On pure-cycle Hurwitz numbers

by Fu Liu

AMS sectional meeting, Fayetteville, AR

Nov. 4th, 2006

Outline

- Describe the Hurwitz problem
- State our results: the pure-cycle case
- Connection to geometry

Hurwitz's problem

Definition 1. Given integers d and r, and r partitions $\lambda_1, \ldots, \lambda_r \vdash d$, a *Hurwitz factorization* of $(d, r, (\lambda_1, \ldots, \lambda_r))$ is an r-tuple $(\sigma_1, \ldots, \sigma_r)$ satisfying the following conditions:

- (i) $\sigma_i \in S_d$ has cycle type (or is in the conjugacy class) λ_i , for every i;
- (ii) $\sigma_1 \cdots \sigma_r = 1$;
- (iii) $M := \langle \sigma_1, \ldots, \sigma_r \rangle$ is a transitive subgroup of S_d .

Hurwitz's problem

Definition 1. Given integers d and r, and r partitions $\lambda_1, \ldots, \lambda_r \vdash d$, a *Hurwitz factorization* of $(d, r, (\lambda_1, \ldots, \lambda_r))$ is an r-tuple $(\sigma_1, \ldots, \sigma_r)$ satisfying the following conditions:

- (i) $\sigma_i \in S_d$ has cycle type (or is in the conjugacy class) λ_i , for every i;
- (ii) $\sigma_1 \cdots \sigma_r = 1$;
- (iii) $M:=\langle \sigma_1,\ldots,\sigma_r\rangle$ is a transitive subgroup of S_d .

Definition 2. We say two Hurwitz factorizations $(\sigma_1, \ldots, \sigma_r)$ and $(\sigma'_1, \ldots, \sigma'_r)$ are *equivalent* if they are related by simultaneous conjugation by an element of S_d , i.e., $\exists \tau \in S_d$ such that $\tau \sigma_i \tau^{-1} = \sigma'_i$.

We call the number of equivalent classes of Hurwitz factorizations of $(d, r, (\lambda_1, \dots, \lambda_r))$ the *Hurwitz number* $h(d, r, (\lambda_1, \dots, \lambda_r))$.

Hurwitz's problem

Definition 1. Given integers d and r, and r partitions $\lambda_1, \ldots, \lambda_r \vdash d$, a *Hurwitz factorization* of $(d, r, (\lambda_1, \ldots, \lambda_r))$ is an r-tuple $(\sigma_1, \ldots, \sigma_r)$ satisfying the following conditions:

- (i) $\sigma_i \in S_d$ has cycle type (or is in the conjugacy class) λ_i , for every i;
- (ii) $\sigma_1 \cdots \sigma_r = 1$;
- (iii) $M:=\langle \sigma_1,\ldots,\sigma_r\rangle$ is a transitive subgroup of S_d .

Definition 2. We say two Hurwitz factorizations $(\sigma_1, \ldots, \sigma_r)$ and $(\sigma'_1, \ldots, \sigma'_r)$ are *equivalent* if they are related by simultaneous conjugation by an element of S_d , i.e., $\exists \tau \in S_d$ such that $\tau \sigma_i \tau^{-1} = \sigma'_i$.

We call the number of equivalent classes of Hurwitz factorizations of $(d, r, (\lambda_1, \dots, \lambda_r))$ the Hurwitz number $h(d, r, (\lambda_1, \dots, \lambda_r))$.

Question: What is the Hurwitz number $h(d, r, (\lambda_1, \dots, \lambda_r))$?

Braid group action

Let the *Artin braid group* B_r act on tuples $(\sigma_1, \ldots, \sigma_r)$ in S_d in the following way: the ith generator acts by replacing (σ_i, σ_{i+1}) by $(\sigma_{i+1}, \sigma_{i+1}^{-1}\sigma_i\sigma_{i+1})$. Note this action preserves the product of σ_i 's and the group generated by σ_i 's.

Braid group action

Let the *Artin braid group* B_r act on tuples $(\sigma_1, \ldots, \sigma_r)$ in S_d in the following way: the ith generator acts by replacing (σ_i, σ_{i+1}) by $(\sigma_{i+1}, \sigma_{i+1}^{-1}\sigma_i\sigma_{i+1})$. Note this action preserves the product of σ_i 's and the group generated by σ_i 's.

By sending the ith generator to the transposition (i, i+1), we obtain a natural map $B_r \to S_r$. The kernel of this map is the *pure braid group*, which not only preserves $\sigma_1 \dots \sigma_r = 1$ and $M = \langle \sigma_1, \dots, \sigma_r \rangle$, but sends each σ_i to a conjugate of itself in M.

Braid group action

Let the *Artin braid group* B_r act on tuples $(\sigma_1, \ldots, \sigma_r)$ in S_d in the following way: the ith generator acts by replacing (σ_i, σ_{i+1}) by $(\sigma_{i+1}, \sigma_{i+1}^{-1}\sigma_i\sigma_{i+1})$. Note this action preserves the product of σ_i 's and the group generated by σ_i 's.

By sending the ith generator to the transposition (i, i + 1), we obtain a natural map $B_r \to S_r$. The kernel of this map is the *pure braid group*, which not only preserves $\sigma_1 \dots \sigma_r = 1$ and $M = \langle \sigma_1, \dots, \sigma_r \rangle$, but sends each σ_i to a conjugate of itself in M.

Therefore, the pure braid group acts on the set of equivalent classes of Hurwitz factorizations.

Question: How many pure braid orbits are there?

The pure-cycle case

A number of people (Hurwitz, Goulden, Jackson, Vakil ...) have studied Hurwitz numbers. However, they restricted their attention to the case where all but one or two σ_i 's are transpositions.

We consider instead the *pure-cycle* case. This means each λ_i has the form $(e_i, 1, \ldots, 1)$, for some $e_i \geq 2$, or equivalently, each σ_i is an e_i cycle.

Our main theorem is in the genus-0 case, which simply means that

$$2d - 2 = \sum_{i=1}^{r} (e_i - 1).$$

Lemma 3 (L-Osserman). In the genus-0 pure-cycle case, when r=3,

$$h(d, 3, (\lambda_1, \lambda_2, \lambda_3)) = 1.$$

Theorem 4 (L-Osserman). In the genus-0 pure-cycle case, when r=4,

$$h(d, 4, (\lambda_1, \lambda_2, \lambda_3, \lambda_4)) = \min\{e_i(d+1-e_i)\}$$

Theorem 5 (L-Osserman). In the genus-0 pure-cycle case, every equivalence class of Hurwitz factorizations of $(d, r, (\lambda_1, \ldots, \lambda_r))$ is in a single pure braid orbit.

Our original motivation for studying this situation was geometric, but it appears that there is also a lot of interesting combinatorial structure. The genus-0 pure-cycle case seems to become more complicated when r>4. However, we have:

Conjecture 6. In the genus-0 pure-cycle case,

(i) if
$$\max e_i = d$$
, then $h(d, r, (\lambda_1, \dots, \lambda_r)) = d^{r-3}$.

(ii) if
$$\max e_i = d - 1$$
, then $h(d, r, (\lambda_1, \dots, \lambda_r)) = (r - 2)(d - 1)^{r-3}$.

We also have a result outside of the genus-0 case:

Lemma 7. In the pure-cycle case and r=3, and $2d=\sum_{i=1}^3(e_i-1)$, the Hurwitz number is

$$h(d, 3, (\lambda_1, \lambda_2, \lambda_3)) = \lceil \frac{\prod_{i=1}^{3} {\binom{f_i}{2}}}{3} \rceil,$$

where
$$f_i = (\sum_{i=1}^3 e_i - 2e_i + 1)/2$$
.

Hurwitz numbers count certain kinds of branched covers of Riemann surfaces.

Given C a compact Riemann surface, we consider *branched cover* (f, C') of C, where f is a surjective map from C' to C, and C' is a compact Riemann surface.

Hurwitz numbers count certain kinds of branched covers of Riemann surfaces.

Given C a compact Riemann surface, we consider branched cover (f, C') of C, where f is a surjective map from C' to C, and C' is a compact Riemann surface.

Properties of a branched cover:

For any $p \in C'$, $\exists e \geq 1$, s.t., in a neighborhood of p, f acts like $z \to z^e$ in a neighborhood of 0. We define the *ramification index* of f at p to be e(p) := e. When e > 1, we call p a *ramification point*.

Hurwitz numbers count certain kinds of branched covers of Riemann surfaces.

Given C a compact Riemann surface, we consider *branched cover* (f,C') of C, where f is a surjective map from C' to C, and C' is a compact Riemann surface.

- For any $p \in C'$, $\exists e \geq 1$, s.t., in a neighborhood of p, f acts like $z \to z^e$ in a neighborhood of 0. We define the *ramification index* of f at p to be e(p) := e. When e > 1, we call p a *ramification point*.
- For any $q \in C$, if $\exists p \in f^{-1}(q)$, such that p is a ramification point, then we call q a branch point.

Hurwitz numbers count certain kinds of branched covers of Riemann surfaces.

Given C a compact Riemann surface, we consider *branched cover* (f,C') of C, where f is a surjective map from C' to C, and C' is a compact Riemann surface.

- For any $p \in C'$, $\exists e \geq 1$, s.t., in a neighborhood of p, f acts like $z \to z^e$ in a neighborhood of 0. We define the *ramification index* of f at p to be e(p) := e. When e > 1, we call p a *ramification point*.
- For any $q \in C$, if $\exists p \in f^{-1}(q)$, such that p is a ramification point, then we call q a branch point.
- Compactness ⇒ finitely many ramification points ⇒ finitely many branch points.

Hurwitz numbers count certain kinds of branched covers of Riemann surfaces.

Given C a compact Riemann surface, we consider *branched cover* (f, C') of C, where f is a surjective map from C' to C, and C' is a compact Riemann surface.

- For any $p \in C'$, $\exists e \geq 1$, s.t., in a neighborhood of p, f acts like $z \to z^e$ in a neighborhood of 0. We define the *ramification index* of f at p to be e(p) := e. When e > 1, we call p a *ramification point*.
- For any $q \in C$, if $\exists p \in f^{-1}(q)$, such that p is a ramification point, then we call q a branch point.
- Compactness \Rightarrow finitely many ramification points \Rightarrow finitely many branch points.
- $\exists d \text{ s.t. for any } q \in C, \sum_{p \in f^{-1}(q)} e(p) = d. \text{ We call } d \text{ the degree of this cover.}$
 - (1) q not a branch point: $|f^{-1}(q)| = d$;
 - (2) q a branch point: if $f^{-1}(q) = \{p_1, \ldots, p_k\}$, define
 - $\lambda(q) := \{e(p_1), \dots, e(p_k)\} \vdash d$ to be the branch type of q.

From now on, we fix $C=\mathbb{P}^1=\mathbb{C}\cup\{\infty\}\cong S^2$.

Example: Let $f: \mathbb{P}^1 \to \mathbb{P}^1, z \mapsto z^3$. (f, \mathbb{P}^1) is a branched cover of \mathbb{P}^1 of degree 3. It has two branch points 0 and ∞ . Their branch types are both (3).

Question: How many (connected) branched covers up to isomorphism are there of C of degree d, with r branched points q_1, \ldots, q_r of branch types $\lambda_1, \ldots, \lambda_r \vdash d$?

From now on, we fix $C=\mathbb{P}^1=\mathbb{C}\cup\{\infty\}\cong S^2.$

Example: Let $f: \mathbb{P}^1 \to \mathbb{P}^1, z \mapsto z^3$. (f, \mathbb{P}^1) is a branched cover of \mathbb{P}^1 of degree 3. It has two branch points 0 and ∞ . Their branch types are both (3).

Question: How many (connected) branched covers up to isomorphism are there of C of degree d, with r branched points q_1, \ldots, q_r of branch types $\lambda_1, \ldots, \lambda_r \vdash d$?

We consider $(f_1,C')\sim (f_2,C'')$ if there exists an isomorphism $i:C'\to C''$ s.t. $f_1=f_2\circ i.$

From now on, we fix $C=\mathbb{P}^1=\mathbb{C}\cup\{\infty\}\cong S^2$.

Example: Let $f: \mathbb{P}^1 \to \mathbb{P}^1, z \mapsto z^3$. (f, \mathbb{P}^1) is a branched cover of \mathbb{P}^1 of degree 3. It has two branch points 0 and ∞ . Their branch types are both (3).

Question: How many (connected) branched covers up to isomorphism are there of C of degree d, with r branched points q_1, \ldots, q_r of branch types $\lambda_1, \ldots, \lambda_r \vdash d$?

We consider $(f_1,C')\sim (f_2,C'')$ if there exists an isomorphism $i:C'\to C''$ s.t. $f_1=f_2\circ i$.

$$2d - 2 + 2g(C') = \sum_{q \text{ a branch point } p \in f^{-1}(q)} (e(p) - 1) = \sum_{i=1}^r \sum_j (\lambda_{i,j} - 1),$$

where $\lambda_{i,j}$ is the jth part of λ_i . The genus g(C') of C' is determined when given $(d, r, (\lambda_1, \ldots, \lambda_r))$.

Monodromy map

Let $X := \mathbb{P}^1 \setminus \{q_1, \dots, q_r\}$ and choose a base point q in X.

 $\pi_1(X,q) = \langle \gamma_1, \dots, \gamma_r \rangle / (\gamma_1 \dots \gamma_r = 1)$, if we choose suitable γ_i as a loop from q to q around q_i .

Given any cover (f, C') of \mathbb{P}^1 , construct a group homomorphism μ as follows:

q has d preimages; label them as $1, 2, \ldots, d$.

Let $\mu: \pi_1(X,q) \to sym(f^{-1}(q)) \cong S_d$ be defined by $\mu(\gamma) = \sigma$, where $\sigma(i) = j$ if when we lift γ to C' starting from i, it ends at j.

 μ is the $\emph{monodromy map}.$ We call $M:=\mu(\pi_1(X,q))$ the $\emph{monodromy group}$ of the cover.

Let $\sigma_i = \mu(\gamma_i)$, then σ_i is a permutation of cycle type λ_i .

 $(\gamma_1,\ldots,\gamma_r)\mapsto (\sigma_1,\ldots,\sigma_r)$ a Hurwitz factorization of $(d,r,(\lambda_1,\ldots,\lambda_r))$.

Hurwitz numbers revisited

Theorem 8 (Riemann Existence Theorem). Given any equivalence class of Hurwitz factorizations $(\sigma_1, \ldots, \sigma_r)$ of $(d, r, (\lambda_1, \ldots, \lambda_r))$, there exists a connected branched cover (f, C') of \mathbb{P}^1 , so that under the corresponding monodromy map, we get $(\sigma_1, \ldots, \sigma_r)$. Also the genus g of C' satisfies:

$$2d - 2 + 2g = \sum_{i=1}^{r} \sum_{j} (\lambda_{i,j} - 1).$$

Therefore, the **Hurwitz number** $h(d, r, (\lambda_1, \dots, \lambda_r))$ counts the number of connected branched covers up to isomorphism of \mathbb{P}^1 of degree d, with r branched points q_1, \dots, q_r of branch types $\lambda_1, \dots, \lambda_r$.

The *Hurwitz space* $H(d, r, (\lambda_1, \ldots, \lambda_r))$ is the collection of $(q_1, \ldots, q_r, (f, C'))$ where (f, C') is a branched cover of \mathbb{P}^1 of degree d with r branched points q_1, \ldots, q_r of branch types $\lambda_1, \ldots, \lambda_r$. We can put a natural topology on it.

 $H(d,r,(\lambda_1,\ldots,\lambda_r))$ is a cover of $U^r=\{(q_1,\ldots,q_r)\mid q_i\neq q_j\}\subset (\mathbb{P}^1)^r$. The degree of this cover is the Hurwitz number $h(d,r,(\lambda_1,\ldots,\lambda_r))$.

The *Hurwitz space* $H(d, r, (\lambda_1, \ldots, \lambda_r))$ is the collection of $(q_1, \ldots, q_r, (f, C'))$ where (f, C') is a branched cover of \mathbb{P}^1 of degree d with r branched points q_1, \ldots, q_r of branch types $\lambda_1, \ldots, \lambda_r$. We can put a natural topology on it.

 $H(d,r,(\lambda_1,\ldots,\lambda_r))$ is a cover of $U^r=\{(q_1,\ldots,q_r)\mid q_i\neq q_j\}\subset (\mathbb{P}^1)^r$. The degree of this cover is the Hurwitz number $h(d,r,(\lambda_1,\ldots,\lambda_r))$.

Question: When is the Hurwitz space connected?

The *Hurwitz space* $H(d, r, (\lambda_1, \ldots, \lambda_r))$ is the collection of $(q_1, \ldots, q_r, (f, C'))$ where (f, C') is a branched cover of \mathbb{P}^1 of degree d with r branched points q_1, \ldots, q_r of branch types $\lambda_1, \ldots, \lambda_r$. We can put a natural topology on it.

 $H(d,r,(\lambda_1,\ldots,\lambda_r))$ is a cover of $U^r=\{(q_1,\ldots,q_r)\mid q_i\neq q_j\}\subset (\mathbb{P}^1)^r$. The degree of this cover is the Hurwitz number $h(d,r,(\lambda_1,\ldots,\lambda_r))$.

Question: When is the Hurwitz space connected?

The Hurwitz space is connected if and only if every Hurwitz factorization is in a single pure braid orbit.

The *Hurwitz space* $H(d, r, (\lambda_1, \ldots, \lambda_r))$ is the collection of $(q_1, \ldots, q_r, (f, C'))$ where (f, C') is a branched cover of \mathbb{P}^1 of degree d with r branched points q_1, \ldots, q_r of branch types $\lambda_1, \ldots, \lambda_r$. We can put a natural topology on it.

 $H(d,r,(\lambda_1,\ldots,\lambda_r))$ is a cover of $U^r=\{(q_1,\ldots,q_r)\mid q_i\neq q_j\}\subset (\mathbb{P}^1)^r$. The degree of this cover is the Hurwitz number $h(d,r,(\lambda_1,\ldots,\lambda_r))$.

Question: When is the Hurwitz space connected?

The Hurwitz space is connected if and only if every Hurwitz factorization is in a single pure braid orbit.

Hence, we can restate our earlier theorem:

Theorem 9 (L-Osserman). If each λ_i has the form $(e_i,1,\ldots,1)$, and $2d-2=\sum_{i=1}^r(e_i-1)$, then the Hurwitz space $H(d,r,(\lambda_1,\ldots,\lambda_r))$ is connected.