Uniqueness of Berline-Vergne's valuation

Fu Liu University of California, Davis

AMS Special Session

Combinatorial Commutative Algebra and Polytopes

JMM, San Diego, CA

January 12, 2018

This is joint work with Federico Castillo.

Outline

- Introduction
 - Polytopes and Ehrhart theory
 - McMullen's formula and α -constructions
- Main example and the uniqueness result
- Idea of proof

A *(convex) polytope* is a bounded solution set of a finite system of linear inequalities,

or is the convex hull of a finite set of points.

A *(convex) polytope* is a bounded solution set of a finite system of linear inequalities, or is the convex hull of a finite set of points.

An *integral* polytope is a polytope whose vertices are all lattice points. i.e., points with integer coordinates.

A *(convex) polytope* is a bounded solution set of a finite system of linear inequalities, or is the convex hull of a finite set of points.

An *integral* polytope is a polytope whose vertices are all lattice points. i.e., points with integer coordinates.

For any set $S \subset \mathbb{R}^d$, let $Lat(S) := |S \cap \mathbb{Z}^d|$ be the number of lattice points in S.

A *(convex) polytope* is a bounded solution set of a finite system of linear inequalities, or is the convex hull of a finite set of points.

An *integral* polytope is a polytope whose vertices are all lattice points. i.e., points with integer coordinates.

For any set $S \subset \mathbb{R}^d$, let $Lat(S) := |S \cap \mathbb{Z}^d|$ be the number of lattice points in S.

Definition. For any polytope $P \subset \mathbb{R}^d$ and positive integer $t \in \mathbb{N}$, we define

 $i(P,t) = \operatorname{Lat}(tP)$

A *(convex) polytope* is a bounded solution set of a finite system of linear inequalities, or is the convex hull of a finite set of points.

An *integral* polytope is a polytope whose vertices are all lattice points. i.e., points with integer coordinates.

For any set $S \subset \mathbb{R}^d$, let $Lat(S) := |S \cap \mathbb{Z}^d|$ be the number of lattice points in S.

Definition. For any polytope $P \subset \mathbb{R}^d$ and positive integer $t \in \mathbb{N}$, we define

 $i(P,t) = \operatorname{Lat}(tP)$

Theorem (Ehrhart). Let P be a d-dimensional integral polytope. Then i(P, t) is a polynomial in t of degree d.

Therefore, we call i(P, t) the *Ehrhart polynomial* of *P*.

McMullen's formula

In 1975 Danilov asked if it is possible to assign values $\Psi(C)$ to all rational cones C such that the following *McMullen's formula* holds

 $\operatorname{Lat}(P) = \sum_{F: \text{ a face of } P} \alpha(F, P) \operatorname{vol}(F).$ where $\alpha(F, P) := \Psi(\operatorname{fcone}^p(F, P)).$

Here, $fcone^{p}(F, P)$ is the pointed feasible cone of P at F.

McMullen's formula

In 1975 Danilov asked if it is possible to assign values $\Psi(C)$ to all rational cones C such that the following *McMullen's formula* holds

$$\operatorname{Lat}(P) = \sum_{F: \text{ a face of } P} \alpha(F, P) \operatorname{vol}(F).$$

$$\operatorname{W}(\operatorname{fcone}^{p}(F, P))$$

where $\alpha(F, P) := \Psi(\operatorname{fcone}^p(F, P)).$

Here, $fcone^{p}(F, P)$ is the pointed feasible cone of P at F.

McMullen was the first to prove that it was possible in a non-constructive way.

A refinement of Ehrhart coefficients

Applying McMullen's formula to the dilation tP of P, we obtain

$$i(P,t) = \operatorname{Lat}(tP) = \sum_{F: \text{ a face of } P} \alpha(tF,tP) \operatorname{vol}(tF)$$
$$= \sum_{F: \text{ a face of } P} \alpha(F,P) \operatorname{vol}(F) t^{\dim(F)}$$

A refinement of Ehrhart coefficients

Applying McMullen's formula to the dilation tP of P, we obtain

$$i(P,t) = \operatorname{Lat}(tP) = \sum_{F: \text{ a face of } P} \alpha(tF,tP) \operatorname{vol}(tF)$$
$$= \sum_{F: \text{ a face of } P} \alpha(F,P) \operatorname{vol}(F) t^{\dim(F)}$$

Hence, the coefficient of t^k in i(P, t) is given by

$$\sum_{F: \text{ a } k \text{-dimensional face of } P} \alpha(F, P) \operatorname{vol}(F).$$

A refinement of Ehrhart coefficients

Applying McMullen's formula to the dilation tP of P, we obtain

$$i(P,t) = \operatorname{Lat}(tP) = \sum_{F: \text{ a face of } P} \alpha(tF,tP) \operatorname{vol}(tF)$$
$$= \sum_{F: \text{ a face of } P} \alpha(F,P) \operatorname{vol}(F) t^{\dim(F)}$$

Hence, the coefficient of t^k in i(P, t) is given by

$$\sum_{F: \text{ a }k\text{-dimensional face of }P} \alpha(F,P) \operatorname{vol}(F).$$

E.g.,

constant term of
$$i(P, t) = \sum_{v: \text{ a vertex of } P} \alpha(v, P) \operatorname{vol}(v).$$

E.g.,

A refinement of Ehrhart coefficients

Applying McMullen's formula to the dilation tP of P, we obtain

$$i(P,t) = \operatorname{Lat}(tP) = \sum_{F: \text{ a face of } P} \alpha(tF,tP) \operatorname{vol}(tF)$$
$$= \sum_{F: \text{ a face of } P} \alpha(F,P) \operatorname{vol}(F) t^{\dim(F)}$$

Hence, the coefficient of t^k in i(P, t) is given by

 $\sum_{F: \text{ a } k \text{-dimensional face of } P} \alpha(F, P) \operatorname{vol}(F).$

constant term of
$$i(P, t) = \sum_{v: \text{ a vertex of } P} \alpha(v, P) \operatorname{vol}(v).$$

Conclusion. Constructions for Ψ/α are helpful in understanding the coefficients of Ehrhart polynomials.

Different Constructions

- Pommersheim-Thomas: Need to choose a flag of subspaces.
- Berline-Vergne: No choices, invariant under $O_n(\mathbb{Z})$.
- Schurmann-Ring: Need to choose a fundamental cell.

Different Constructions

- Pommersheim-Thomas: Need to choose a flag of subspaces.
- Berline-Vergne: No choices, invariant under $O_n(\mathbb{Z})$.
- Schurmann-Ring: Need to choose a fundamental cell.

Questions:

Is it possible that under certain constraint, the Ψ/α construction for McMullen's formula is unique?

Different Constructions

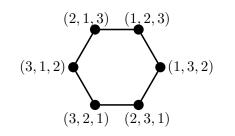
- Pommersheim-Thomas: Need to choose a flag of subspaces.
- Berline-Vergne: No choices, invariant under $O_n(\mathbb{Z})$.
- Schurmann-Ring: Need to choose a fundamental cell.

Questions:

Is it possible that under certain constraint, the Ψ/α construction for McMullen's formula is unique?

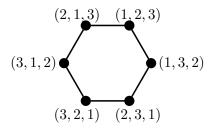
Can we find better ways to compute α -values?

Example. Suppose Ψ is a solution to the McMullen's formula.



Its Ehrhart polynomial is $3t^2 + 3t + 1$.

Example. Suppose Ψ is a solution to the McMullen's formula.

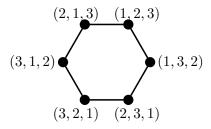


Its Ehrhart polynomial is $3t^2 + 3t + 1$.

The pointed feasible cones of the six vertices are

 $\begin{aligned} &\text{Cone}((-1,1,0),(1,0,-1)), \quad \text{Cone}((-1,0,1),(0,1,-1)), \quad \text{Cone}((-1,1,0),(-1,1,0)), \\ &\text{Cone}((1,-1,0),(-1,0,1)), \quad \text{Cone}((1,0,-1),(0,-1,1)), \quad \text{Cone}((1,-1,0),(1,-1,0)), \end{aligned}$

Example. Suppose Ψ is a solution to the McMullen's formula.



Its Ehrhart polynomial is $3t^2 + 3t + 1$.

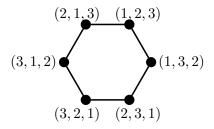
The pointed feasible cones of the six vertices are

$$\begin{split} & \text{Cone}((-1,1,0),(1,0,-1)), \quad \text{Cone}((-1,0,1),(0,1,-1)), \quad \text{Cone}((-1,1,0),(-1,1,0)), \\ & \text{Cone}((1,-1,0),(-1,0,1)), \quad \text{Cone}((1,0,-1),(0,-1,1)), \quad \text{Cone}((1,-1,0),(1,-1,0)), \end{split}$$

Suppose the Ψ -values of each of these six cones are $\alpha_1, \alpha_2, \ldots, \alpha_6$. Then

$$1 = \sum_{v: \text{a vertex of } P} \alpha(v, P) \operatorname{vol}(v) = \alpha_1 + \dots + \alpha_6.$$

Example. Suppose Ψ is a solution to the McMullen's formula.



Its Ehrhart polynomial is $3t^2 + 3t + 1$.

The pointed feasible cones of the six vertices are

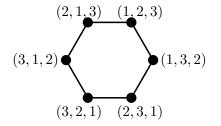
$$\begin{split} & \text{Cone}((-1,1,0),(1,0,-1)), \quad \text{Cone}((-1,0,1),(0,1,-1)), \quad \text{Cone}((-1,1,0),(-1,1,0)), \\ & \text{Cone}((1,-1,0),(-1,0,1)), \quad \text{Cone}((1,0,-1),(0,-1,1)), \quad \text{Cone}((1,-1,0),(1,-1,0)), \end{split}$$

Suppose the Ψ -values of each of these six cones are $\alpha_1, \alpha_2, \ldots, \alpha_6$. Then

$$1 = \sum_{v: \text{a vertex of } P} \alpha(v, P) \operatorname{vol}(v) = \alpha_1 + \dots + \alpha_6.$$

Question. Which Ψ construction should we use?

Example. Suppose Ψ is a solution to the McMullen's formula.



(1,3,2) Its Ehrhart polynomial is $3t^2 + 3t + 1$.

The pointed feasible cones of the six vertices are

$$\begin{split} & \text{Cone}((-1,1,0),(1,0,-1)), \quad \text{Cone}((-1,0,1),(0,1,-1)), \quad \text{Cone}((-1,1,0),(-1,1,0)), \\ & \text{Cone}((1,-1,0),(-1,0,1)), \quad \text{Cone}((1,0,-1),(0,-1,1)), \quad \text{Cone}((1,-1,0),(1,-1,0)), \end{split}$$

Suppose the Ψ -values of each of these six cones are $\alpha_1, \alpha_2, \ldots, \alpha_6$. Then

$$1 = \sum_{v: \text{a vertex of } P} \alpha(v, P) \operatorname{vol}(v) = \alpha_1 + \dots + \alpha_6.$$

Question. Which Ψ construction should we use?

We will use Berline-Vergne's construction, which we will refer to as the *BV-construction* or *BV-\alpha-valuation*.

Berline-Vergne's construction

Important facts about the BV-construction:

- Certain valuation property.
- Invariant under $O_n(\mathbb{Z})$ orthogonal unimodular transformations, in particular *invariant under rearranging coordinates with signs*.

Berline-Vergne's construction

Important facts about the BV-construction:

- Certain valuation property.
- Invariant under $O_n(\mathbb{Z})$ orthogonal unimodular transformations, in particular *invari*ant under rearranging coordinates with signs.

Definition. We say a solution Ψ to the McMullen's formula is *symmetric about the coordinates*, if for any cone $C \in \mathbb{R}^n$ and any signed permutation $(\sigma, \mathbf{s}) \in \mathfrak{S}_n \times \{\pm 1\}^n$, we have

 $\Psi(C) = \Psi((\sigma, \mathbf{s})(C)),$ where $(\sigma, \mathbf{s})(C) = \{(s_1 x_{\sigma(1)}, s_2 x_{\sigma(2)}, \dots, s_n x_{\sigma(n)}) : (x_1, \dots, x_n) \in C\}.$

Berline-Vergne's construction

Important facts about the BV-construction:

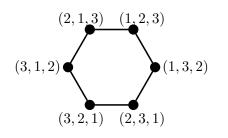
- Certain valuation property.
- Invariant under $O_n(\mathbb{Z})$ orthogonal unimodular transformations, in particular *invari*ant under rearranging coordinates with signs.

Definition. We say a solution Ψ to the McMullen's formula is *symmetric about the coordinates*, if for any cone $C \in \mathbb{R}^n$ and any signed permutation $(\sigma, \mathbf{s}) \in \mathfrak{S}_n \times \{\pm 1\}^n$, we have

 $\Psi(C) = \Psi((\sigma, \mathbf{s})(C)),$ where $(\sigma, \mathbf{s})(C) = \{(s_1 x_{\sigma(1)}, s_2 x_{\sigma(2)}, \dots, s_n x_{\sigma(n)}) : (x_1, \dots, x_n) \in C\}.$

So the BV-construction is symmetric about the coordinates.

Example. Suppose Ψ is the BV-construction.



(1,3,2) Its Ehrhart polynomial is $3t^2 + 3t + 1$.

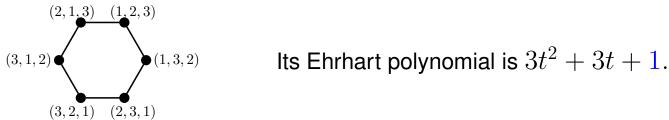
The pointed feasible cones of the six vertices are

 $\begin{aligned} & \text{Cone}((-1,1,0),(1,0,-1)), \quad \text{Cone}((-1,0,1),(0,1,-1)), \quad \text{Cone}((-1,1,0),(-1,1,0)), \\ & \text{Cone}((1,-1,0),(-1,0,1)), \quad \text{Cone}((1,0,-1),(0,-1,1)), \quad \text{Cone}((1,-1,0),(1,-1,0)), \end{aligned}$

Suppose the Ψ -values of each of these six cones are $\alpha_1, \alpha_2, \ldots, \alpha_6$. Then

$$1 = \sum_{v: \text{a vertex of } P} \alpha(v, P) \operatorname{vol}(v) = \alpha_1 + \dots + \alpha_6.$$

Example. Suppose Ψ is the BV-construction.



The pointed feasible cones of the six vertices are

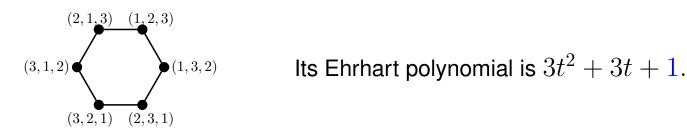
 $Cone((-1,1,0),(1,0,-1)), \quad Cone((-1,0,1),(0,1,-1)), \quad Cone((-1,1,0),(-1,1,0)),$ $\operatorname{Cone}((1,-1,0),(-1,0,1)),\quad \operatorname{Cone}((1,0,-1),(0,-1,1)),\quad \operatorname{Cone}((1,-1,0),(1,-1,0)),$

Suppose the Ψ -values of each of these six cones are $\alpha_1, \alpha_2, \ldots, \alpha_6$. Then

$$1 = \sum_{v: \text{a vertex of } P} \alpha(v, P) \operatorname{vol}(v) = \alpha_1 + \dots + \alpha_6.$$

By the symmetry property of Ψ , these cones all have the same value, say α . Thus, the above equation becomes $1 = 6\alpha$.

Example. Suppose Ψ is the BV-construction.



The pointed feasible cones of the six vertices are

$$\begin{split} & \text{Cone}((-1,1,0),(1,0,-1)), \quad \text{Cone}((-1,0,1),(0,1,-1)), \quad \text{Cone}((-1,1,0),(-1,1,0)), \\ & \text{Cone}((1,-1,0),(-1,0,1)), \quad \text{Cone}((1,0,-1),(0,-1,1)), \quad \text{Cone}((1,-1,0),(1,-1,0)), \end{split}$$

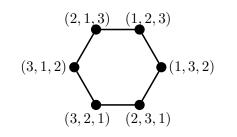
Suppose the Ψ -values of each of these six cones are $\alpha_1, \alpha_2, \ldots, \alpha_6$. Then

$$1 = \sum_{v: \text{a vertex of } P} \alpha(v, P) \operatorname{vol}(v) = \alpha_1 + \dots + \alpha_6.$$

By the symmetry property of Ψ , these cones all have the same value, say α . Thus, the above equation becomes $1 = 6\alpha$.

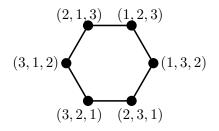
Solving this, we get $\alpha = 1/6$.

Example. Suppose Ψ is the BV-construction.



Its Ehrhart polynomial is $3t^2 + 3t + 1$.

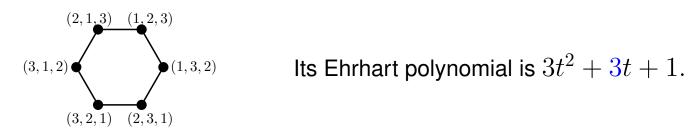
Example. Suppose Ψ is the BV-construction.



Its Ehrhart polynomial is $3t^2 + 3t + 1$.

The pointed feasible cones of the six edges are Cone((1, 1, -2)), Cone((2, -1, -1)), Cone((1, -2, 1)),Cone((-1, -1, 2)), Cone((-2, 1, 1)), Cone((-1, 2, -1)),

Example. Suppose Ψ is the BV-construction.



The pointed feasible cones of the six edges are

$$Cone((1, 1, -2)), Cone((2, -1, -1)), Cone((1, -2, 1)),$$

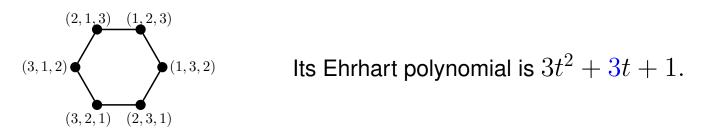
Cone((-1, -1, 2)), Cone((-2, 1, 1)), Cone((-1, 2, -1)),

By the symmetry property of Ψ , these cones all have the same value, say β . Then

$$3 = \sum_{E: \text{an edge of } P} \alpha(E, P) \operatorname{vol}(E) = 6\beta.$$

Fu Liu

Example. Suppose Ψ is the BV-construction.



The pointed feasible cones of the six edges are

$$Cone((1, 1, -2)), Cone((2, -1, -1)), Cone((1, -2, 1)),$$

Cone((-1, -1, 2)), Cone((-2, 1, 1)), Cone((-1, 2, -1)),

By the symmetry property of Ψ , these cones all have the same value, say β . Then

$$3 = \sum_{E: \text{an edge of } P} \alpha(E, P) \operatorname{vol}(E) = 6\beta.$$

Solving it, we get $\beta = 1/2$.

Observation

When we figured out the Ψ/α values in our example in the previous slides:

- We did not apply Berline-Vergne's original recursive construction.
- Instead, we just used the fact that their construction is symmetric about the coordinates together with the connection between α-values and Ehrhart coefficients to set up a linear system to solve.

Observation

When we figured out the Ψ/α values in our example in the previous slides:

- We did not apply Berline-Vergne's original recursive construction.
- Instead, we just used the fact that their construction is symmetric about the coordinates together with the connection between α-values and Ehrhart coefficients to set up a linear system to solve.

Conclusion: Therefore, for *any solution* Ψ to the McMullen's formula that is *symmetric about the coordinates*, we will find exactly the same Ψ/α values for the example we discussed.

Observation

When we figured out the Ψ/α values in our example in the previous slides:

- We did not apply Berline-Vergne's original recursive construction.
- Instead, we just used the fact that their construction is symmetric about the coordinates together with the connection between α-values and Ehrhart coefficients to set up a linear system to solve.

Conclusion: Therefore, for *any solution* Ψ to the McMullen's formula that is *symmetric about the coordinates*, we will find exactly the same Ψ/α values for the example we discussed.

Hence, Ψ of the cones or equivalently the values of $\alpha(F, P)$ appeared in our example are **unique**.

Uniqueness question of the construction of Ψ

Is it true that Ψ in McMullen's formula is uniquely determined if we require it to be symmetric about the coordinates?

If so, then the BV-construction is the **only** symmetric construction.

Permutohedra and uniqueness result

Definition. Suppose $\mathbf{v} = (v_1, v_2, \cdots, v_d, v_{d+1})$ is a strictly increasing sequence. We define the *usual permutohedron*

 $\operatorname{Perm}\left(\mathbf{v}\right) := \operatorname{conv}\left\{\left(v_{\sigma(1)}, v_{\sigma(2)}, \cdots, v_{\sigma(d)}, v_{\sigma(d+1)}\right) : \sigma \in \mathfrak{S}_{d+1}\right\}.$

• If $\mathbf{v} = (1, 2, \cdots, d, d+1)$, we get the *regular permutohedron* Π_d .

Definition. Suppose $\mathbf{v} = (v_1, v_2, \cdots, v_d, v_{d+1})$ is a strictly increasing sequence. We define the *usual permutohedron*

 $\operatorname{Perm}(\mathbf{v}) := \operatorname{conv}\left\{\left(v_{\sigma(1)}, v_{\sigma(2)}, \cdots, v_{\sigma(d)}, v_{\sigma(d+1)}\right) : \sigma \in \mathfrak{S}_{d+1}\right\}.$

• If $\mathbf{v} = (1, 2, \cdots, d, d+1)$, we get the *regular permutohedron* Π_d .

Theorem (Castillo-L.). Suppose Ψ is a solution to McMullen's formula and is symmetric about the coordinates. Then the values of Ψ on cones arising from usual/regular permutohedra are uniquely determined.

Definition. Suppose $\mathbf{v} = (v_1, v_2, \cdots, v_d, v_{d+1})$ is a strictly increasing sequence. We define the *usual permutohedron*

 $\operatorname{Perm}(\mathbf{v}) := \operatorname{conv}\left\{\left(v_{\sigma(1)}, v_{\sigma(2)}, \cdots, v_{\sigma(d)}, v_{\sigma(d+1)}\right) : \sigma \in \mathfrak{S}_{d+1}\right\}.$

• If $\mathbf{v} = (1, 2, \cdots, d, d+1)$, we get the *regular permutohedron* Π_d .

Theorem (Castillo-L.). Suppose Ψ is a solution to McMullen's formula and is symmetric about the coordinates. Then the values of Ψ on cones arising from usual/regular permutohedra are uniquely determined.

<u>Idea of proof</u>: Describe $Lat(Perm(\mathbf{v}))$ in two ways: Use mixed Ehrhart theory and use McMullen's formula.

Mixed Ehrhart Theorem

Consider the following Minkwoski sum:

$$P = w_1 P_1 + w_2 P_2 + \dots + w_k P_k,$$

where w_i are variables and P_i are polytopes.

Mixed Ehrhart Theorem Suppose P_1, \dots, P_k are integral polytopes satisfying $\dim(P_1 + \dots + P_k) = d$. Then the number of lattice points in P is a polynomial in w_i 's of degree d. More precisely,

$$Lat(w_1P_1 + w_2P_2 + \dots + w_kP_k) = \sum_{e=0}^d \sum_{j_1,\dots,j_e=1}^k \mathcal{M}Lat^e(P_{j_1}, P_{j_2}, \dots, P_{j_e})w_{j_1} \cdots w_{j_e},$$

where the coefficients $\mathcal{M}Lat^{e}(P_{j_1}, P_{j_2}, \dots, P_{j_e})$ are fixed numbers, called *mixed Ehrhart coefficients*.

Mixed Ehrhart Theorem (cont'd)

Postnikov showed that usual permutohedra are Minkowski sums of hypersimplices.

$$\operatorname{Perm}(\mathbf{v}) = w_1 \Delta_{1,d+1} + w_2 \Delta_{2,d+1} + \dots + w_d \Delta_{d,d+1},$$

where

$$w_i := v_{i+1} - v_i$$
 for $i = 1, 2, \dots, d$,

and the *hypersimplex* $\Delta_{k,d+1}$ is defined as

$$\Delta_{k,d+1} = \operatorname{Perm}(\underbrace{0,\cdots,0}_{d+1-k},\underbrace{1,\cdots,1}_{k}).$$

Mixed Ehrhart Theorem (cont'd)

Postnikov showed that usual permutohedra are Minkowski sums of hypersimplices.

$$\operatorname{Perm}(\mathbf{v}) = w_1 \Delta_{1,d+1} + w_2 \Delta_{2,d+1} + \dots + w_d \Delta_{d,d+1},$$

where

$$w_i := v_{i+1} - v_i$$
 for $i = 1, 2, \dots, d$,

and the *hypersimplex* $\Delta_{k,d+1}$ is defined as

$$\Delta_{k,d+1} = \operatorname{Perm}(\underbrace{0,\cdots,0}_{d+1-k},\underbrace{1,\cdots,1}_{k}).$$

Hence, applying Mixed Ehrhart theory,

$$\operatorname{Lat}(\operatorname{Perm}(\mathbf{v})) = \sum_{e=0}^{d} \sum_{j_1, \cdots, j_e=1}^{d} \mathcal{M}\operatorname{Lat}^e(\Delta_{j_1, d+1}, \Delta_{j_2, d+1}, \cdots, \Delta_{j_e, d+1}) w_{j_1} \cdots w_{j_e}$$

is a polynomial in w_i 's, which we denote by $E(w_1, \ldots, w_d)$.

Suppose Ψ/α is a construction such that McMullen's formula holds and it is symmetric about the coordinates.

Suppose Ψ/α is a construction such that McMullen's formula holds and it is symmetric about the coordinates.

The usual permutohedra $Perm(\mathbf{v})$ has a nice face structure, which can be described combinatorially. As a consequence,

$$\operatorname{Lat}(\operatorname{Perm}(\mathbf{v})) = \sum_{F} \alpha(F, P) \operatorname{vol}(F) = \sum_{S \subseteq [d]} O_d(S) \alpha_d(S) \operatorname{vol}(F_S),$$

where $O_d(S)$ and $\alpha_d(S)$ are *independent* from the choices of v.

Only $vol(F_S)$ varies when v changes.

Suppose Ψ/α is a construction such that McMullen's formula holds and it is symmetric about the coordinates.

The usual permutohedra $Perm(\mathbf{v})$ has a nice face structure, which can be described combinatorially. As a consequence,

$$\operatorname{Lat}(\operatorname{Perm}(\mathbf{v})) = \sum_{F} \alpha(F, P) \operatorname{vol}(F) = \sum_{S \subseteq [d]} O_d(S) \alpha_d(S) \operatorname{vol}(F_S),$$

where $O_d(S)$ and $\alpha_d(S)$ are *independent* from the choices of v.

Only $vol(F_S)$ varies when v changes.

Proposition (Castillo-L.). $vol(F_S)$ is a homogeneous polynomial in $\{w_i : i \in S\}$.

Suppose Ψ/α is a construction such that McMullen's formula holds and it is symmetric about the coordinates.

The usual permutohedra $Perm(\mathbf{v})$ has a nice face structure, which can be described combinatorially. As a consequence,

$$\operatorname{Lat}(\operatorname{Perm}(\mathbf{v})) = \sum_{F} \alpha(F, P) \operatorname{vol}(F) = \sum_{S \subset [d]} O_d(S) \alpha_d(S) \operatorname{vol}(F_S),$$

where $O_d(S)$ and $\alpha_d(S)$ are *independent* from the choices of v.

Only $vol(F_S)$ varies when v changes.

Proposition (Castillo-L.). $vol(F_S)$ is a homogeneous polynomial in $\{w_i : i \in S\}$.

Hence, we obtain another description for $E(w_1, \ldots, w_d)$.

A formula

Comparing the coefficient of $w_S := \prod_{i \in S} w_i$ in the two expressions for $E(w_1, \ldots, w_d)$, we obtain the following:

Theorem (Castillo-L.). Suppose Ψ is a solution to McMullen's formula and is symmetric about the coordinates. Then the α values for the regular permutohedron Π_d are positive scalars of mixed Ehrhart coefficients of hypersimplices.