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PART I:

Multivariate generating function

Summary: We will go over basic definitions and theory related to the multivariate

generating functions.
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Polyhedra and polytopes

Definition 1 (Normal Specification). A polyhedron P ⊂ R
D is the solution set of a

(finite) system of linear inequalities:

P = {x ∈ R
D : Ax ≤ b},

for some A ∈ R
N×D,b ∈ R

N .

A (convex) polytope is a bounded polyhedron.

Kyoto, Japan, 2012 Page 4



Perturbation of transportation polytopes Fu Liu

Polyhedra and polytopes

Definition 1 (Normal Specification). A polyhedron P ⊂ R
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P = {x ∈ R
D : Ax ≤ b},

for some A ∈ R
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Polyhedra and polytopes

Definition 1 (Normal Specification). A polyhedron P ⊂ R
D is the solution set of a

(finite) system of linear inequalities:

P = {x ∈ R
D : Ax ≤ b},

for some A ∈ R
N×D,b ∈ R

N .

A (convex) polytope is a bounded polyhedron.

A pointed polyhedron is a polyhedron that does not contain a line. (A polytope is

always pointed.)

Lemma 2 (Canonical Specification). A polyhedron is pointed if and only if it is affinely

equivalent to a polyhedron defined as

P = {x ∈ R
D′

: A′x = b
′,x ≥ 0},

for some A′ ∈ R
N ′×D′

,b′ ∈ R
N ′

.
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Polyhedra and polytopes

Definition 1 (Normal Specification). A polyhedron P ⊂ R
D is the solution set of a

(finite) system of linear inequalities:

P = {x ∈ R
D : Ax ≤ b},

for some A ∈ R
N×D,b ∈ R

N .

A (convex) polytope is a bounded polyhedron.

A pointed polyhedron is a polyhedron that does not contain a line. (A polytope is

always pointed.)

Lemma 2 (Canonical Specification). A polyhedron is pointed if and only if it is affinely

equivalent to a polyhedron defined as

P = {x ∈ R
D′

: A′x = b
′,x ≥ 0},

for some A′ ∈ R
N ′×D′

,b′ ∈ R
N ′

.

An integral polytope/polyhedron is a polytope/polyhedron whose vertices are all lat-

tice points. i.e., points with integer coordinates.
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Multivariate generating function

For any polyhedron P ∈ R
D, we define the multivariate generating function (MGF)

of P as

f(P, z) =
∑

α∈P∩ZD

z
α,

where z
α = zα1

1 zα2

2 · · · z
αd

D .

One sees that by setting z = (1, 1, . . . , 1), we get the number of lattice points in P

if P is a polytope.

Example: Let P be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (0, 2).

P :

(0, 0) (2, 0)

(0, 2)

(1, 0)

(0, 1) (1, 1)

f(P, z) = z01z
0
2 + z11z

0
2 + z21z

0
2 + z01z

1
2 + z11z

1
2 + z01z

2
2

= 1 + z1 + z21 + z2 + z1z2 + z22 .
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Brion’s Lemma

Definition 3. Suppose v is a vertex of P. The feasible cone of P at v is:

fcone(P, v) = {u ∈ R
d : v + δu ∈ P for all sufficiently small δ > 0}.
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Brion’s Lemma

Definition 3. Suppose v is a vertex of P. The feasible cone of P at v is:

fcone(P, v) = {u ∈ R
d : v + δu ∈ P for all sufficiently small δ > 0}.

It turns out that f(P, z) can be written as a rational function, for any rational polyhe-

dron P.

Lemma 4 (Brion, 1988; Lawrence, 1991). Let P be an integral polyhedron and let

V (P ) be the vertex set of P . Then, considered as rational funtions,

f(P, z) =
∑

v∈V (P )

z
vf(fcone(P, v), z).
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Brion’s Lemma

Definition 3. Suppose v is a vertex of P. The feasible cone of P at v is:

fcone(P, v) = {u ∈ R
d : v + δu ∈ P for all sufficiently small δ > 0}.

It turns out that f(P, z) can be written as a rational function, for any rational polyhe-

dron P.

Lemma 4 (Brion, 1988; Lawrence, 1991). Let P be an integral polyhedron and let

V (P ) be the vertex set of P . Then, considered as rational funtions,

f(P, z) =
∑

v∈V (P )

z
vf(fcone(P, v), z).

Remark 5. Brion’s lemma was stated more generally in terms of rational polyhedra.

However, we only need the version for integral polyhedra.
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Unimodular cones

Usually, it is NOT straightforward to compute the MGF of a cone, even if it is simple,

i.e., the number of rays that generates the cone is equal to the dimension of the cone.
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Unimodular cones

Usually, it is NOT straightforward to compute the MGF of a cone, even if it is simple,

i.e., the number of rays that generates the cone is equal to the dimension of the cone.

Lemma 6. Suppose K is a d-dimensional cone inRD, generated by vectors {ri}1≤i≤d

such that the ri’s form a Z-basis of the lattice Z
D ∩ span({ri}). We call such a cone

a unimodular cone. Then we have

f(K, z) =
d
∏

i=1

1

1− zri
.
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An example of the lemmas

Example: Let P be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (0, 2).

P :

v1 = (0, 0) v2 = (2, 0)

v3 = (0, 2)

f(P, z) =
∑3

i=1 z
vif(fcone(P, vi), z) (By Brion’s lemma)
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An example of the lemmas

Example: Let P be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (0, 2).

P :

v1 = (0, 0) v2 = (2, 0)

v3 = (0, 2)

f(P, z) =
∑3

i=1 z
vif(fcone(P, vi), z)

-

6 A unimodular cone generated by vectors (1, 0) and (0, 1).

= z
(0,0) 1

(1− z(1,0))(1− z(0,1))
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An example of the lemmas

Example: Let P be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (0, 2).

P :

v1 = (0, 0) v2 = (2, 0)

v3 = (0, 2)

f(P, z) =
∑3

i=1 z
vif(fcone(P, vi), z)

= z
(0,0) 1

(1− z(1,0))(1− z(0,1))

�

I A unimodular cone generated by vectors (−1, 0) and (−1, 1).

+ z
(2,0) 1

(1− z(−1,0))(1− z(−1,1))
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An example of the lemmas

Example: Let P be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (0, 2).

P :

v1 = (0, 0) v2 = (2, 0)

v3 = (0, 2)

f(P, z) =
∑3

i=1 z
vif(fcone(P, vi), z)

= z
(0,0) 1

(1− z(1,0))(1− z(0,1))
+ z

(2,0) 1

(1− z(−1,0))(1− z(−1,1))

? R
A unimodular cone generated by vectors (0,−1) and (1,−1).

+ z
(0,2) 1

(1− z(0,−1))(1− z(1,−1))
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An example of the lemmas

Example: Let P be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (0, 2).

P :

v1 = (0, 0) v2 = (2, 0)

v3 = (0, 2)

f(P, z) =
∑3

i=1 z
vif(fcone(P, vi), z)

= z
(0,0) 1

(1− z(1,0))(1− z(0,1))
+ z

(2,0) 1

(1− z(−1,0))(1− z(−1,1))

+ z
(0,2) 1

(1− z(0,−1))(1− z(1,−1))

=
1

(1− z1)(1− z2)
+ +

z21
(1− z−11 )(1− z−11 z2)

z22
(1− z−12 )(1− z1z

−1
2 )
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An example of the lemmas

Example: Let P be the polytope with vertices v1 = (0, 0), v2 = (2, 0) and v3 = (0, 2).

P :

v1 = (0, 0) v2 = (2, 0)

v3 = (0, 2)

f(P, z) =
∑3

i=1 z
vif(fcone(P, vi), z)

= z
(0,0) 1

(1− z(1,0))(1− z(0,1))
+ z

(2,0) 1

(1− z(−1,0))(1− z(−1,1))

+ z
(0,2) 1

(1− z(0,−1))(1− z(1,−1))

=
1

(1− z1)(1− z2)
+ +

z21
(1− z−11 )(1− z−11 z2)

z22
(1− z−12 )(1− z1z

−1
2 )

= 1 + z1 + z21 + z2 + z1z2 + z22
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PART II:

A perturbation method

Summary: We introduce a perturbation method that reduces the problem of finding

the MGF of a non-simple polytope to computing the MGFs of simple polytopes.
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A perturbation method

When we calculate the MGF of a non-simple cone, the common method involves

triangulating the cone into simple cones. We replace the triangulation step with a per-

turbation method.

Theorem 7 (L.). Suppose P = {x | Ax ≤ b} is a non-empty integral polyhedron

in R
D and b(t) is a continuous function on some interval containing 0 satisfying the

following conditions.

a) b(t)→ b as t→ 0.

b) For each t 6= 0 in the interval, P (t) = {x | Ax ≤ b(t)} is a non-empty polyhe-

dron with exactly ℓ vertices: wt,1, . . . , wt,ℓ, and the feasible cone of P (t) at wt,j

does not depend on t, that is, for each j : 1 ≤ j ≤ ℓ, there exists a fixed cone Kj

such that fcone(P (t), wt,j) = Kj for all t 6= 0.

Then
f(P, z) =

ℓ
∑

j=1

z
limt→0 wt,jf(Kj, z).
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An example of Theorem 7

Let

A =



































1 0

−1 0

0 1

0 −1

1 −1

1 2

2 1



































, b =



































1

0

1

0

1

3

3



































, and b(t) =



































1

t

1

0

1− 2t

3− 3t

3− 3t



































, 0 ≤ t < 1/5.

Then P = {x ∈ R
2 | Ax ≤ b} is just the unit square with vertices

v1 = (0, 0), v2 = (0, 1), v3 = (1, 1) and v4 = (1, 0).

Condition a): b(t)→ b as t→ 0.
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An example of Theorem 7 (cont’d)

wt1,1 wt1,7

wt1,2 wt1,3

t1 = 3/20

wt2,1 wt3,1 wt3,7

wt3,3wt3,2wt2,3

wt1,4

wt1,5

wt1,6

t2 = 1/10

P (t2) P (t3) P (0) = P

wt2,7

wt2,2

wt2,4

wt2,5

wt2,6
wt3,6

wt3,4
wt3,5

P (t1)

t3 = 1/20

v1 v4

v3v2

For any t ∈ (0, 1/5), the polygon P (t) = {x|Ax ≤ b(t)} has seven vertices

wt,1 = (t, 0), wt,2 = (t, 1),

wt,3 = (1− 3t, 1), wt,4 = (1− t, 1− t), wt,5 = (1, 1− 3t),
wt,6 = (1, 2t), wt,7 = (1− 2t, 0).

wt,1 → v1, wt,2 → v2, wt,3, wt,4, wt,5 → v3, wt,6, wt,7 → v4.

Condition b) The feasible cone of P (t) at wt,j does not depend on t (for t ∈

(0, 1/5)). Let Kj := fcone(P (t), wt,j). By Theorem 7, we have

f(P, z) = z
v1f(K1, z) + z

v2f(K2, z) + z
v3(f(K3, z) + f(K4, z) + f(K5, z))

+z
v4(f(K6, z) + f(K7, z)).
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Total unimodularity

Our perturbation method is most efficient when the defining matrix is totally unimod-

ular.

A totally unimodular matrix is a matrix whose minors are 0, 1 or−1.

Lemma 8. Suppose A is a totally unimodular matrix, and P is defined by the canonical

specification
Ax = b, x ≥ 0. (9)

Then every feasible cone of P is unimodular if P is simple.
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Total unimodularity

Our perturbation method is most efficient when the defining matrix is totally unimod-

ular.

A totally unimodular matrix is a matrix whose minors are 0, 1 or−1.

Lemma 8. Suppose A is a totally unimodular matrix, and P is defined by the canonical

specification
Ax = b, x ≥ 0. (9)

Then every feasible cone of P is unimodular if P is simple.

Recall that the MGF of a unimodular cone K is easy to calculate:

f(K, z) =
∏ 1

1− zri
,

where {ri} is the set of vectors that generates K.
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Total unimodularity

Our perturbation method is most efficient when the defining matrix is totally unimod-

ular.

A totally unimodular matrix is a matrix whose minors are 0, 1 or−1.

Lemma 8. Suppose A is a totally unimodular matrix, and P is defined by the canonical

specification
Ax = b, x ≥ 0. (9)

Then every feasible cone of P is unimodular if P is simple.

Recall that the MGF of a unimodular cone K is easy to calculate:

f(K, z) =
∏ 1

1− zri
,

where {ri} is the set of vectors that generates K.

Suppose A is a totally unimodular matrix, and P is an integral polytope defined by

the canonical specification (9). We have the following two situations.
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Total unimodularity (cont’d)

(i) If P is simple, the MGF of P is given by:

f(P, z) =
∑

v∈V (P )

z
vf(fcone(P, v), z) =

∑

v∈V (P )

z
v
∏ 1

1− zrv,i
,

where {rv,i} is the set of vectors that generates the unimodular cone fcone(P, v).
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Total unimodularity (cont’d)

(i) If P is simple, the MGF of P is given by:

f(P, z) =
∑

v∈V (P )

z
vf(fcone(P, v), z) =

∑

v∈V (P )

z
v
∏ 1

1− zrv,i
,

where {rv,i} is the set of vectors that generates the unimodular cone fcone(P, v).

(ii) Suppose P is not simple and b(t) is a continuous function such that the perturbed

polytopes
P (t) = {x : Ax = b(t),x ≥ 0}

are simple and satisfy the conditions of our perturbation theorem. Then

f(P, z) =
ℓ

∑

j=1

z
limt→0 wt,jf(Kj, z)

=
ℓ

∑

j=1

z
limt→0 wt,j

∏ 1

1− zri,j
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Total unimodularity (cont’d)

(i) If P is simple, the MGF of P is given by:

f(P, z) =
∑

v∈V (P )

z
vf(fcone(P, v), z) =

∑

v∈V (P )

z
v
∏ 1

1− zrv,i
,

where {rv,i} is the set of vectors that generates the unimodular cone fcone(P, v).

(ii) Suppose P is not simple and b(t) is a continuous function such that the perturbed

polytopes P (t) = {x : Ax = b(t),x ≥ 0}

are simple and satisfy the conditions of our perturbation theorem. Then

f(P, z) =

ℓ
∑

j=1

z
limt→0 wt,jf(Kj, z)

=
ℓ

∑

j=1

z
limt→0 wt,j

∏ 1

1− zri,j

A continuous function b(t) satisfying the above conditions exists: Choose b(t) =

b+ tv, where v is a generic vector.
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Total unimodularity (cont’d)

Suppose A is totally unimodular. What do we need to know to figure out the MGFs

of (integral) polytopes defined by the canonical specification

Pb := {x : Ax = b,x ≥ 0}?

(i)
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Total unimodularity (cont’d)

Suppose A is totally unimodular. What do we need to know to figure out the MGFs

of (integral) polytopes defined by the canonical specification

Pb := {x : Ax = b,x ≥ 0}?

(i) When is the polytope Pb integral?
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Total unimodularity (cont’d)

Suppose A is totally unimodular. What do we need to know to figure out the MGFs

of (integral) polytopes defined by the canonical specification

Pb := {x : Ax = b,x ≥ 0}?

(i) When is the polytope Pb integral?

(ii) When is the polytope Pb simple?
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Total unimodularity (cont’d)

Suppose A is totally unimodular. What do we need to know to figure out the MGFs

of (integral) polytopes defined by the canonical specification

Pb := {x : Ax = b,x ≥ 0}?

(i) When is the polytope Pb integral?

(ii) When is the polytope Pb simple?

(iii) Fixing b, how to find the vertices of Pb?
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Total unimodularity (cont’d)

Suppose A is totally unimodular. What do we need to know to figure out the MGFs

of (integral) polytopes defined by the canonical specification

Pb := {x : Ax = b,x ≥ 0}?

(i) When is the polytope Pb integral?

(ii) When is the polytope Pb simple?

(iii) Fixing b, how to find the vertices of Pb?

(iv) Fixing b and a vertex v of Pb, how to find the generating rays of the feasible cone

of Pb at v?
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PART III:

Transportation polytopes

Summary: We discuss known results on transportation polytopes that are related

to our talk, and then give formulas for MGFs of transportation polytopes by using our

perturbation method.
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Basic definitions

Suppose r = (r1, . . . , rm) and c = (c1, . . . , cn) two vectors of positive entries

whose coordinates sum to a fixed number. The transportation polytope T (r, c) is the

set of all m×n nonnegative matrices in which row i has sum ri and column j has sum

cj . (In statistics, those matrices are called contingency table with margins r and c.) We

call T (r, c) a transportation polytope of order m× n.
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Basic definitions

Suppose r = (r1, . . . , rm) and c = (c1, . . . , cn) two vectors of positive entries

whose coordinates sum to a fixed number. The transportation polytope T (r, c) is the

set of all m×n nonnegative matrices in which row i has sum ri and column j has sum

cj . (In statistics, those matrices are called contingency table with margins r and c.) We

call T (r, c) a transportation polytope of order m× n.

If r1 = r2 = · · · = rm and c1 = c2 = · · · = cn, we say T (r, c) is a central

transportation polytope of order m× n.
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Basic definitions

Suppose r = (r1, . . . , rm) and c = (c1, . . . , cn) two vectors of positive entries

whose coordinates sum to a fixed number. The transportation polytope T (r, c) is the

set of all m×n nonnegative matrices in which row i has sum ri and column j has sum

cj . (In statistics, those matrices are called contingency table with margins r and c.) We

call T (r, c) a transportation polytope of order m× n.

If r1 = r2 = · · · = rm and c1 = c2 = · · · = cn, we say T (r, c) is a central

transportation polytope of order m× n.

Example 10. Let r = (3, 3) and c = (2, 2, 2). Then T (r, c) is a central transporta-

tion polytope of order 2× 3.





1 1 1

1 1 1



 and





2 0 1

0 2 1



 ∈ T (r, c).
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Canonical specification

It is easy to give a canonical specification of a transportation polytope.

Example 11.
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Canonical specification

It is easy to give a canonical specification of a transportation polytope.

Example 11. Let r = (r1, r2) and c = (c1, c2, c3). Then T (r, c) is the set






































x1,1 x1,2 x1,3

x2,1 x2,2 x2,3



 :

















1 0 1 0 1 0

0 1 0 1 0 1

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1



































x1,1
x2,1
x1,2
x2,2
x1,3
x2,3



















=

















r1
r2
c1
c2
c3

















, xi,j ≥ 0



































,

where the above matrix is denoted by A2,3.

Kyoto, Japan, 2012 Page 18



Perturbation of transportation polytopes Fu Liu

Canonical specification

It is easy to give a canonical specification of a transportation polytope.

Example 11. Let r = (r1, r2) and c = (c1, c2, c3). Then T (r, c) is the set






































x1,1 x1,2 x1,3

x2,1 x2,2 x2,3



 :

















1 0 1 0 1 0

0 1 0 1 0 1

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1



































x1,1
x2,1
x1,2
x2,2
x1,3
x2,3



















=

















r1
r2
c1
c2
c3

















, xi,j ≥ 0



































,

where the above matrix is denoted by A2,3.

T (r, c) has a natural canonical specification:

T (r, c) =







x : Am,nx =





r
T

c
T



 , x ≥ 0







,

where Am,n is the (m+ n)×mn incidence matrix of Km,n.
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Questions

It turns out that Am,n is totally unimodular. Recall we need to know the followings to

figure out the MGFs of integral transportation polytopes T (r, c) of order m× n.

(i) When is the polytope T (r, c) integral?

(ii) When is the polytope T (r, c) simple?

(iii) How to find the vertices of T (r, c)?

(iv) How to find the generating rays of the feasible cone of T (r, c) at a given vertex?
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figure out the MGFs of integral transportation polytopes T (r, c) of order m× n.
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figure out the MGFs of integral transportation polytopes T (r, c) of order m× n.

(i) When is the polytope T (r, c) integral? Answer : If and only if (r, c) is integral.

(ii) When is the polytope T (r, c) simple? A stronger condition: non-degenerate.

(iii) How to find the vertices of T (r, c)?

(iv) How to find the generating rays of the feasible cone of T (r, c) at a given vertex?
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It turns out that Am,n is totally unimodular. Recall we need to know the followings to

figure out the MGFs of integral transportation polytopes T (r, c) of order m× n.

(i) When is the polytope T (r, c) integral? Answer : If and only if (r, c) is integral.

(ii) When is the polytope T (r, c) simple? A stronger condition: non-degenerate.

(iii) How to find the vertices of T (r, c)? Answer : Using auxiliary graphs.

(iv) How to find the generating rays of the feasible cone of T (r, c) at a given vertex?
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Questions

It turns out that Am,n is totally unimodular. Recall we need to know the followings to

figure out the MGFs of integral transportation polytopes T (r, c) of order m× n.

(i) When is the polytope T (r, c) integral? Answer : If and only if (r, c) is integral.

(ii) When is the polytope T (r, c) simple? A stronger condition: non-degenerate.

(iii) How to find the vertices of T (r, c)? Answer : Using auxiliary graphs.

(iv) How to find the generating rays of the feasible cone of T (r, c) at a given vertex?

Answer : Also using auxiliary graphs; but we will skip details.
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Non-degeneracy

Definition 12. The transportation polytope T (r, c) is non-degenerate if the only nonempty

index subsets I ⊆ [m] and J ⊆ [n] satisfying
∑

i∈I ri =
∑

j∈J cj are I = [m] and

J = [n]; otherwise it is degenerate.
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Non-degeneracy

Definition 12. The transportation polytope T (r, c) is non-degenerate if the only nonempty

index subsets I ⊆ [m] and J ⊆ [n] satisfying
∑

i∈I ri =
∑

j∈J cj are I = [m] and

J = [n]; otherwise it is degenerate.

Example 13. T ((2, 3, 6, 6), (1, 4, 5, 7)) is degenerate because 2 + 3 = 5

(or 3 + 6 = 4 + 5, or . . . )

T ((3, 3), (2, 2, 2)) is non-degenerate.
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Non-degeneracy

Definition 12. The transportation polytope T (r, c) is non-degenerate if the only nonempty

index subsets I ⊆ [m] and J ⊆ [n] satisfying
∑

i∈I ri =
∑

j∈J cj are I = [m] and

J = [n]; otherwise it is degenerate.

Example 13. T ((2, 3, 6, 6), (1, 4, 5, 7)) is degenerate because 2 + 3 = 5

(or 3 + 6 = 4 + 5, or . . . )

T ((3, 3), (2, 2, 2)) is non-degenerate.

Fact. Every non-degenerate transportation polytope is simple.
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Auxiliary graphs
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Auxiliary graphs

Example: Let r = (3, 3) and c = (2, 2, 2).
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Auxiliary graphs

Example: Let r = (3, 3) and c = (2, 2, 2).

M ∈ T (r, c) subgraph of Km,n with

a positive labelling





2 0 1

0 2 1



 ←→

u1

u2

w1

w2

w3

2

1

2

1

0

0
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Auxiliary graphs

Example: Let r = (3, 3) and c = (2, 2, 2).

M ∈ T (r, c) subgraph of Km,n with

a positive labelling





2 0 1

0 2 1



 ←→

u1

u2

w1

w2

w3

2

1

2

1

0

0

with margin (r, c)
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Auxiliary graphs

Example: Let r = (3, 3) and c = (2, 2, 2).

M ∈ T (r, c) subgraph of Km,n with

a positive labelling





2 0 1

0 2 1



 ←→

u1

u2

w1

w2

w3

2

1

2

1

0

0

with margin (r, c)

−→

u1

u2

w1

w2

w3
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Auxiliary graphs

Example: Let r = (3, 3) and c = (2, 2, 2).

M ∈ T (r, c) subgraph of Km,n with

a positive labelling





2 0 1

0 2 1



 ←→

u1

u2

w1

w2

w3

2

1

2

1

0

0

with margin (r, c)

−→

u1

u2

w1

w2

w3

auxiliary Graph aux(M)

aux
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Vertices

Theorem 14. Suppose T (r, c) is non-degenerate and M ∈ T (r, c). Then M is a

vertex of T (r, c) if and only if aux(M) is a spanning tree of Km,n.

Furthermore, no two vertices of T (r, c) have the same auxiliary graphs.

Hence, when T (r, c) is non-degenerate, the map aux induces a bijection:

{

vertices of T (r, c)
}

←→



















spanning trees of Km,n

that admit positive labellings

with margin (r, c)


















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MGFs of non-degenerate integral transportation polytopes

Corollary 15. Suppose T (r, c) is a non-degenerate integral transportation polytope.

Then

f(T (r, c), z) =
∑

M

z
M
∏ 1

1− zrM,i

where the summation is over all vertices M of T (r, c), and {rM,i} is the set of vectors

that generates the unimodular cone fcone(T (r, c),M).
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MGFs of non-degenerate integral transportation polytopes

Corollary 15. Suppose T (r, c) is a non-degenerate integral transportation polytope.

Then

f(T (r, c), z) =
∑

T

z
MT

∏ 1

1− z
rMT ,i

where the summation is over all spanning trees T of Km,n that admits a positive

labelling with margin (r, c), and MT is the vertex corresponding to T , and {rMT ,i} is

the set of vectors that generates the unimodular cone fcone(T (r, c),MT ).
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MGFs of non-degenerate integral transportation polytopes

Corollary 15. Suppose T (r, c) is a non-degenerate integral transportation polytope.

Then

f(T (r, c), z) =
∑

T

z
MT

∏

e 6∈E(T )

1

1− zcycle(T,e)
,

where the summation is over all spanning trees T of Km,n that admits a positive

labelling with margin (r, c), and MT is the vertex corresponding to T , and cycle(T, e)

is an m× n (0, 1,−1)-matrix associated to the unique cycle in T ∪ e.
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MGFs of non-degenerate integral transportation polytopes

Corollary 15. Suppose T (r, c) is a non-degenerate integral transportation polytope.

Then

f(T (r, c), z) =
∑

T

z
MT

∏

e 6∈E(T )

1

1− zcycle(T,e)
,

where the summation is over all spanning trees T of Km,n that admits a positive

labelling with margin (r, c), and MT is the vertex corresponding to T , and cycle(T, e)

is an m× n (0, 1,−1)-matrix associated to the unique cycle in T ∪ e.

Question : What if T (r, c) is degenerate?

Answer : We construct a perturbation that works for any transportation polytope, which

gives a formula similar to the above formula.
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Perturbation of (degenerate) transportation polytopes

Suppose r = (r1, r2, . . . , rm) and c = (c1, c2, . . . , cn) are two rational positive

vectors. We define

r(t) = (r1 − t, . . . , rm − t), c(t) = (c1, . . . , cn−1, cn −mt).

We show that {T (r(t), c(t)) | t ∈ (0, ǫ)} is a family of non-degenerate transportation

polytopes satisfying the conditions of our perturbation theorem, where ǫ is a sufficiently

small positive number.
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Perturbation of (degenerate) transportation polytopes

Suppose r = (r1, r2, . . . , rm) and c = (c1, c2, . . . , cn) are two rational positive

vectors. We define

r(t) = (r1 − t, . . . , rm − t), c(t) = (c1, . . . , cn−1, cn −mt).

We show that {T (r(t), c(t)) | t ∈ (0, ǫ)} is a family of non-degenerate transportation

polytopes satisfying the conditions of our perturbation theorem, where ǫ is a sufficiently

small positive number.

Corollary 16. Suppose T (r, c) is an integral transportation polytope. Then

f(T (r, c), z) =
∑

T

z
MT

∏

e 6∈E(T )

1

1− zcycle(T,e)
, (17)

where the summation is over all spanning trees of Km,n that admits a positive labelling

with margin (r(t), c(t)) (for sufficiently small ǫ).
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Perturbation of (degenerate) transportation polytopes

Suppose r = (r1, r2, . . . , rm) and c = (c1, c2, . . . , cn) are two rational positive

vectors. We define

r(t) = (r1 − t, . . . , rm − t), c(t) = (c1, . . . , cn−1, cn −mt).

We show that {T (r(t), c(t)) | t ∈ (0, ǫ)} is a family of non-degenerate transportation

polytopes satisfying the conditions of our perturbation theorem, where ǫ is a sufficiently

small positive number.

Corollary 16. Suppose T (r, c) is an integral transportation polytope. Then

f(T (r, c), z) =
∑

T

z
MT

∏

e 6∈E(T )

1

1− zcycle(T,e)
, (17)

where the summation is over all spanning trees of Km,n that admits a positive labelling

with margin (r(t), c(t)) (for sufficiently small ǫ).

The summation of the above formula is generally complicated. However, in some

special cases, we get nice simple descriptions. The family of central transportation

polytopes of order kn× n is such an example.
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STk,n

Definition 18. Let STk,n be the set of spanning trees of the complete bipartite graph

Kkn,n in which the vertices w1, w2, . . . , wn have degree k+ 1, k+ 1, . . . , k+1, k.

Example: Let k = 2 and n = 3. Below are three trees in ST2,3.

u1

u2

u3

u4

u5

u6

w1

w2

w3

u1

u2

u3

u4

u5

u6

w1

w2

w3

u1

u2

u3

u4

u5

u6

w1

w2

w3

Lemma 19. The cardinality of STk,n is
(kn)!

(k!)n
nn−2kn−1.
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The MGF of a central transportation polytope of order kn× n

Theorem 20 (L.). Assume that T (r, c) is an integral central transportation polytope of

order kn × n. (Hence, r = (a, . . . , a) and c = (b, . . . , b) are two integer vectors,

where akn = bn.)

Then the set STk,n is precisely the set of spanning trees of Kkn,n that admits a

positive labelling with margin (r(t), c(t)).

Therefore,

f(T (r, c), z) =
∑

T∈STk,n

z
MT

∏

e 6∈E(T )

1

1− zcycle(T,e)
. (21)
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The MGF of a central transportation polytope of order kn× n

Theorem 20 (L.). Assume that T (r, c) is an integral central transportation polytope of

order kn × n. (Hence, r = (a, . . . , a) and c = (b, . . . , b) are two integer vectors,

where akn = bn.)

Then the set STk,n is precisely the set of spanning trees of Kkn,n that admits a

positive labelling with margin (r(t), c(t)).

Therefore,

f(T (r, c), z) =
∑

T∈STk,n

z
MT

∏

e 6∈E(T )

1

1− zcycle(T,e)
. (21)

Remark 22. When k = 1, the central transportation polytopes of order n × n are the

Birkhoff polytopes. Our theorem recover the combinatorial formula for the MGF of the

Birkhoff polytopes obtained by my joint work with De Loera and Yoshida.
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Maximum number of vertices

Definition 23. We define φ(m,n) to be the maximum possible number of vertices of

all transportation polytopes of order m× n.
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Maximum number of vertices

Definition 23. We define φ(m,n) to be the maximum possible number of vertices of

all transportation polytopes of order m× n.

Explicit formulas for φ(m,n) are only known for cases where m = kn, kn ±

1, kn− 2.
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Maximum number of vertices

Definition 23. We define φ(m,n) to be the maximum possible number of vertices of

all transportation polytopes of order m× n.

Explicit formulas for φ(m,n) are only known for cases where m = kn, kn ±

1, kn− 2.

Theorem 24 (Yemelichev-Kravtsov, Bolker, . . . ). A generic perturbation of a central

transportation polytope of order m× n has φ(m,n) vertices.
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Maximum number of vertices

Definition 23. We define φ(m,n) to be the maximum possible number of vertices of

all transportation polytopes of order m× n.

Explicit formulas for φ(m,n) are only known for cases where m = kn, kn ±

1, kn− 2.

Theorem 24 (Yemelichev-Kravtsov, Bolker, . . . ). A generic perturbation of a central

transportation polytope of order m× n has φ(m,n) vertices.

Corollary 25. Suppose T (r, c) is a central transportation polytope of order m × n.

Hence, r = (a, a, . . . , a) and c = (b, b, . . . , b) where am = bn. In this case, we

have
r(t) = (a− t, . . . , a− t), c(t) = (b, . . . , b, b−mt).

Then for sufficiently small t, the perturbed transportation polytope T (r(t), c(t)) has

φ(m,n) vertices.
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Maximum number of vertices (cont’d)

Corollary 26. Assume the same conditions as the last corollary. Then φ(m,n) is

the number of spanning trees of Km,n that admits a positive labelling with margin

(r(t), c(t)).
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Maximum number of vertices (cont’d)

Corollary 26. Assume the same conditions as the last corollary. Then φ(m,n) is

the number of spanning trees of Km,n that admits a positive labelling with margin

(r(t), c(t)).

Corollary 27.

φ(kn, n) = |STk,n| =
(kn)!

(k!)n
nn−2kn−1

.
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Maximum number of vertices (cont’d)

Corollary 26. Assume the same conditions as the last corollary. Then φ(m,n) is

the number of spanning trees of Km,n that admits a positive labelling with margin

(r(t), c(t)).

Corollary 27.

φ(kn, n) = |STk,n| =
(kn)!

(k!)n
nn−2kn−1

.

Remark 28. Suppose T (r, c) is a central transportation polytope of order m × n.

studying spanning trees ofKm,n that admits a positive labelling with margin (r(t), c(t))

can lead to:

• A combinatorial formula for the MGF of T (r, c).

• An explicit formula for φ(m,n).
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