T_{\delta}(d^2, -3d, 9, 3).$$

Hence,

$$Q_{\delta}(d) = Q_{\delta}(d^2, -3d, 9, 3).$$

Original Motivation Fomin-Mikhalkin's proof for the polynomiality of $N^{d,\delta}$ is combinatorial. Can we give a direct combinatorial proof for the above corollary?

PART II:

Computing Severi degrees via long-edge graphs

Summary: We introduce long-edge graphs and Fomin-Mikhalkin's formula for computing classical Severi degrees and discuss our two main results, using which we give a combinatorial proof for the quadradicity of $Q^{d,\delta}$.

• Based on Mikhalkin's work, Brugallé and Mikhalkin gave an enumerative formula for the classical Severi degree $N^{d,\delta}$ in terms of "(marked) labeled floor diagrams". (2007-2008)

- Based on Mikhalkin's work, Brugallé and Mikhalkin gave an enumerative formula for the classical Severi degree $N^{d,\delta}$ in terms of "(marked) labeled floor diagrams". (2007-2008)
- Fomin and Mikhalkin reformulated Brugallé and Mikhalkin's results by introducing a "template decomposition" of "long-edge graphs", and established the **polynomiality** of $N^{d,\delta}$. (2009)

- Based on Mikhalkin's work, Brugallé and Mikhalkin gave an enumerative formula for the classical Severi degree $N^{d,\delta}$ in terms of "(marked) labeled floor diagrams". (2007-2008)
- Fomin and Mikhalkin reformulated Brugallé and Mikhalkin's results by introducing a "template decomposition" of "long-edge graphs", and established the **polynomiality** of $N^{d,\delta}$. (2009)
- Block, Colley and Kennedy considered the logarithmic version of a special **single variable** function associated to long-edge graphs which appeared in Fomin-Mikhalkin's formula, and conjectured it to be **linear**. They have since proved their conjecture. (2012-13)

- Based on Mikhalkin's work, Brugallé and Mikhalkin gave an enumerative formula for the classical Severi degree $N^{d,\delta}$ in terms of "(marked) labeled floor diagrams". (2007-2008)
- Fomin and Mikhalkin reformulated Brugallé and Mikhalkin's results by introducing a "template decomposition" of "long-edge graphs", and established the **polynomiality** of $N^{d,\delta}$. (2009)
- Block, Colley and Kennedy considered the logarithmic version of a special **single variable** function associated to long-edge graphs which appeared in Fomin-Mikhalkin's formula, and conjectured it to be **linear**. They have since proved their conjecture. (2012-13)
- We consider a special **multivariate** function $P_{\beta}(G)$ associated to longedge graphs G that generalizes BCK's function and its logarithmic version $\Phi_{\beta}(G)$, and prove that $\Phi_{\beta}(G)$ is always linear. (2013)

Long-edge graphs

Definition. A *long-edge graph* G is a graph (V, E) with a weight function ρ satisfying the following conditions:

- a) The vertex set $V = \mathbb{N} = \{0, 1, 2, \dots\}$, and the edge set E is finite.
- b) Multiple edges are allowed, but loops are not.
- c) The weight function $\rho: E \to \mathbb{P}$ assigns a positive integer to each edge.
- d) There are no *short edges*, i.e., there's no edges connecting i and i + 1 with weight 1.

We define the multiplicity of G to be

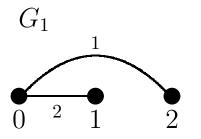
$$\mu(G) = \prod_{e \in E} (\rho(e))^2,$$

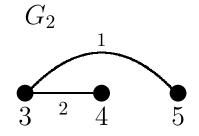
and the cogenus of G to be

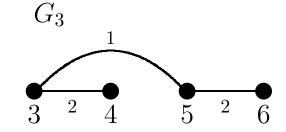
$$\delta(G) = \sum_{e \in E} (l(e)\rho(e) - 1),$$

where for any $e = \{i, j\} \in E$ with i < j, we define l(e) = j - i.

Examples of long-edge graphs



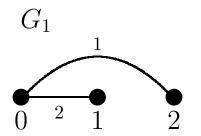


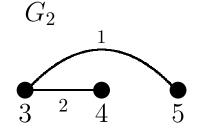


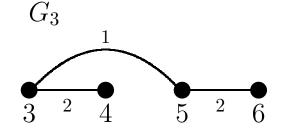
$$\mu(G_1) = \mu(G_2) = 2^2 \cdot 1^2 = 4, \quad \delta(G_1) = \delta(G_2) = (2 \cdot 1 - 1) + (1 \cdot 2 - 1) = 2,$$

$$\mu(G_3) = 2^2 \cdot 1^2 \cdot 2^2 = 16, \quad \delta(G_3) = (2 \cdot 1 - 1) + (1 \cdot 2 - 1) + (2 \cdot 1 - 1) = 3.$$

Examples of long-edge graphs







$$\mu(G_1) = \mu(G_2) = 2^2 \cdot 1^2 = 4, \quad \delta(G_1) = \delta(G_2) = (2 \cdot 1 - 1) + (1 \cdot 2 - 1) = 2,$$

 $\mu(G_3) = 2^2 \cdot 1^2 \cdot 2^2 = 16, \quad \delta(G_3) = (2 \cdot 1 - 1) + (1 \cdot 2 - 1) + (2 \cdot 1 - 1) = 3.$

Definitions by example

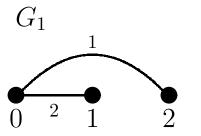
 $G_2 = (G_1)_{(3)}$, since G_2 is obtained by shifting G_1 three units to the right.

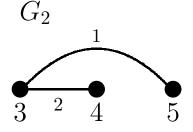
$$\max(G_3) = 6, \quad \min(G_3) = 3,$$

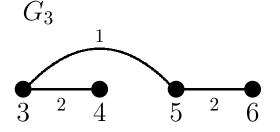
 G_1 is a *template* because minv $(G_1) = 0$ and we cannot "cut" G_1 into two nonempty subgraphs.

 G_2 is a *shifted template*, and G_3 is **not** a shifted template.

Examples of long-edge graphs







$$\mu(G_1) = \mu(G_2) = 2^2 \cdot 1^2 = 4, \quad \delta(G_1) = \delta(G_2) = (2 \cdot 1 - 1) + (1 \cdot 2 - 1) = 2,$$

 $\mu(G_3) = 2^2 \cdot 1^2 \cdot 2^2 = 16, \quad \delta(G_3) = (2 \cdot 1 - 1) + (1 \cdot 2 - 1) + (2 \cdot 1 - 1) = 3.$

Definitions by example

 $G_2 = (G_1)_{(3)}$, since G_2 is obtained by shifting G_1 three units to the right.

$$\max(G_3) = 6, \quad \min(G_3) = 3,$$

 G_1 is a *template* because $\min_{\mathbf{G}_1}(G_1) = 0$ and we cannot "cut" G_1 into two nonempty subgraphs.

 G_2 is a *shifted template*, and G_3 is **not** a shifted template.

Observation Any long-edge graph can be **decomposed** into shifted templates.

Concepts without detailed definitions

Let $\beta = (\beta_1, \beta_2, ..., \beta_{M+1}) \in \mathbb{Z}_{\geq 0}^{M+1}$ (where $M \geq 0$).

• β -allowable and strictly β -allowable.

Fact. A long-edge graph is simultaneously β -allowable and strictly β -allowable most of the time except for some "boundary" conditions.

Concepts without detailed definitions

Let
$$\beta = (\beta_1, \beta_2, ..., \beta_{M+1}) \in \mathbb{Z}_{\geq 0}^{M+1}$$
 (where $M \geq 0$).

- β -allowable and strictly β -allowable.
 - Fact. A long-edge graph is simultaneously β -allowable and strictly β -allowable most of the time except for some "boundary" conditions.
- β -extended ordering.

Define

$$P_{\beta}(G) = \begin{cases} \# (\beta\text{-extended orderings of } G) & \text{if } G \text{ is } \beta\text{-allowable;} \\ 0 & \text{otherwise.} \end{cases}$$

and

$$P_{\beta}^{s}(G) = \begin{cases} \# \ (\beta\text{-extended orderings of } G) & \text{if } G \text{ is strictly } \beta\text{-allowable;} \\ 0 & \text{otherwise.} \end{cases}$$

Fomin-Mikhalkin's formula

Theorem (Brugallé-Mikhalkin, Fomin-Mikhalkin). The classical Severi degree $N^{d,\delta}$ is given by

$$N^{d,\delta} = \sum_{G: \ \delta(G) = \delta} \mu(G) P_{\mathbf{v}(d)}^{s}(G),$$

where

$$\mathbf{v}(d) := (0, 1, 2, \dots, d), \qquad \forall d \in \mathbb{Z}_{>0}.$$

Fomin-Mikhalkin's formula

Theorem (Brugallé-Mikhalkin, Fomin-Mikhalkin). The classical Severi degree $N^{d,\delta}$ is given by

$$N^{d,\delta} = \sum_{G: \ \delta(G) = \delta} \mu(G) P_{\mathbf{v}(d)}^{s}(G),$$

where

$$\mathbf{v}(d) := (0, 1, 2, \dots, d), \qquad \forall d \in \mathbb{Z}_{>0}.$$

Logarithmic version

Recall that $Q^{d,\delta}$ is the logarithmic version $N^{d,\delta}$. We define $\Phi_{\beta}(G)$ and $\Phi_{\beta}^{s}(G)$ be the *logarithmic version* of $P_{\beta}(G)$ and $P_{\beta}^{s}(G)$, respectively. Then we obtain the **logarithmic version of Fomin-Mikhalkin's formula**:

$$Q^{d,\delta} = \sum_{G: \ \delta(G) = \delta} \mu(G) \Phi_{\mathbf{v}(d)}^{s}(G).$$

Fomin-Mikhalkin's formula

Theorem (Brugallé-Mikhalkin, Fomin-Mikhalkin). The classical Severi degree $N^{d,\delta}$ is given by

$$N^{d,\delta} = \sum_{G: \ \delta(G) = \delta} \mu(G) P_{\mathbf{v}(d)}^{s}(G),$$

where

$$\mathbf{v}(d) := (0, 1, 2, \dots, d), \qquad \forall d \in \mathbb{Z}_{>0}.$$

Logarithmic version

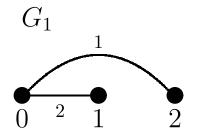
Recall that $Q^{d,\delta}$ is the logarithmic version $N^{d,\delta}$. We define $\Phi_{\beta}(G)$ and $\Phi_{\beta}^{s}(G)$ be the *logarithmic version* of $P_{\beta}(G)$ and $P_{\beta}^{s}(G)$, respectively. Then we obtain the **logarithmic version of Fomin-Mikhalkin's formula**:

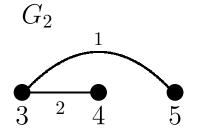
$$Q^{d,\delta} = \sum_{G: \ \delta(G) = \delta} \mu(G) \Phi_{\mathbf{v}(d)}^{s}(G).$$

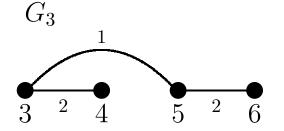
Our original motivation was to give a combinatorial proof for the result that $Q^{d,\delta}$ is given by **quadratic** polynomial, for sufficiently large d.

The Vanishing Lemma

Recall that among the three graphs in the figure,







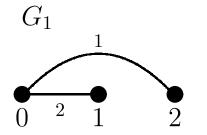
 G_1 and G_2 are *shifted templates*, and G_3 is **not** a shifted template.

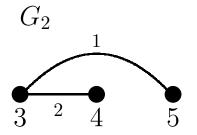
Lemma (L.). Suppose G is not a shifted template. Then

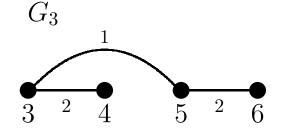
$$\Phi^s_{\beta}(G) = 0.$$

The Vanishing Lemma

Recall that among the three graphs in the figure,







 G_1 and G_2 are *shifted templates*, and G_3 is **not** a shifted template.

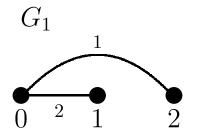
Lemma (L.). Suppose G is not a shifted template. Then

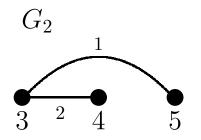
$$\Phi_{\beta}^{s}(G) = 0.$$

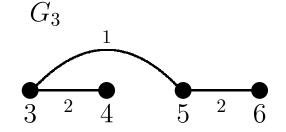
Corollary (Block-Colley-Kennedy, L.). Suppose G is not a shifted template. Then $\Phi_{\mathbf{v}(d)}^s(G) = 0$.

The Vanishing Lemma

Recall that among the three graphs in the figure,







 G_1 and G_2 are *shifted templates*, and G_3 is **not** a shifted template.

Lemma (L.). Suppose G is not a shifted template. Then

$$\Phi_{\beta}^{s}(G) = 0.$$

Corollary (Block-Colley-Kennedy, L.). Suppose G is not a shifted template. Then $\Phi_{\mathbf{v}(d)}^{s}(G) = 0$.

Applying the corollary, we get

$$Q^{d,\delta} = \sum_{G: \ \delta(G) = \delta} \mu(G) \Phi^s_{\mathbf{v}(d)}(G) = \sum_{\text{template } \Gamma: \ \delta(\Gamma) = \delta} \mu(\Gamma) \sum_{k \ge 0} \Phi^s_{\mathbf{v}(d)} \left(\Gamma_{(k)} \right),$$

The Linearity Theorem

Theorem (L.). Suppose G is a long-edge graph satisfying $\max(G) \leq M + 1$. Then for any sufficiently large $\beta = (\beta_1, \ldots, \beta_{M+1})$ (depending on G), the values of $\Phi_{\beta}(G)$ are given by a linear multivariate function in β .

The Linearity Theorem

Theorem (L.). Suppose G is a long-edge graph satisfying $\max(G) \leq M + 1$. Then for any sufficiently large $\beta = (\beta_1, \ldots, \beta_{M+1})$ (depending on G), the values of $\Phi_{\beta}(G)$ are given by a linear multivariate function in β .

Corollary (Block-Colley-Kennedy, L.). Suppose G is a long-edge graph. Then for sufficiently large k (depending on G), and suffciently large d (depending on G and k), $\Phi_{\mathbf{v}(d)}(G_{(k)})$ is a linear function in k.

Quadraticity of $Q^{d,\delta}$

Sketch of Proof. We already show

$$Q^{d,\delta} = \sum_{\text{template } \Gamma: \ \delta(\Gamma) = \delta} \mu(\Gamma) \sum_{k \ge 0} \Phi^s_{\mathbf{v}(d)} \left(\Gamma_{(k)} \right).$$

Then the conclusion follows from the following points:

• There are finitely many templates of a given cogenus δ .

Quadraticity of $Q^{d,\delta}$

Sketch of Proof. We already show

$$Q^{d,\delta} = \sum_{\text{template } \Gamma: \ \delta(\Gamma) = \delta} \mu(\Gamma) \sum_{k \ge 0} \Phi^s_{\mathbf{v}(d)} \left(\Gamma_{(k)} \right).$$

Then the conclusion follows from the following points:

- There are finitely many templates of a given cogenus δ .
- For fixed d, the second summation has finitely many terms. In fact, we were able to show that the second summation becomes

$$\sum_{k=0}^{d+\epsilon_1(\Gamma)-l(\Gamma)} \Phi_{\mathbf{v}(d)}^s \left(\Gamma_{(k)}\right) = \sum_{k=1}^{d+\epsilon_1(\Gamma)-l(\Gamma)} \Phi_{\mathbf{v}(d)} \left(\Gamma_{(k)}\right).$$

Quadraticity of $Q^{d,\delta}$

Sketch of Proof. We already show

$$Q^{d,\delta} = \sum_{\text{template } \Gamma: \ \delta(\Gamma) = \delta} \mu(\Gamma) \sum_{k \ge 0} \Phi^s_{\mathbf{v}(d)} \left(\Gamma_{(k)} \right).$$

Then the conclusion follows from the following points:

- There are finitely many templates of a given cogenus δ .
- For fixed d, the second summation has finitely many terms. In fact, we were able to show that the second summation becomes

$$\sum_{k=0}^{d+\epsilon_1(\Gamma)-l(\Gamma)} \Phi_{\mathbf{v}(d)}^s \left(\Gamma_{(k)}\right) = \sum_{k=1}^{d+\epsilon_1(\Gamma)-l(\Gamma)} \Phi_{\mathbf{v}(d)} \left(\Gamma_{(k)}\right).$$

• It follows from the linearity corollary that except for first several terms, all other terms are a linear function in k.

We can do more

- Recover the threshold bound $d \geq \delta$ for the polynomiality of $N^{d,\delta}$ obtained by Block.
- and ...

PART III:

Severi degrees on toric surfaces

Summary: We consider generalized Severi degrees on certain toric surfaces. By analyzing Ardila-Block's formula and applying the results from PART II, we obtain universality results that has close connection to Göttsche-Yau-Zaslow formula.

This is joint work with Brian Osserman.

Severi degrees $N^{\Delta,\delta}$

Recall that $N^{\delta}(Y, \mathcal{L})$ is the generalized Severi degree that counts the number of δ -nodal curves in \mathcal{L} passing through dim $|\mathcal{L}| - \delta$ points in general position, and $Q^{\delta}(Y, \mathcal{L})$ is its logarithmic version.

Given a lattice polygon Δ , let $Y(\Delta)$ be associated toric surface, and $\mathcal{L}(\Delta)$ be the line bundle, and set

$$N^{\Delta,\delta} := N^{\delta}(Y(\Delta), \mathscr{L}(\Delta)), \quad \text{and} \quad Q^{\Delta,\delta} := Q^{\delta}(Y(\Delta), \mathscr{L}(\Delta)).$$

Severi degrees $N^{\Delta,\delta}$

Recall that $N^{\delta}(Y, \mathcal{L})$ is the generalized Severi degree that counts the number of δ -nodal curves in \mathcal{L} passing through dim $|\mathcal{L}| - \delta$ points in general position, and $Q^{\delta}(Y, \mathcal{L})$ is its logarithmic version.

Given a lattice polygon Δ , let $Y(\Delta)$ be associated toric surface, and $\mathcal{L}(\Delta)$ be the line bundle, and set

$$N^{\Delta,\delta} := N^{\delta}(Y(\Delta), \mathscr{L}(\Delta)), \quad \text{and} \quad Q^{\Delta,\delta} := Q^{\delta}(Y(\Delta), \mathscr{L}(\Delta)).$$

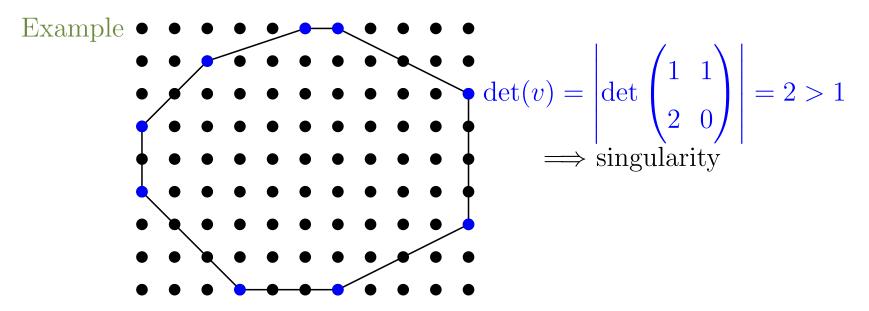
Recall that Fomin-Mikhalkin's formula for $N^{d,\delta}$ was derived from Brugallé-Mikhalkin's enumerative formula for Severi degrees using labeled floor diagrams.

In fact, the formula introduced by Brugallé and Mikhalkin works **not only** for $N^{d,\delta}$, **but also** for Severi degrees $N^{\Delta,\delta}$ arising from h-transverse polygons Δ .

h-transverse polygon

Definition. A polygon Δ is h-transverse if all its normal vectors have infinite or integer slope.

If v is a vertex of Δ , we define $\det(v)$ to be $|\det(w_1, w_2)|$, where w_1 and w_2 are primitive integer normal vectors to the edges adjacent to v.



The normals of the top and bottom edges have slopes ∞ and $-\infty$. The normals of the four edges on the left have slopes -3, -1, 0 and 1. The normals of the three edges on the right have slopes 2, 0 and -2.

Ardila-Block's work

In parallel to Fomin-Mikhalkin's work, Ardila and Block reformulate Brugallé-Mikhalkin's formula for $N^{\Delta,\delta}$ where Δ is an h-transverse polygon, and obtain polynomiality result.

Theorem (Brugallé-Mikhalkin, Ardila-Block). For any h-transverse polygon Δ and any $\delta \geq 0$, the Severi degree $N^{\Delta,\delta}$ is given by

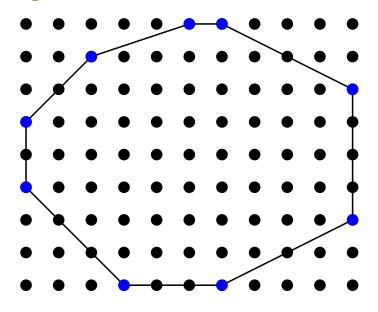
$$N^{\Delta,\delta} = \sum_{\Delta'} \sum_{G} \mu(G) P^s_{\beta(\Delta')}(G),$$

where the first summation is over all "reorderings" Δ' of Δ satisfying $\delta(\Delta') \leq \delta$, and the second summation is over all long-edge graphs G with $\delta(G) = \delta - \delta(\Delta')$.

Ardila-Block's work (cont'd)

Ardila and Block encode each h-transverse polygon Δ with two vectors \mathbf{c} and \mathbf{d} .

Example



Slope vector:

$$\mathbf{c} = ((2, 0, -2), (-3, -1, 0, 1))$$

Edge length vector:

$$\mathbf{d} = (1, (2, 4, 2), (1, 2, 2, 3))$$

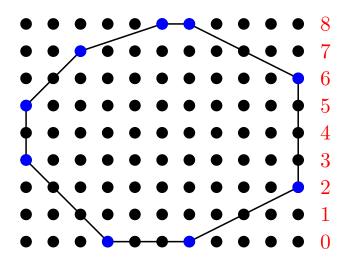
Write

$$\Delta = \Delta(\mathbf{c}, \mathbf{d}).$$

Ardila-Block's work (cont'd)

Theorem (Ardila-Block). Fixing δ and the number of edges on the left and right of Δ .

- For fixed \mathbf{c} , the number $N^{\Delta,\delta}$ is given by a **polynomial** in \mathbf{d} for any choice of \mathbf{d} such that the heights of vertices of $\Delta(\mathbf{c}, \mathbf{d})$ are sufficiently spread out relative to δ .
- The number $N^{\Delta,\delta}$ is given by a **polynomial** in **c** and **d** for any **c** that is sufficiently spread out, any choice of **d** such that the **heights** of vertices of $\Delta(\mathbf{c}, \mathbf{d})$ are sufficiently spread out relative to δ .



Tzeng's theorem

Recall Göttsche's conjecture/Tzeng's theorem:

(i) For every fixed δ , there exists a **universal polynomial** $T_{\delta}(w, x, y, z)$ of degree δ such that

$$N^{\delta}(Y, \mathcal{L}) = T_{\delta}(\mathcal{L}^2, \mathcal{L} \cdot \mathcal{K}, \mathcal{K}^2, c_2)$$

whenever Y is smooth and \mathcal{L} is $(5\delta - 1)$ -ample, where \mathcal{K} and c_2 are the canonical class and second Chern class of Y, respectively.

(ii) Moreover, there exist power series $B_1(q)$ and $B_2(q)$ such that

$$\sum_{\delta>0} T_{\delta}(x, y, z, w) (DG_2(q))^{\delta} = \frac{(DG_2(q)/q)^{\frac{z+w}{12} + \frac{x-y}{2}} B_1(q)^z B_2(q)^y}{(\Delta(q)D^2 G_2(q)/q^2)^{\frac{z+w}{24}}},$$

where $G_2(q) = -\frac{1}{24} + \sum_{n>0} \left(\sum_{d|n} d\right) q^n$ is the second Eisenstein series, $D = q \frac{d}{dq}$ and $\Delta(q) = q \prod_{k>0} (1-q^k)^{24}$ is the modular discriminant. The above formula is known as the *Göttsche-Yau-Zaslow formula*.

Ardila-Block's work vs Tzeng's theorem

- (i) Advantage: Treats many **singular** surfaces when Tzeng's theorem **only** covers **smooth surfaces**.
- (ii) Disadvantage: The **universality** is **not** nearly as strong:
 - need to fix the number of edges on the left and right;
 - infinite slopes are treated differently;
 - the number of variables grows with the number of edges;
 - no results like the Göttsche-Yau-Zaslow formula.

Strongly *h*-transverse

Recall that Ardila-Block's formula

$$N^{\Delta,\delta} = \sum_{\Delta'} \sum_{G} \mu(G) P^s_{\beta(\Delta')}(G),$$

is very similar to Fomin-Mikhalkin's formula. Thus, naturally we consider the logarithmic version of it:

$$Q^{\Delta,\delta} = \sum_{\Delta'} \sum_{G} \mu(G) \Phi^s_{\beta(\Delta')}(G),$$

By applying the Vanishing Lemma and the Linearity Theorem, we are able to give a formula for $Q^{\Delta,\delta}$.

Strongly *h*-transverse

Recall that Ardila-Block's formula

$$N^{\Delta,\delta} = \sum_{\Delta'} \sum_{G} \mu(G) P^s_{\beta(\Delta')}(G),$$

is very similar to Fomin-Mikhalkin's formula. Thus, naturally we consider the logarithmic version of it:

$$Q^{\Delta,\delta} = \sum_{\Delta'} \sum_{G} \mu(G) \Phi^s_{\beta(\Delta')}(G),$$

By applying the Vanishing Lemma and the Linearity Theorem, we are able to give a formula for $Q^{\Delta,\delta}$. The result is particularly nice when Δ is "strongly h-transverse".

Definition. We say an h-transverse polygon Δ is strongly h-transverse if either there is a non-zero horizontal edge at the top of Δ , or the vertex v at the top has $\det(v) \in \{1, 2\}$, and the same holds for the bottom of Δ .

Strongly *h*-transverse

Recall that Ardila-Block's formula

$$N^{\Delta,\delta} = \sum_{\Delta'} \sum_{G} \mu(G) P^s_{\beta(\Delta')}(G),$$

is very similar to Fomin-Mikhalkin's formula. Thus, naturally we consider the logarithmic version of it:

$$Q^{\Delta,\delta} = \sum_{\Delta'} \sum_{G} \mu(G) \Phi^s_{\beta(\Delta')}(G),$$

By applying the Vanishing Lemma and the Linearity Theorem, we are able to give a formula for $Q^{\Delta,\delta}$. The result is particularly nice when Δ is "strongly h-transverse".

Definition. We say an h-transverse polygon Δ is strongly h-transverse if either there is a non-zero horizontal edge at the top of Δ , or the vertex v at the top has $\det(v) \in \{1, 2\}$, and the same holds for the bottom of Δ .

It turns out that an h-transverse polygon Δ is strongly h-transverse if and only if $Y(\Delta)$ is Gorenstein.

Main result

Recall the following corollary to Tzeng's theorem:

Corollary. For any fixed δ , there is a linear function $Q_{\delta}(w, x, y, z)$ such that $Q^{\delta}(Y, \mathcal{L}) = Q_{\delta}(\mathcal{L}^{2}, \mathcal{L} \cdot \mathcal{K}, \mathcal{K}^{2}, c_{2})$

whenever Y is smooth and \mathcal{L} is sufficiently ample, where \mathcal{K} and c_2 are the canonical class and second Chern class of Y, respectively.

Main result

Recall the following corollary to Tzeng's theorem:

Corollary. For any fixed δ , there is a linear function $Q_{\delta}(w, x, y, z)$ such that $Q^{\delta}(Y, \mathcal{L}) = Q_{\delta}(\mathcal{L}^{2}, \mathcal{L} \cdot \mathcal{K}, \mathcal{K}^{2}, c_{2})$

whenever Y is smooth and \mathcal{L} is sufficiently ample, where \mathcal{K} and c_2 are the canonical class and second Chern class of Y, respectively.

Theorem (L.-Osserman). Fix $\delta \geq 1$. Then there exist constants $E(\delta)$ and $E_i(\delta)$ for $i = 1, ..., \delta - 1$ such that if Δ is a strongly h-transverse polygon with all edges having length at least δ , then

$$Q^{\Delta,\delta} = Q_{\delta}(\mathcal{L}(\Delta)^2, \mathcal{L}(\Delta) \cdot \mathcal{K}, \mathcal{K}^2, \tilde{c}_2) + E(\delta)S + \sum_{i=1}^{\delta-1} E_i(\delta)S_i,$$

where \mathcal{K} is the canonical line bundle on $Y(\Delta)$, S_i is the number of singularities of $Y(\Delta)$ of Milnor number i, $\tilde{c}_2 = c_2(Y(\Delta)) + \sum_{i \geq 1} i S_i$, and $S = \sum_{i \geq 1} (i+1) S_i$.

Connection to Tzeng's Theorem

Theorem (L.-Osserman). We have the following:

(i) For every fixed δ , there exists a universal polynomial $T_{\delta}(w, x, y, z; s, s_1, \dots, s_{\delta-1})$ such that

$$N^{\Delta,\delta} = T_{\delta}(\mathcal{L}^2, \mathcal{L} \cdot \mathcal{K}, \mathcal{K}^2, \tilde{c}_2; S, S_1, \dots, S_{\delta-1})$$

whenever Δ is a strongly h-transverse polygon with all edges having length at least δ .

(ii) Moreover,

$$\sum_{\delta \geq 0} T_{\delta}(\mathcal{L}^{2}, \mathcal{L} \cdot \mathcal{K}, \mathcal{K}^{2}, \tilde{c}_{2}; S, S_{1}, S_{2}, \dots) (DG_{2}(\tau))^{\delta}$$

$$= \frac{(DG_{2}(\tau)/q)^{\chi(\mathcal{L})} B_{1}(q)^{\mathcal{K}^{2}} B_{2}(q)^{\mathcal{L} \cdot \mathcal{K}}}{(\Delta(\tau)D^{2}G_{2}(\tau)/q^{2})^{\chi(\mathcal{O}_{S})/2}} \mathcal{P}(q)^{-S} \prod_{i \geq 2} \mathcal{P}(q^{i})^{S_{i-1}},$$

where $\mathcal{P}(x) = \sum_{n>0} p(n)x^n$ is the generating function for partitions.

Formulas for $B_1(q)$ and $B_2(q)$

Corollary. we have

$$B_1(q) = (\mathcal{P}(q))^{-1} \cdot \exp\left(-\sum_{\delta \ge 1} D(\delta) \left(DG_2(q)\right)^{\delta}\right),$$

$$B_2(q) = \exp\left(\sum_{\delta \ge 1} \left(A(\delta) - L(\delta)\right) \left(DG_2(q)\right)^{\delta}\right).$$

Here

$$A(\delta) = \frac{1}{2} \sum \mu(\Gamma) \zeta^{0}(\Gamma),$$

$$L(\delta) := -\frac{1}{2} \sum \mu(\Gamma) \zeta^{0}(\Gamma) (\ell(\Gamma) - \epsilon_{0}(\Gamma) - \epsilon_{1}(\Gamma)),$$

$$D(\delta) := -\sum \mu(\Gamma) (\zeta^{2}(\Gamma) + \zeta^{1}(\Gamma) (1 - \epsilon_{0}(\Gamma))),$$

where all summations are over templates of cogenus δ .