Reflexive Simplices with Ehrhart h^* -Polynomial

Roots on the Unit Circle

Fu Liu University of California, Davis

Farewell Seminar

MSRI, Berkeley, CA

December 12, 2017

This is joint work with Ben Braun.

h^* -unit-circle-rootedness

We say a lattice polytope P is h^* -unit-circle-rooted if all the roots of its (Ehrhart) h^* -polynomial are on the unit circle $\{z : |z| = 1\}$ in the complex plane.

h^* -unit-circle-rootedness

We say a lattice polytope P is h^* -unit-circle-rooted if all the roots of its (Ehrhart) h^* -polynomial are on the unit circle $\{z : |z| = 1\}$ in the complex plane.

Why do I care?

 h^* -unit-circle-rootedness \implies Ehrhart positivity

h^* -unit-circle-rootedness

We say a lattice polytope P is h^* -unit-circle-rooted if all the roots of its (Ehrhart) h^* -polynomial are on the unit circle $\{z : |z| = 1\}$ in the complex plane.

Why do I care?

 h^* -unit-circle-rootedness \implies Ehrhart positivity

Another fact

 h^* -unit-circle-rootedness and P has an interior lattice point

 $\implies P$ is reflexive

Question

Which reflexive polytopes are h^* -unit-circle-rooted?

The reflexive simplex $\Delta_{(1,\boldsymbol{q})}$

Given a vector of positive integers $oldsymbol{q} \in \mathbb{Z}^d$, we define

$$\Delta_{(1,\boldsymbol{q})} := \operatorname{conv}\left\{\boldsymbol{e}_1,\ldots,\boldsymbol{e}_d,-\sum_{i=1}^d q_i\boldsymbol{e}_i\right\}.$$

Fu Liu

The reflexive simplex $\Delta_{(1,oldsymbol{q})}$

Given a vector of positive integers $oldsymbol{q} \in \mathbb{Z}^d$, we define

$$\Delta_{(1,\boldsymbol{q})} := \operatorname{conv}\left\{\boldsymbol{e}_1,\ldots,\boldsymbol{e}_d,-\sum_{i=1}^d q_i\boldsymbol{e}_i\right\}.$$

We describe q by its *support* and *multiplicity*, e.g., $q = (2, 2, 2, 2, 3, 3, 3) = (2^4, 3^3)$ has support r = (2, 3) with multiplicity x = (4, 3).

The reflexive simplex $\Delta_{(1,\boldsymbol{q})}$

Given a vector of positive integers $oldsymbol{q} \in \mathbb{Z}^d$, we define

$$\Delta_{(1,\boldsymbol{q})} := \operatorname{conv}\left\{\boldsymbol{e}_1,\ldots,\boldsymbol{e}_d,-\sum_{i=1}^d q_i\boldsymbol{e}_i\right\}.$$

We describe q by its *support* and *multiplicity*, e.g., $q = (2, 2, 2, 2, 3, 3, 3) = (2^4, 3^3)$ has support r = (2, 3) with multiplicity x = (4, 3).

- Conrads gives a characterization for when $\Delta_{(1,q)}$ is reflexive.
- Using Conrads' condition, one can show that if $q = (r^x)$ is supported on one integer r, then $\Delta_{(1,q)}$ is reflexive if and only if r = 1. This gives us the *standard reflexive simplex*, which is h^* -unit-circle-rooted.

Fu Liu

q-vectors supported on two integers

Theorem 1 (Braun-L.). Suppose q is supported on two integers $r = (r_1, r_2)$ with multiplicity $x = (x_1, x_2)$ satisfying Conrads' condition for reflexivity. Then $\Delta_{(1,q)}$ is h^* -unit-circle-rooted if r and x are in one of the following three forms:

i. $\mathbf{r} = (a, ka - 1)$ and $\mathbf{x} = ((ka - 1)c - k, a((ka - 1)c - k) + 1).$ ii. $\mathbf{r} = (a, a - 1)$ and $\mathbf{x} = ((a - 1)c - 1, ac + 1).$ iii. $\mathbf{r} = (a, a^2 - 1)$ and $\mathbf{x} = ((a^2 - 1)c - a, a(ac - 1) + 1).$

Page 5

q-vectors supported on two integers

Theorem 1 (Braun-L.). Suppose q is supported on two integers $r = (r_1, r_2)$ with multiplicity $x = (x_1, x_2)$ satisfying Conrads' condition for reflexivity. Then $\Delta_{(1,q)}$ is h^* -unit-circle-rooted if r and x are in one of the following three forms:

i.
$$\mathbf{r} = (a, ka - 1)$$
 and $\mathbf{x} = ((ka - 1)c - k, a((ka - 1)c - k) + 1).$

ii.
$$\mathbf{r} = (a, a - 1)$$
 and $\mathbf{x} = ((a - 1)c - 1, ac + 1)$.

iii. $\mathbf{r} = (a, a^2 - 1)$ and $\mathbf{x} = ((a^2 - 1)c - a, a(ac - 1) + 1)$.

Conjecture 2 (Braun-L.). For any fixed $\mathbf{r} = (r_1, r_2)$, among all choices of $\mathbf{x} = (x_1, x_2)$ such that $\Delta_{(1,q)}$ is reflexive and h^* -unit-circle-rooted, all but finitely many fit into the three situations described by the theorem above.

Fu Liu