Combinatorics of nested Braid fan

Fu Liu
University of California, Davis

Combinatorics Seminar

Massachusetts Institute of Technology
April 6, 2018

This is joint work with Federico Castillo.

Outline

- Preliminary: Basic definitions of polytopes
- Motivation: Permutohedra and the Braid fan
- Nested permutohedra and the nested Braid fan (joint work with Castillo).

PART I:

Preliminary

Polytopes

Let V be a d-dimensional real vector space (or affine space), and V^* the dual space of V consisting of all linear functionals on V. This defines a perfect pairing $\langle \cdot, \cdot \rangle: V^* \times V \to \mathbb{R}$ by $\langle \boldsymbol{a}, \boldsymbol{x} \rangle = \boldsymbol{a}(\boldsymbol{x})$, for $\boldsymbol{a} \in V^*$ and $\boldsymbol{x} \in V$.

Polytopes

Let V be a d-dimensional real vector space (or affine space), and V^* the dual space of V consisting of all linear functionals on V. This defines a perfect pairing $\langle \cdot, \cdot \rangle: V^* \times V \to \mathbb{R}$ by $\langle \boldsymbol{a}, \boldsymbol{x} \rangle = \boldsymbol{a}(\boldsymbol{x})$, for $\boldsymbol{a} \in V^*$ and $\boldsymbol{x} \in V$.

Definition (Convex-hull definition). A *polytope* $P \subset V$ is the convex hull of finite many points $\{v_1, \ldots, v_n\}$ in V:

$$P:=\operatorname{conv}(oldsymbol{v}_1,\ldots,oldsymbol{v}_n)=\left\{\sum_{i=1}^n\lambda_ioldsymbol{v}_i\ :\ ext{ all }\lambda_i\geq 0, ext{ and }\sum_{i=1}^n\lambda_i=1
ight\}.$$

Polytopes

Let V be a d-dimensional real vector space (or affine space), and V^* the dual space of V consisting of all linear functionals on V. This defines a perfect pairing $\langle \cdot, \cdot \rangle: V^* \times V \to \mathbb{R}$ by $\langle \boldsymbol{a}, \boldsymbol{x} \rangle = \boldsymbol{a}(\boldsymbol{x})$, for $\boldsymbol{a} \in V^*$ and $\boldsymbol{x} \in V$.

Definition (Convex-hull definition). A *polytope* $P \subset V$ is the convex hull of finite many points $\{v_1, \ldots, v_n\}$ in V:

$$P:=\operatorname{conv}(oldsymbol{v}_1,\ldots,oldsymbol{v}_n)=\left\{\sum_{i=1}^n\lambda_ioldsymbol{v}_i\ :\ ext{ all }\lambda_i\geq 0, ext{ and }\sum_{i=1}^n\lambda_i=1
ight\}.$$

By the Minkowski-Weyl Theorem, we also have the following equivalent definition.

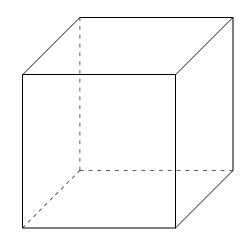
Definition (Inequality description). A *polyhedron* $P \subset V$ is the solution set of a system of linear inequalities:

$$P = \{ \boldsymbol{x} : \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle \leq b_i, i \in I \},$$

where I is some indexing set, $\mathbf{a}_i \in V^*$ and $b_i \in \mathbb{R}$.

A *polytope* is a bounded polyhedron.

An example: Cube



A 3-dimensional cube defined as:

conv
$$\left((0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1) \right)$$

Alternatively, it can be defined by 6 inequalities:

$$\langle -\boldsymbol{e}_i, \boldsymbol{x} \rangle = -x_i \le 0, \quad \langle \boldsymbol{e}_i, \boldsymbol{x} \rangle = x_i \le 1, \quad i = 1, 2, 3$$

Faces

Definition. Let $u \in V^*$. Define $c_{m{u}} := \max_{m{y} \in P} \langle m{u}, m{y} \rangle$. The set

$$F_{\boldsymbol{u}} := \{ \boldsymbol{x} \in P : \langle \boldsymbol{u}, \boldsymbol{x} \rangle = c_{\boldsymbol{u}} \}$$

is a *face* of P.

Faces

Definition. Let $u \in V^*$. Define $c_u := \max_{y \in P} \langle u, y \rangle$. The set

$$F_{\boldsymbol{u}} := \{ \boldsymbol{x} \in P : \langle \boldsymbol{u}, \boldsymbol{x} \rangle = c_{\boldsymbol{u}} \}$$

is a *face* of P.

Hence, we have that

 $\langle \boldsymbol{u}, \boldsymbol{x} \rangle \leq c_{\boldsymbol{u}}$ is satisfied for all points $\boldsymbol{x} \in P$.

and

$$F_{\boldsymbol{u}} = P \cap \{ \boldsymbol{x} \in V : \langle \boldsymbol{u}, \boldsymbol{x} \rangle = c_{\boldsymbol{u}} \},$$

Faces

Definition. Let $u \in V^*$. Define $c_u := \max_{y \in P} \langle u, y \rangle$. The set

$$F_{\boldsymbol{u}} := \{ \boldsymbol{x} \in P : \langle \boldsymbol{u}, \boldsymbol{x} \rangle = c_{\boldsymbol{u}} \}$$

is a *face* of P.

Hence, we have that

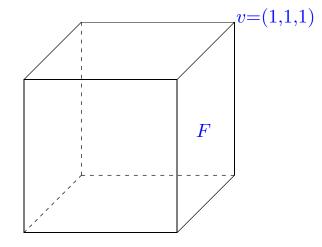
 $\langle \boldsymbol{u}, \boldsymbol{x} \rangle \leq c_{\boldsymbol{u}}$ is satisfied for all points $\boldsymbol{x} \in P$.

and

$$F_{\boldsymbol{u}} = P \cap \{\boldsymbol{x} \in V : \langle \boldsymbol{u}, \boldsymbol{x} \rangle = c_{\boldsymbol{u}} \},$$

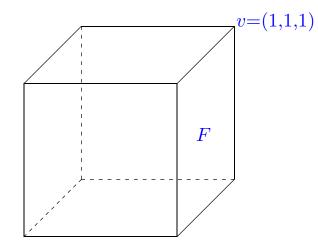
The *dimension* of a face is the dimension of its affine hull: $\dim(F) := \dim(\operatorname{aff}(F))$.

The faces of dimension 0, 1, and $\dim(P) - 1$ are called *vertices, edges,* and *facets*.



A 3-dimensional cube has:

- 8 vertices,
- 12 edges,
- 6 facets.

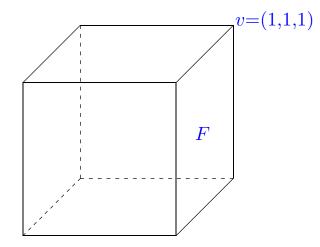


A 3-dimensional cube has:

- 8 vertices,
- 12 edges,
- 6 facets.

i. The vertex $\boldsymbol{v}=(1,1,1)$ can be obtained by choosing

- (a) $\mathbf{u}=(1,1,1)$ and $c_{\mathbf{u}}=3$, or
- (b) u = (1, 2, 3) and $c_u = 6$.



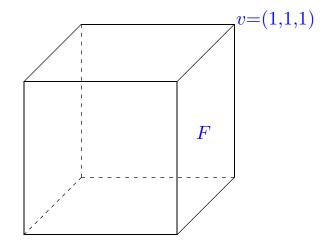
A 3-dimensional cube has:

- 8 vertices,
- 12 edges,
- 6 facets.

i. The vertex $\boldsymbol{v}=(1,1,1)$ can be obtained by choosing

- (a) u = (1, 1, 1) and $c_u = 3$, or
- (b) u = (1, 2, 3) and $c_u = 6$.

 $v=F_{\boldsymbol{u}}$ if and only if $\boldsymbol{u}=(u_1,u_2,u_3)$ has all positive entries.



A 3-dimensional cube has:

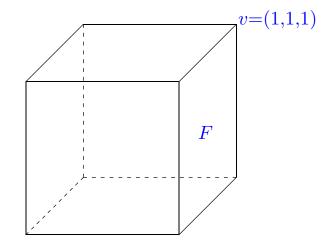
- 8 vertices,
- 12 edges,
- 6 facets.

i. The vertex $\boldsymbol{v}=(1,1,1)$ can be obtained by choosing

- (a) u = (1, 1, 1) and $c_u = 3$, or
- (b) u = (1, 2, 3) and $c_u = 6$.

 $v = F_{\boldsymbol{u}}$ if and only if $\boldsymbol{u} = (u_1, u_2, u_3)$ has all positive entries.

ii. The facet F can is obtained by choosing $\mathbf{u} = (1, 0, 0) = \mathbf{e}_1$ and $c_{\mathbf{u}} = 1$.



A 3-dimensional cube has:

- 8 vertices,
- 12 edges,
- 6 facets.

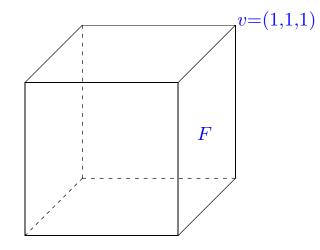
i. The vertex $\boldsymbol{v}=(1,1,1)$ can be obtained by choosing

- (a) u = (1, 1, 1) and $c_u = 3$, or
- (b) u = (1, 2, 3) and $c_u = 6$.

 $v = F_{\boldsymbol{u}}$ if and only if $\boldsymbol{u} = (u_1, u_2, u_3)$ has all positive entries.

ii. The facet F can is obtained by choosing $\mathbf{u} = (1, 0, 0) = \mathbf{e}_1$ and $c_{\mathbf{u}} = 1$.

 $F = F_u$ if and only if $u = e_1$ (up to a scalar), or equivalently $u \in \text{Cone}(e_1)$.



A 3-dimensional cube has:

- 8 vertices,
- 12 edges,
- 6 facets.

i. The vertex v=(1,1,1) can be obtained by choosing

- (a) u = (1, 1, 1) and $c_u = 3$, or
- (b) u = (1, 2, 3) and $c_u = 6$.

 $v=F_{\boldsymbol{u}}$ if and only if $\boldsymbol{u}=(u_1,u_2,u_3)$ has all positive entries.

ii. The facet F can is obtained by choosing $\mathbf{u} = (1, 0, 0) = \mathbf{e}_1$ and $c_{\mathbf{u}} = 1$.

 $F = F_u$ if and only if $u = e_1$ (up to a scalar), or equivalently $u \in \text{Cone}(e_1)$.

Note that e_1 is an outer normal vector of F.

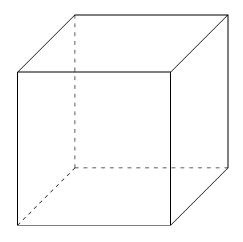
Descriptions of polytopes

Suppose P is a full-dimensional polytope in V.

- i. P can be described as the convex hull of its vertices: P = conv(vert(P)).
- ii. P can be described by an inequality description in the form of

$$\langle \boldsymbol{a}_F, \boldsymbol{x} \rangle \leq b_F, \quad F \in \mathsf{facet}(P).$$

Here a_F is an outer normal vector of F.



A 3-dimensional cube defined as:

conv
$$\left((0,0,0), (0,0,1), (0,1,0), (0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1) \right)$$

Alternatively, it can be defined by 6 inequalities:

$$\langle -\boldsymbol{e}_i, \boldsymbol{x} \rangle = -x_i \leq 0, \quad \langle \boldsymbol{e}_i, \boldsymbol{x} \rangle = x_i \leq 1, \quad i = 1, 2, 3$$

Definition. Given any face F of $P \subset V$, the *normal cone* of P at F is

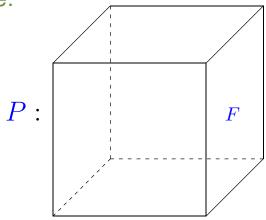
$$\operatorname{ncone}(F, P) := \overline{\{ \boldsymbol{u} \in V^* : F = F_{\boldsymbol{u}} \}}.$$

Definition. Given any face F of $P \subset V$, the *normal cone* of P at F is

$$ncone(F, P) := \overline{\{ \boldsymbol{u} \in V^* : F = F_{\boldsymbol{u}} \}}.$$

The *normal fan* $\Sigma(P)$ of P is the collection of all normal cones of P.

Example:

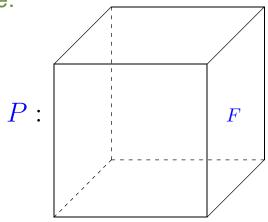


$$ncone(F, P) = Cone(e_1)$$

Definition. Given any face F of $P \subset V$, the *normal cone* of P at F is

$$\operatorname{ncone}(F, P) := \overline{\{ \boldsymbol{u} \in V^* : F = F_{\boldsymbol{u}} \}}.$$

The *normal fan* $\Sigma(P)$ of P is the collection of all normal cones of P.

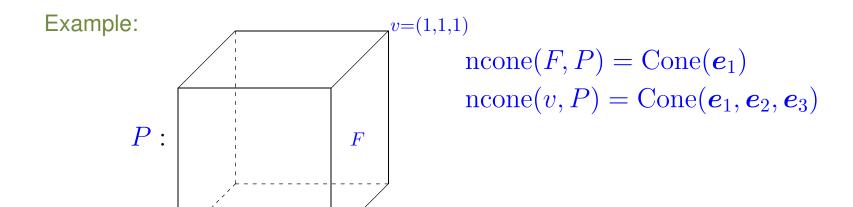


$$ncone(F, P) = Cone(e_1)$$

FACT 1: If F is a *facet*, then ncone(F, P) is the cone spanned by its outer normal.

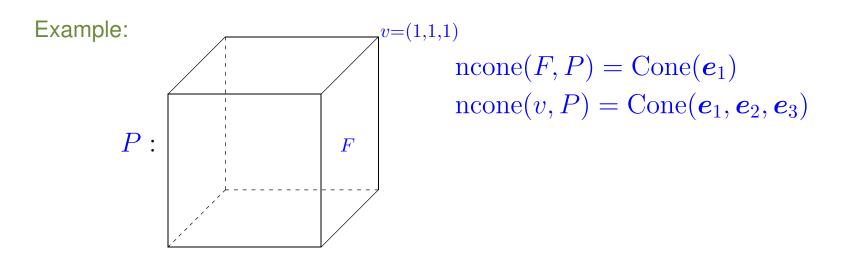
Definition. Given any face F of $P \subset V$, the *normal cone* of P at F is

$$\operatorname{ncone}(F, P) := \overline{\{\boldsymbol{u} \in V^* : F = F_{\boldsymbol{u}}\}}.$$



Definition. Given any face F of $P \subset V$, the *normal cone* of P at F is

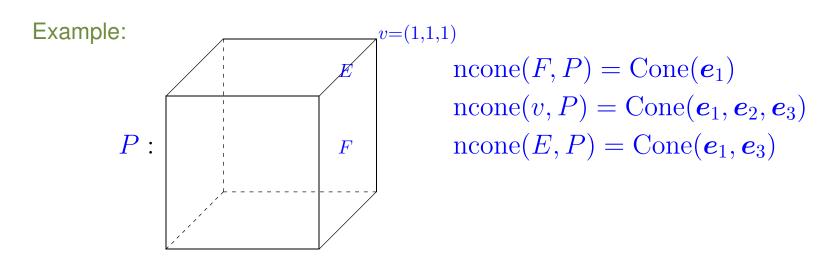
$$\operatorname{ncone}(F, P) := \overline{\{\boldsymbol{u} \in V^* : F = F_{\boldsymbol{u}}\}}.$$



FACT 2: If a face F lies on facets F_1, \ldots, F_m , then $\operatorname{ncone}(F, P)$ is the cone spanned by outer normals $\boldsymbol{a}_{F_1}, \boldsymbol{a}_{F_2}, \ldots, \boldsymbol{a}_{F_m}$.

Definition. Given any face F of $P \subset V$, the *normal cone* of P at F is

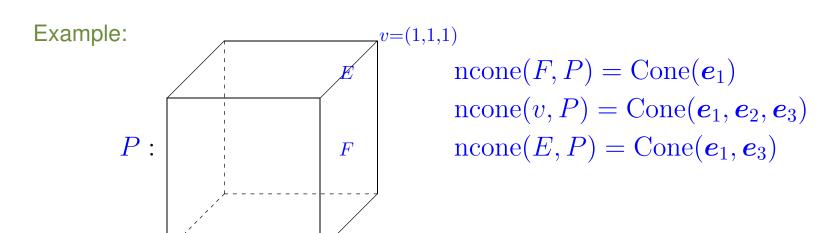
$$\operatorname{ncone}(F, P) := \overline{\{\boldsymbol{u} \in V^* : F = F_{\boldsymbol{u}}\}}.$$



FACT 2: If a face F lies on facets F_1, \ldots, F_m , then $\operatorname{ncone}(F, P)$ is the cone spanned by outer normals $\boldsymbol{a}_{F_1}, \boldsymbol{a}_{F_2}, \ldots, \boldsymbol{a}_{F_m}$.

Definition. Given any face F of $P \subset V$, the *normal cone* of P at F is

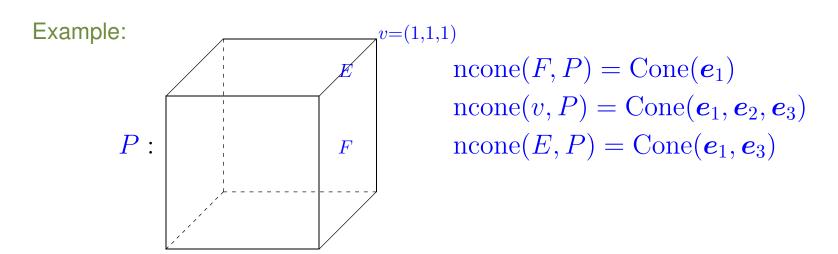
$$\operatorname{ncone}(F, P) := \overline{\{\boldsymbol{u} \in V^* : F = F_{\boldsymbol{u}}\}}.$$



Definition. Given any face F of $P \subset V$, the *normal cone* of P at F is

$$\operatorname{ncone}(F, P) := \overline{\{\boldsymbol{u} \in V^* : F = F_{\boldsymbol{u}}\}}.$$

The *normal fan* $\Sigma(P)$ of P is the collection of all normal cones of P.



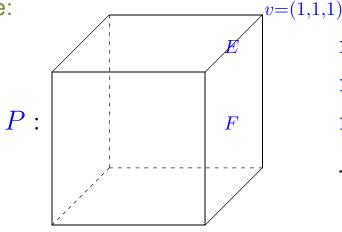
FACT 3: F is (d - k)-dimensional if and only if ncone(F, P) is k-dimensional.

Definition. Given any face F of $P \subset V$, the *normal cone* of P at F is

$$\operatorname{ncone}(F, P) := \overline{\{\boldsymbol{u} \in V^* : F = F_{\boldsymbol{u}}\}}.$$

The *normal fan* $\Sigma(P)$ of P is the collection of all normal cones of P.

Example:



 $ncone(F, P) = Cone(\mathbf{e}_1)$ $ncone(v, P) = Cone(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$

 $ncone(E, P) = Cone(\mathbf{e}_1, \mathbf{e}_3)$

The normal fan $\Sigma(P)$ of P has:

8 3-dimensional cones,

12 2-dimensional cones,

6 rays, i.e., 1-dimensional cones.

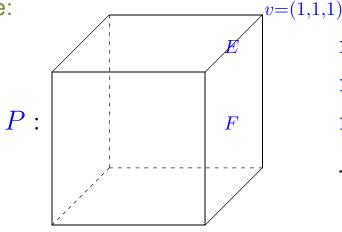
FACT 3: F is (d - k)-dimensional if and only if ncone(F, P) is k-dimensional.

Definition. Given any face F of $P \subset V$, the *normal cone* of P at F is

$$\operatorname{ncone}(F, P) := \overline{\{\boldsymbol{u} \in V^* : F = F_{\boldsymbol{u}}\}}.$$

The *normal fan* $\Sigma(P)$ of P is the collection of all normal cones of P.

Example:



 $\operatorname{ncone}(F, P) = \operatorname{Cone}(\boldsymbol{e}_1)$ $\operatorname{ncone}(v, P) = \operatorname{Cone}(\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3)$ $\operatorname{ncone}(E, P) = \operatorname{Cone}(\boldsymbol{e}_1, \boldsymbol{e}_3)$

The normal fan $\Sigma(P)$ of P has:

8 3-dimensional cones,

12 2-dimensional cones,

6 rays, i.e., 1-dimensional cones.

FACT 3: F is (d-k)-dimensional if and only if $\operatorname{ncone}(F,P)$ is k-dimensional.

In particular, vertices
$$\longleftrightarrow$$
 maximal cones facets \longleftrightarrow rays

PART II:

Motivation: Permutohedra and the Braid fan

For the rest of this talk, we have

$$V = \left\{ \boldsymbol{x} \in \mathbb{R}^{d+1} : \sum_{i=1}^{d+1} x_i = M \right\}$$

for some fixed M, so

$$V^* = \mathbb{R}^{d+1}/(1, 1, \dots, 1)$$

.

Usual permutohedra

Definition. Given a strictly increasing sequence $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_{d+1}) \in \mathbb{R}^{d+1}$, for any $\pi \in \mathfrak{S}_{d+1}$, we use the following notation:

$$v_{\pi}^{\boldsymbol{\alpha}} := (\alpha_{\pi(1)}, \alpha_{\pi(2)}, \cdots, \alpha_{\pi(d+1)}) = \sum_{i=1}^{d+1} \alpha_{\pi(i)} \boldsymbol{e}_i = \sum_{i=1}^{d+1} \alpha_i \boldsymbol{e}_{\pi^{-1}(i)}.$$

Then we define the *usual permutohedron*

$$\operatorname{Perm}(\boldsymbol{\alpha}) := \operatorname{conv}(v_{\pi}^{\boldsymbol{\alpha}}: \pi \in \mathfrak{S}_{d+1}).$$

Usual permutohedra

Definition. Given a strictly increasing sequence $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_{d+1}) \in \mathbb{R}^{d+1}$, for any $\pi \in \mathfrak{S}_{d+1}$, we use the following notation:

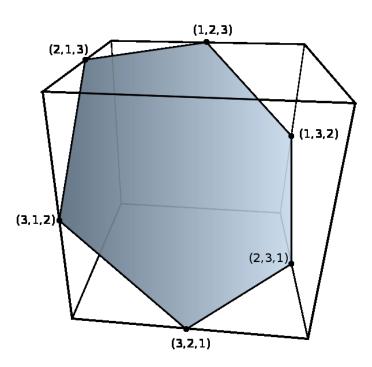
$$v_{\pi}^{\boldsymbol{\alpha}} := (\alpha_{\pi(1)}, \alpha_{\pi(2)}, \cdots, \alpha_{\pi(d+1)}) = \sum_{i=1}^{d+1} \alpha_{\pi(i)} \boldsymbol{e}_i = \sum_{i=1}^{d+1} \alpha_i \boldsymbol{e}_{\pi^{-1}(i)}.$$

Then we define the *usual permutohedron*

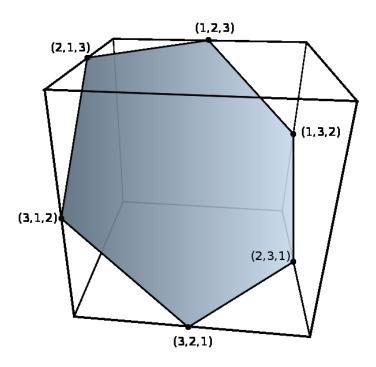
$$\operatorname{Perm}(\boldsymbol{\alpha}) := \operatorname{conv}(v_{\pi}^{\boldsymbol{\alpha}}: \pi \in \mathfrak{S}_{d+1}).$$

• If $\alpha = (1, 2, ..., d, d + 1)$, we obtain the *regular permutohedron* Π_d .

Example. Π_2 :



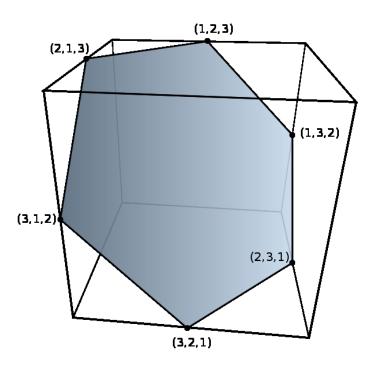
Example. Π_2 :



Observation.

• Any usual permutohedron $\operatorname{Perm}(\boldsymbol{\alpha})$ in \mathbb{R}^{d+1} is d-dimensional, and so is full-dimensional in $V = \{\boldsymbol{x} \in \mathbb{R}^{d+1} : x_1 + \dots + x_{d+1} = \alpha_1 + \dots + \alpha_{d+1}\}.$

Example. Π_2 :



Observation.

- Any usual permutohedron $\operatorname{Perm}(\boldsymbol{\alpha})$ in \mathbb{R}^{d+1} is d-dimensional, and so is full-dimensional in $V = \{\boldsymbol{x} \in \mathbb{R}^{d+1} : x_1 + \dots + x_{d+1} = \alpha_1 + \dots + \alpha_{d+1}\}.$
- $v_{\pi}^{\alpha} = \sum \alpha_i e_{\pi^{-1}(i)}$ are vertices of $Perm(\alpha)$.

Generalized permutohedra

Definition (Postnikov). A *generalized permutohedron* is a polytope obtained from a usual permutohedron by moving the facets **without passing vertices**.

Generalized permutohedra

Definition (Postnikov). A *generalized permutohedron* is a polytope obtained from a usual permutohedron by moving the facets **without passing vertices**.

For d=2:

Definition (Postnikov). A *generalized permutohedron* is a polytope obtained from a usual permutohedron by moving the facets **without passing vertices**.

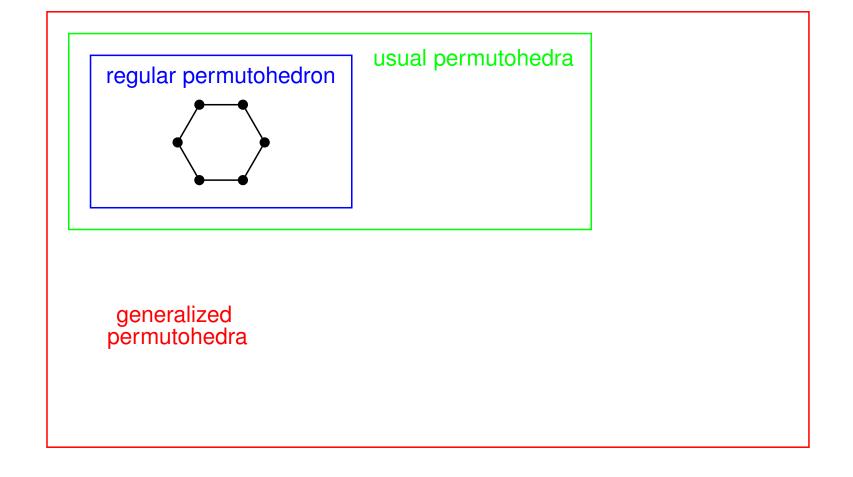
For d=2:

regular permutohedron usual permutohedra

generalized permutohedra

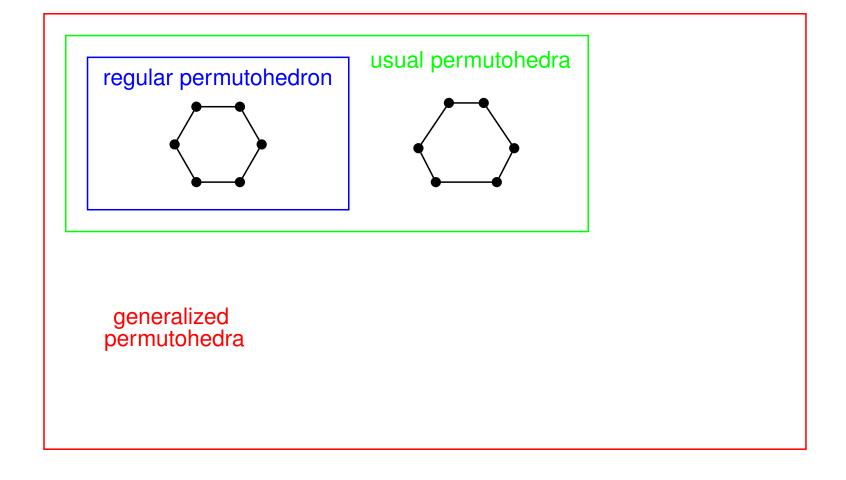
Definition (Postnikov). A *generalized permutohedron* is a polytope obtained from a usual permutohedron by moving the facets **without passing vertices**.

For d=2:



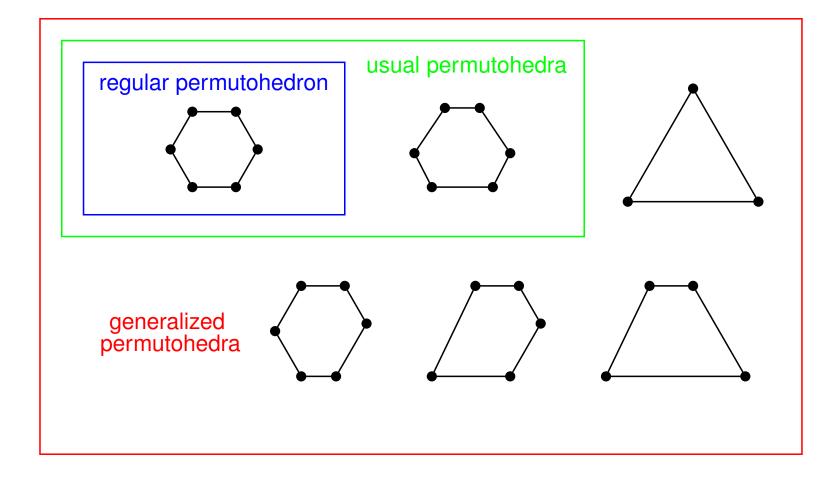
Definition (Postnikov). A *generalized permutohedron* is a polytope obtained from a usual permutohedron by moving the facets **without passing vertices**.

For d=2:



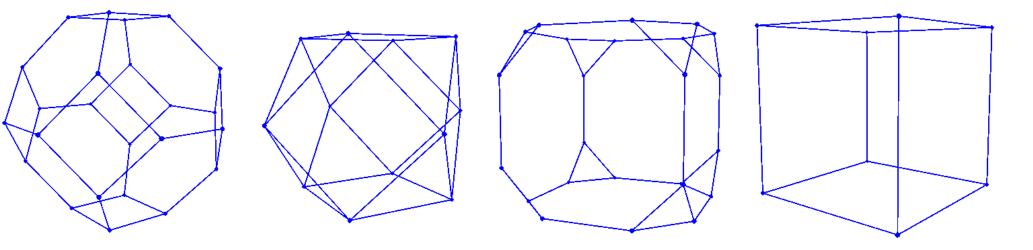
Definition (Postnikov). A *generalized permutohedron* is a polytope obtained from a usual permutohedron by moving the facets **without passing vertices**.

For d=2:



Nonexample

Example. Start with $P = \Pi_3 = \text{Perm}((1, 2, 3, 4))$. By pushing all squares inward,



we obtain a 3-dimensional cube

$$Q = \text{conv}(\text{Perm}((1, 3, 3, 3)) \cup \text{Perm}(2, 2, 2, 4))).$$

Q is **not** a generalized permutohedron.

Alternative definition

Let $V^*=\mathbb{R}^{d+1}/(1,1,\dots,1)$. The *Braid fan* denoted by Br_d , is the complete fan in V^* given by the hyperplanes

$$x_i - x_j = 0$$
 for all $i \neq j$.

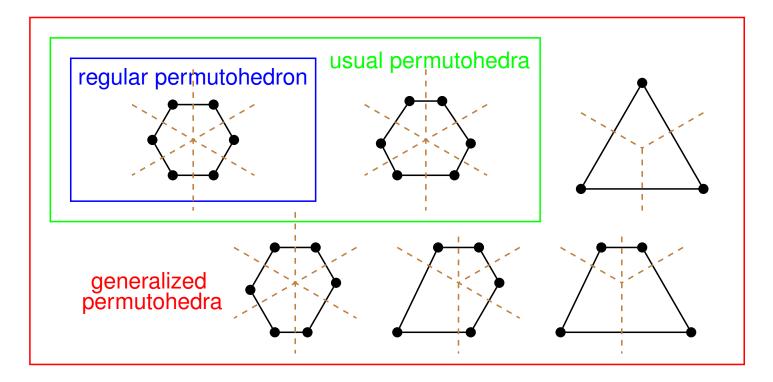
Proposition (Postnikov-Reiner-Williams). A polytope $P \in \mathbb{R}^{d+1}$ is a generalized permutoheron if and only if its normal fan is refined by the Braid fan Br_d .

Alternative definition

Let $V^*=\mathbb{R}^{d+1}/(1,1,\dots,1)$. The *Braid fan* denoted by Br_d , is the complete fan in V^* given by the hyperplanes

$$x_i - x_j = 0$$
 for all $i \neq j$.

Proposition (Postnikov-Reiner-Williams). A polytope $P \in \mathbb{R}^{d+1}$ is a generalized permutoheron if and only if its normal fan is refined by the Braid fan Br_d .

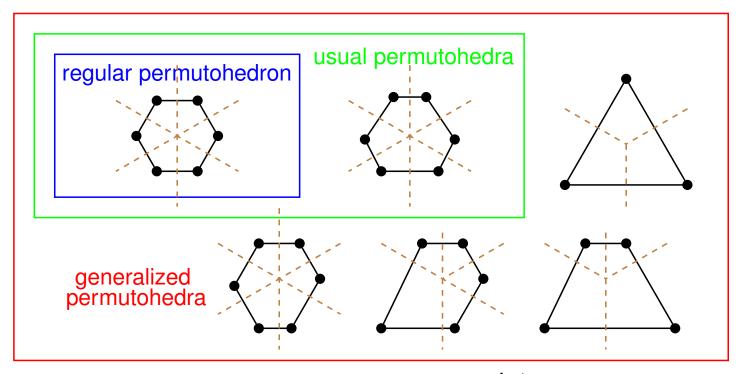


Alternative definition

Let $V^*=\mathbb{R}^{d+1}/(1,1,\ldots,1)$. The *Braid fan* denoted by Br_d , is the complete fan in V^* given by the hyperplanes

$$x_i - x_j = 0$$
 for all $i \neq j$.

Proposition (Postnikov-Reiner-Williams). A polytope $P \in \mathbb{R}^{d+1}$ is a generalized permutoheron if and only if its normal fan is refined by the Braid fan Br_d .



Fact. The normal fan of usual permutohedron in \mathbb{R}^{d+1} is Br_d .

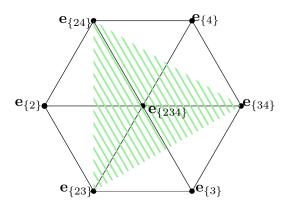
Nonexample

The alternative definition provides ways of verifying that a polytope is *not* a generalized permutohedron.

Recall our nonexample

$$Q = \text{conv}(\text{Perm}((1, 3, 3, 3)) \cup \text{Perm}(2, 2, 2, 4))).$$

(i) Let σ be the normal cone of Q at the vertex (1,3,3,3). It is *not* a coarsening of cones in Br_3 .



Nonexample

The alternative definition provides ways of verifying that a polytope is *not* a generalized permutohedron.

Recall our nonexample

$$Q = \text{conv}(\text{Perm}((1, 3, 3, 3)) \cup \text{Perm}(2, 2, 2, 4))).$$

(ii) The "walls" in Br_d are in the form of $x_i - x_j = 0$, which implies that edge directions of a generalized permutohedron are in the form of $e_i - e_j$.

But in Q, the vertices (1,3,3,3) and (2,4,4,4) form an edge whose direction is parallel to

$$(-1,1,1,-1) = \mathbf{e}_2 + \mathbf{e}_3 - \mathbf{e}_1 - \mathbf{e}_4.$$

Motivation

Question:

Can we extend the family of generalized permutohedra further to allow edge directions of the form $e_i + e_j - e_k - e_\ell$?

Motivation

Question:

Can we extend the family of generalized permutohedra further to allow edge directions of the form $e_i + e_j - e_k - e_\ell$?

First (natural) attempt: Consider the complete fan defined by

$$x_i + x_j = x_k + x_\ell, \quad \forall i, j, k, \ell,$$

and define a family of polytope whose normal fans coarsen this fan.

Motivation

Question:

Can we extend the family of generalized permutohedra further to allow edge directions of the form $e_i + e_j - e_k - e_\ell$?

First (natural) attempt: Consider the complete fan defined by

$$x_i + x_j = x_k + x_\ell, \quad \forall i, j, k, \ell,$$

and define a family of polytope whose normal fans coarsen this fan.

Does not work! The combinatorics is not nice.

Final solution (joint work with F. Castillo):

Nested permotohedra and the nested Braid fan

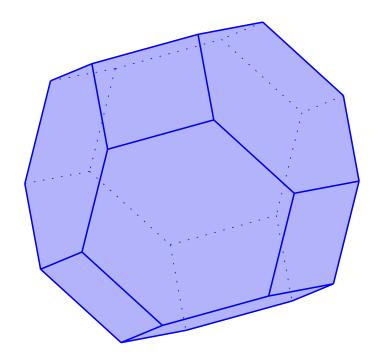
PART III:

Nested permutohedra and the nested Braid fan

- Definition and answer to the motivating question
- Other properties of permutohedra and the Braid fan that can be generalized

Usual nested permutohedra

Definition (Informal). Replace each vertex of a usual permutohedron $\operatorname{Perm}(\boldsymbol{\alpha})$ by a smaller dimension permutohedron $\operatorname{Perm}(\boldsymbol{\beta})$ (in the correct orientation). We obtain the usual nested permutohedron $\operatorname{Perm}(\boldsymbol{\alpha},\boldsymbol{\beta})$.



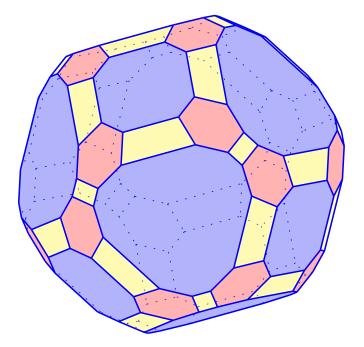


Figure 1: Π_3 and $\Pi_3^2(4,1)$

Usual nested permutohedra

Definition (Formal). Let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_{d+1}) \in \mathbb{R}^{d+1}$ and $\beta = (\beta_1, \beta_2, \dots, \beta_d) \in \mathbb{R}^d$ be two strictly increasing sequences such that entries in α is sufficinetly larger than entries in β .

For any $(\pi, \tau) \in \mathfrak{S}_{d+1} \times \mathfrak{S}_d$, we define

$$v_{\pi, au}^{(oldsymbol{lpha},oldsymbol{eta})} := \underbrace{\sum_{i=1}^{d+1} lpha_i oldsymbol{e}_{\pi^{-1}(i)}}_{v_{\pi}^{oldsymbol{lpha}}} + \sum_{i=1}^{d} eta_i oldsymbol{f}_{ au^{-1}(i)}^{\pi},$$

where for any permutation $\pi \in \mathfrak{S}_{d+1}$,

$$f_i^{\pi} := e_{\pi^{-1}(i+1)} - e_{\pi^{-1}(i)}, \quad \forall 1 \le i \le d.$$

Then

$$\operatorname{Perm}(\boldsymbol{\alpha},\boldsymbol{\beta}) = \operatorname{conv}\left(v_{\pi,\tau}^{(\boldsymbol{\alpha},\boldsymbol{\beta})} : (\pi,\tau) \in \mathfrak{S}_{d+1} \times \mathfrak{S}_d\right).$$

Nested Braid fan

Fact. Br_d has (d+1)! maximal cones, each of which is determined by *ordering of* coordinates associated with a permutation $\pi \in \mathfrak{S}_{d+1}$:

$$\sigma(\pi) := \{ \boldsymbol{x} \in V^* : x_{\pi^{-1}(1)} \le x_{\pi^{-1}(2)} \le \dots \le x_{\pi^{-1}(d+1)} \}.$$

Nested Braid fan

Fact. Br_d has (d+1)! maximal cones, each of which is determined by *ordering of* coordinates associated with a permutation $\pi \in \mathfrak{S}_{d+1}$:

$$\sigma(\pi) := \{ \boldsymbol{x} \in V^* : x_{\pi^{-1}(1)} \le x_{\pi^{-1}(2)} \le \dots \le x_{\pi^{-1}(d+1)} \}.$$

Definition. For each $\sigma(\pi)$ in Br_d , we subdivided it into d! cones by considering *first* differences of coordinates associated with a permutation $\tau \in \mathfrak{S}_d$:

$$\sigma(\pi,\tau) := \left\{ \boldsymbol{x} \in V^* : \underbrace{x_{\pi^{-1}(1)} \leq x_{\pi^{-1}(2)}}_{\Delta_1} \leq x_{\pi^{-1}(3)} \leq \cdots \leq x_{\pi^{-1}(d)} \leq x_{\pi^{-1}(d+1)} \atop \Delta_d}_{\Delta_d} \right\}.$$

The collection of cones $\sigma(\pi, \tau)$, together with all of their faces, forms the *nested Braid fan*, denoted by Br_d^2 .

A connection

Recall that the Braid fan Br_d is the *normal fan* of any usual permutohedron $\operatorname{Perm}(\alpha)$.

Proposition (Castillo-L.). The nested Braid fan Br_d^2 is the normal fan of any usual nested permutohedron $\mathrm{Perm}(\boldsymbol{\alpha},\boldsymbol{\beta})$.

Generalized nested permutohedra

As a consequence of this connection, one can give two different but equivalent definitions for *generalized nested permutohedra*.

Definition. A *generalized nested permutohedron* is a polytope obtained from a usual nested permutohedron by moving the facets **without passing vertices**.

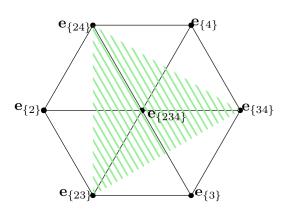
Definition. A polytope $P \in \mathbb{R}^{d+1}$ is a *generalized nested permutoheron* if its normal fan is *refined* by the nested Braid fan Br_d^2 .

Example

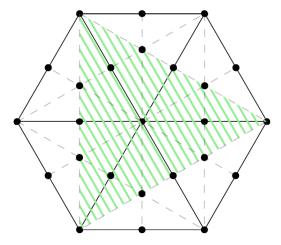
Recall our nonexample

$$Q = \text{conv}(\text{Perm}((1, 3, 3, 3)) \cup \text{Perm}(2, 2, 2, 4))).$$

Let σ be the normal cone of Q at the vertex (1,3,3,3). We showed that it *not* a coarsening cones in Br_3 . However, it is a coarsening of cones in Br_3^2 .



(a) σ in the Braid fan Br_3



(b) σ in the nested Braid fan Br_3^2

Results on generalized permutohedra and Braid fan

- i. Explicity descriptions for usual permutohedra $\operatorname{Perm}(\alpha)$:
 - Convex hull of (d+1)! permutations of α .
 - Inequality description.
- ii. Two different but equivalent defintions for generalized permutohedra:
 - Moving facets of usual permutohedra.
 - Normal fan coarsens the Braid fan.
- iii. Nice combinatorics of the Braid fan Br_d :
 - \circ k-dimensional cones in Br_d are in bijection with k-chains in the truncated Boolean algebra $\overline{\mathcal{B}A_{d+1}}$.
- iv. Deformation cones of Braid fan.
 - Submodular Theorem.

Notation. For any $S \subseteq [d+1] = \{1, 2, \dots, d+1\}$, we define $e_S = \sum_{i \in S} e_i$.

Notation. For any $S \subseteq [d+1] = \{1, 2, \dots, d+1\}$, we define $e_S = \sum_{i \in S} e_i$.

Theorem (Rado). The inequality description of the usual permutohedron $\operatorname{Perm}(\alpha)$ is given by

$$\langle \boldsymbol{e}_{[d+1]}, \boldsymbol{x} \rangle = x_1 + \dots + x_{d+1} = \alpha_1 + \dots + \alpha_{d+1}$$

$$\langle \boldsymbol{e}_S, \boldsymbol{x} \rangle = \sum_{i \in S} x_i \leq \sum_{i=d+2-|S|}^{d+1} \alpha_i, \quad \forall \emptyset \neq S \subsetneq [d+1].$$

Further, all those $2^{d+1}-2$ inequalities are facet defining.

Notation. For any $S \subseteq [d+1] = \{1, 2, \dots, d+1\}$, we define $e_S = \sum_{i \in S} e_i$.

Theorem (Rado). The inequality description of the usual permutohedron $\operatorname{Perm}(\alpha)$ is given by

$$\langle \boldsymbol{e}_{[d+1]}, \boldsymbol{x} \rangle = x_1 + \dots + x_{d+1} = \alpha_1 + \dots + \alpha_{d+1}$$

$$\langle \boldsymbol{e}_S, \boldsymbol{x} \rangle = \sum_{i \in S} x_i \leq \sum_{i=d+2-|S|}^{d+1} \alpha_i, \quad \forall \emptyset \neq S \subsetneq [d+1].$$

Further, all those $2^{d+1}-2$ inequalities are facet defining.

Example. Let $\alpha=(1,2,3)$. Then $\operatorname{Perm}(\alpha)=\Pi_2$ is defined by the following linear system: $\langle \boldsymbol{e}_{[3]},x\rangle=x_1+x_2+x_3=1+2+3=6,$

$$\langle \boldsymbol{e}_1, \boldsymbol{x} \rangle = x_1 \leq 3, \quad \langle \boldsymbol{e}_2, \boldsymbol{x} \rangle = x_2 \leq 3, \quad \langle \boldsymbol{e}_3, \boldsymbol{x} \rangle = x_3 \leq 3,$$

$$\langle \boldsymbol{e}_{\{1,2\}}, \boldsymbol{x} \rangle = x_1 + x_2 \le 5, \quad \langle \boldsymbol{e}_{\{1,3\}}, \boldsymbol{x} \rangle = x_1 + x_3 \le 5, \quad \langle \boldsymbol{e}_{\{2,3\}}, \boldsymbol{x} \rangle = x_2 + x_3 \le 5.$$

Further, these 6 inequalities all define facets of Π_2 .

Results on generalized permutohedra and Braid fan

- i. Explicity descriptions for usual permutohedra $\operatorname{Perm}(\alpha)$:
 - Convex hull of (d+1)! permutations of α .
 - ullet Inequality description, where inequalities are indexed by nonempty proper subsets of [d+1].
- ii. Two different but equivalent defintions for generalized permutohedra:
 - Moving facets of usual permutohedra.
 - Normal fan coarsens the Braid fan.
- iii. Nice combinatorics of the Braid fan Br_d :
 - k-dimensional cones in Br_d are in bijection with k-chains in the truncated Boolean algebra $\overline{\mathcal{B}A_{d+1}}$.
- iv. Deformation cones of Braid fan.
 - Submodular Theorem.

(i) Any generalized permutohedra on \mathbb{R}^{d+1} can be defined by the linear system:

$$\langle \boldsymbol{e}_{[d+1]}, \boldsymbol{x} \rangle = b_{[d+1]}$$

 $\langle \boldsymbol{e}_S, \boldsymbol{x} \rangle \leq b_S, \quad \forall \emptyset \neq S \subsetneq [d+1],$

for some vector $\mathbf{b} = (b_S : \emptyset \neq S \subseteq [d+1])$.

(i) Any generalized permutohedra on \mathbb{R}^{d+1} can be defined by the linear system:

$$\langle \boldsymbol{e}_{[d+1]}, \boldsymbol{x} \rangle = b_{[d+1]}$$

 $\langle \boldsymbol{e}_S, \boldsymbol{x} \rangle \leq b_S, \quad \forall \emptyset \neq S \subsetneq [d+1],$

for some vector $\boldsymbol{b} = (b_S : \emptyset \neq S \subseteq [d+1])$.

Each generalized permutohedron in \mathbb{R}^{d+1} determines a unique $\boldsymbol{b} \in \mathbb{R}^{2^{d+1}-1}$. We call the collection of these \boldsymbol{b} 's the *deformation cone* $\operatorname{Def}(\operatorname{Br}_d)$ of the Braid fan Br_d .

(i) Any generalized permutohedra on \mathbb{R}^{d+1} can be defined by the linear system:

$$\langle \boldsymbol{e}_{[d+1]}, \boldsymbol{x} \rangle = b_{[d+1]}$$

 $\langle \boldsymbol{e}_S, \boldsymbol{x} \rangle \leq b_S, \quad \forall \emptyset \neq S \subsetneq [d+1],$

for some vector $\boldsymbol{b} = (b_S : \emptyset \neq S \subseteq [d+1])$.

Each generalized permutohedron in \mathbb{R}^{d+1} determines a unique $\boldsymbol{b} \in \mathbb{R}^{2^{d+1}-1}$. We call the collection of these \boldsymbol{b} 's the deformation cone $\operatorname{Def}(\operatorname{Br}_d)$ of the Braid fan Br_d .

Question 1. Can we determine $Def(Br_d)$?

(ii) Recall that the normal fan of usual permutohedron in \mathbb{R}^{d+1} is Br_d .

(ii) Recall that the normal fan of usual permutohedron in \mathbb{R}^{d+1} is Br_d .

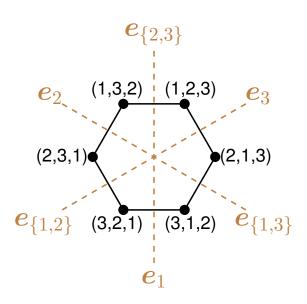
Thus, ${\rm Br}_d$ has $2^{d+1}-2$ rays, i.e., 1-dimensional cones, indexed by nonempty proper subsets of [d+1] :

$$e_S$$
, $\emptyset \neq S \subsetneq [d+1]$.

(ii) Recall that the normal fan of usual permutohedron in \mathbb{R}^{d+1} is Br_d .

Thus, Br_d has $2^{d+1}-2$ rays, i.e., 1-dimensional cones, indexed by nonempty proper subsets of [d+1]:

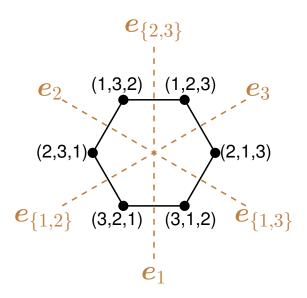
 e_S , $\emptyset \neq S \subsetneq [d+1]$.



(ii) Recall that the normal fan of usual permutohedron in \mathbb{R}^{d+1} is Br_d .

Thus, ${\rm Br}_d$ has $2^{d+1}-2$ rays, i.e., 1-dimensional cones, indexed by nonempty proper subsets of [d+1]:

$$e_S$$
, $\emptyset \neq S \subsetneq [d+1]$.



Question 2. What about other cones in Br_d ?

Description of cones in Br_d

Recall that the *Boolean Algebra*, denoted by $\mathcal{B}A_{d+1}$, is the poset consisting of all subsets of [d+1] ordered by containment. This poset has a minimal element $\hat{0}=\emptyset$ and a maximal element $\hat{1}=[d+1]$.

Description of cones in Br_d

Recall that the *Boolean Algebra*, denoted by $\mathcal{B}A_{d+1}$, is the poset consisting of all subsets of [d+1] ordered by containment. This poset has a minimal element $\hat{0}=\emptyset$ and a maximal element $\hat{1}=[d+1]$.

The *truncated Boolean algebra*, denoted by $\overline{\mathcal{B}A_{d+1}}$ is the poset obtained from $\mathcal{B}A_{d+1}$ by removing $\hat{0}$ and $\hat{1}$.

Description of cones in Br_d

Recall that the *Boolean Algebra*, denoted by $\mathcal{B}A_{d+1}$, is the poset consisting of all subsets of [d+1] ordered by containment. This poset has a minimal element $\hat{0}=\emptyset$ and a maximal element $\hat{1}=[d+1]$.

The *truncated Boolean algebra*, denoted by $\overline{\mathcal{B}A_{d+1}}$ is the poset obtained from $\mathcal{B}A_{d+1}$ by removing $\hat{0}$ and $\hat{1}$.

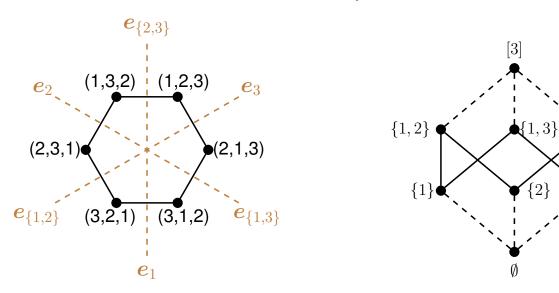
Fact. The k-dimensional cones of Br_d are in bijection with k-chains in the truncated Boolean algebra $\overline{\mathcal{B}A_{d+1}}$, i.e. sequences of the form $\emptyset \neq S_1 \subsetneq S_2 \subsetneq \cdots \subsetneq S_k \subsetneq [d+1]$. Hence, the d-dimensional cones are in bijection with maximal chains in $\overline{\mathcal{B}A_{d+1}}$.

Description of cones in Br_d

Recall that the *Boolean Algebra*, denoted by $\mathcal{B}A_{d+1}$, is the poset consisting of all subsets of [d+1] ordered by containment. This poset has a minimal element $\hat{0}=\emptyset$ and a maximal element $\hat{1}=[d+1]$.

The *truncated Boolean algebra*, denoted by $\overline{\mathcal{B}A_{d+1}}$ is the poset obtained from $\mathcal{B}A_{d+1}$ by removing $\hat{0}$ and $\hat{1}$.

Fact. The k-dimensional cones of Br_d are in bijection with k-chains in the truncated Boolean algebra $\overline{\mathcal{B}A_{d+1}}$, i.e. sequences of the form $\emptyset \neq S_1 \subsetneq S_2 \subsetneq \cdots \subsetneq S_k \subsetneq [d+1]$. Hence, the d-dimensional cones are in bijection with maximal chains in $\overline{\mathcal{B}A_{d+1}}$.



 $\{2,3\}$

Results on generalized permutohedra and Braid fan

- i. Explicity descriptions for usual permutohedra $\operatorname{Perm}(\alpha)$:
 - Convex hull of (d+1)! permutations of α .
 - ullet Inequality description, where inequalities are indexed by nonempty proper subsets of [d+1].
- ii. Two different but equivalent defintions for generalized permutohedra:
 - Moving facets of usual permutohedra.
 - Normal fan coarsens the Braid fan.
- iii. Nice combinatorics of the Braid fan Br_d :
 - k-dimensional cones in Br_d are in bijection with k-chains in the truncated Boolean algebra $\overline{\mathcal{B}A_{d+1}}$.
- iv. Deformation cones of Braid fan.
 - Submodular Theorem.

Submodular Theorem

Theorem. The deformation cone $Def(Br_d)$ is the set of $b \in \mathbb{R}^{2^{d+1}-1}$ satisfying the following submodular property:

$$b_{A\cap B} + b_{A\cup B} \le b_A + b_B, \quad \forall A, B \subseteq [d+1],$$

where by convention we let $b_{\emptyset} = 0$.

Submodular Theorem

Theorem. The deformation cone $\mathrm{Def}(\mathrm{Br}_d)$ is the set of $\boldsymbol{b} \in \mathbb{R}^{2^{d+1}-1}$ satisfying the following submodular property:

$$b_{A\cap B} + b_{A\cup B} \le b_A + b_B, \quad \forall A, B \subseteq [d+1],$$

where by convention we let $b_{\emptyset} = 0$.

Remark 1. One can show our nonexample

$$Q = \text{conv}(\text{Perm}((1, 3, 3, 3)) \cup \text{Perm}(2, 2, 2, 4)))$$

is not a generalized permutohedron by showing its corresponding $m{b}$ does not satisfy the submodular property.

Submodular Theorem

Theorem. The deformation cone $\mathrm{Def}(\mathrm{Br}_d)$ is the set of $b \in \mathbb{R}^{2^{d+1}-1}$ satisfying the following submodular property:

$$b_{A\cap B} + b_{A\cup B} \le b_A + b_B, \quad \forall A, B \subseteq [d+1],$$

where by convention we let $b_{\emptyset} = 0$.

Remark 1. One can show our nonexample

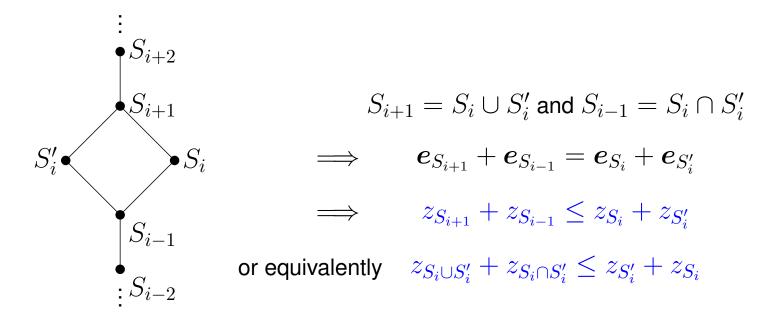
$$Q = \text{conv}(\text{Perm}((1, 3, 3, 3)) \cup \text{Perm}(2, 2, 2, 4)))$$

is not a generalized permutohedron by showing its corresponding $m{b}$ does not satisfy the submodular property.

Remark 2. Another motivation for our work was to give a natural combinatorial proof for the Submodular Theorem.

Idea of the Proof

- i. Each pair of adjacent maximal cones in Br_d provide an inequality to describe the deformation cone $Def(Br_d)$.
- ii. Maximal cones are in bijection with maximal chains in $\overline{\mathcal{B}A_{d+1}}$.



Results on generalized permutohedra and Braid fan

- i. Explicity descriptions for usual permutohedra $\operatorname{Perm}(\alpha)$:
 - Convex hull of (d+1)! permutations of α .
 - ullet Inequality description, where inequalities are indexed by nonempty proper subsets of [d+1].
- ii. Two different but equivalent defintions for generalized permutohedra:
 - Moving facets of usual permutohedra.
 - Normal fan coarsens the Braid fan.
- iii. Nice combinatorics of the Braid fan Br_d :
 - k-dimensional cones in Br_d are in bijection with k-chains in the truncated Boolean algebra $\overline{\mathcal{B}A_{d+1}}$.
- iv. Deformation cones of Braid fan.
 - Submodular Theorem.

Results on nested versions

- i. Explicity descriptions for usual **nested** permutohedra $\operatorname{Perm}(\boldsymbol{\alpha}, \boldsymbol{\beta})$:
 - Convex hull of (d+1)!d! points, corresponding to permutations of (α, β) .
 - \circ Inequality description, where inequalities are indexed by nonempty proper subsets ordered set partitions of [d+1].
- ii. Two different but equivalent defintions for generalized nested permutohedra:
 - Moving facets of usual **nested** permutohedra.
 - Normal fan coarsens the nested Braid fan.
- iii. Nice combinatorics of the **nested** Braid fan Br_d^2 :
 - \circ k-dimensional cones in Br_d^2 are in bijection with k-chains in the truncated Boolean algebra $\overline{\mathcal{B}A_{d+1}}$ ordered set partition poset $\overline{\mathcal{O}_{d+1}}$.
- iv. Deformation cones of nested Braid fan.
 - Submodular Theorem + A condition.

THANK YOU!