Section 2.2

[1]
(a) \(f(x) = x^2 \). Using power rule we have \(f'(x) = 2x \). Therefore slope of the tangent at \(x = 1 \) is \(f'(1) = 2 \).

(b) \(f(x) = x^{1/2} \). Using power rule we have \(f'(x) = \frac{1}{2}x^{-1/2} \). Therefore slope of the tangent at \(x = 1 \) is \(f'(1) = \frac{1}{2} \).

[4]
(a) \(f(x) = x^{-1/2} \). Using power rule we have \(f'(x) = -\frac{1}{2}x^{-3/2} \). Therefore slope of the tangent at \(x = 1 \) is \(f'(1) = -\frac{1}{2} \).

(b) \(f(x) = x^{-2} \). Using power rule we have \(f'(x) = -2x^{-3} \). Therefore slope of the tangent at \(x = 1 \) is \(f'(1) = -2 \).

[6] \(f(x) = -2 \). Using constant rule we have \(f'(x) = 0 \).

[12] \(f(x) = x^3 - 9x^2 + 2 \). Using sum-difference rule, constant multiple rule, power rule, and constant rule we have

\[
f'(x) = \frac{d}{dx}[x^3] - \frac{d}{dx}[9x^2] + \frac{d}{dx}[2] \\
= 3x^2 - 9\frac{d}{dx}[x^2] + 0 \\
= 3x^2 - 18x
\]

[15] \(f(t) = 4t^{4/3} \). Using power rule, and constant multiple rule we have \(f'(t) = 4 \times \frac{4}{3}t^{4/3 - 1} = \frac{16}{3}t^{1/3} \).

[18] \(g(x) = 4\sqrt{x} + 2 \). Using sum-difference rule, constant multiple rule, constant rule, and
power rule we have

\[g'(x) = 4 \frac{d}{dx}[\sqrt[3]{x}] + 0 \]
\[= 4 \frac{d}{dx}[x^{1/3}] \]
\[= \frac{4}{3}x^{1/3-1} \]
\[= \frac{4}{3}x^{-2/3} \]

[23] \(f(x) = \frac{1}{(4x)^3} \). we rewrite it as \(f(x) = \frac{1}{4^3x^3} = \frac{1}{4^3}x^{-3} \). Using power rule we have \(f'(x) = \frac{1}{4^3} \times (-3)x^{-4} \). After simplification we have \(f'(x) = -\frac{3}{64x^4} \).

[25] \(f(x) = \frac{\sqrt{x}}{x} \). Rewrite it as \(f(x) = x^{1/2} = x^{-1/2} \). Using power rule we have \(f'(x) = -\frac{1}{2}x^{-1/2-1} = -\frac{1}{2}x^{-3/2} \). After simplification we have \(f'(x) = -\frac{1}{2\sqrt{x^3}} \).

[26] \(f(x) = \frac{4x}{x^3} \). Rewrite it as \(f(x) = 4x \times x^{-3} = 4x^4 \). Using power rule we have \(f'(x) = 4 \times 4x^3 = 16x^3 \). No further simplification is needed.

[29] \(f(x) = -\frac{1}{2}x(1 + x^2) \). Using product rule and power rule we have

\[f'(x) = \frac{d}{dx} \left[-\frac{x}{2} (1 + x^2) + \left(-\frac{x}{2} \right) \frac{d}{dx} [(1 + x^2)] \right] \]
\[= -\frac{1}{2}(1 + x^2) - \frac{x}{2} (0 + 2x) \]
\[= -\frac{1}{2}(1 + x^2) - x^2 \]
\[= -\frac{1}{2} - \frac{3}{2}x^2. \]

Therefore value of the derivative at \((1, -1)\) is \(f'(1) = -\frac{1}{2} - \frac{3}{2} = -2 \).

[31] \(f(x) = (2x + 1)^2 \). Using power rule we have

\[f'(x) = \frac{d}{dx} [(2x + 1)^2] \]
\[= \frac{d}{dx} [4x^2 + 4x + 1] \]
\[= (4 \times 2x) + 4 \]
\[= 8x + 4. \]

Therefore the value of the derivative at \((0, 1)\) is \(f'(0) = 4 \).
This problem can also be solved using the chain rule. We will discuss about that in next lecture.

\[f(x) = \frac{2x^3-4x^2+3}{x^2} \]. Using quotient rule we obtain

\[
\begin{align*}
 f'(x) &= \frac{x^2 \frac{d}{dx}[2x^3 - 4x^2 + 3] - (2x^3 - 4x^2 + 3) \frac{d}{dx}[x^2]}{x^4} \\
 &= \frac{x^2[6x^2 - 8x] - (2x^3 - 4x^2 + 3) \times 2x}{x^4} \\
 &= \frac{[6x^4 - 8x^3] - [4x^4 - 8x^3 + 6x]}{x^4} \\
 &= \frac{2x^4 - 6x}{x^4} \\
 &= 2 - \frac{6}{x^3}.
\end{align*}
\]

Alternative method: We can rewrite the function as \(f(x) = 2x - 4 + 3x^{-2} \). Now using power rule we have

\[
 f'(x) = 2 + 3 \times (-2)x^{-3} = 2 - \frac{6}{x^3}.
\]

\[f(x) = \frac{-6x^3+3x^2-2x+1}{x} \]. We can rewrite the function as \(f(x) = -6x^2 + 3x - 2 + x^{-1} \). Using the power rule we have

\[
 f'(x) = -12x + 3 - x^{-2}.
\]

\[f(x) = \sqrt[3]{x} + \sqrt[5]{x} \]. Using power rule we have

\[
\begin{align*}
 f'(x) &= \frac{d}{dx}[\sqrt[3]{x} + \sqrt[5]{x}] \\
 &= \frac{d}{dx}[x^{1/3} + x^{1/5}] \\
 &= \frac{1}{3}x^{-2/3} + \frac{1}{5}x^{-4/5} \\
 &= \frac{1}{3}x^{-2/3} + \frac{1}{5}x^{-4/5}.
\end{align*}
\]

Therefore slope of the tangent line is \(f'(1) = \frac{1}{3} + \frac{1}{5} = \frac{8}{15} \). Hence equation of the tangent line at \((1, 2)\) is

\[
 y - 2 = \frac{8}{15}(x - 1)
\]

\(i.e., \) \[15y - 30 = 8x - 8 \]

\(i.e., \) \[15y - 8x - 22 = 0. \]
[53] \(f(x) = \frac{1}{2} x^2 + 5x \). Using power rule we have \(f'(x) = \frac{1}{2} 2x + 5 = x + 5 \). We know that slope of the tangent line at \(x \) is \(f'(x) \). If the tangent line is horizontal, then slope of the tangent line must be zero. Solving the equation \(f'(x) = 0 \) we obtain \(x = -5 \). Therefore at \(x = -5 \) we have \(f'(x) = 0 \). Hence at \(x = -5 \) the graph of \(f(x) \) has a horizontal tangent line.

[57(a)] Given \(f(x) = h(x) - 2 \). Differentiating both sides with respect to \(x \) we get \(f'(x) = h'(x) - 0 = h'(x) \). Since we know that \(f'(1) = 3 \), therefore we have \(h'(1) = f'(1) = 3 \).

[57(d)] Given \(h(x) = -1 + 2f(x) \). Differentiating both sides with respect to \(x \) we get \(h'(x) = 0 + 2f'(x) = 2f'(x) \). Since \(f'(1) = 3 \), we get \(h'(1) = 2f'(1) = 6 \).

Section 2.4

[5] \(g(x) = (x^2 - 4x + 3)(x - 2) \). Using product rule

\[
\begin{align*}
g'(x) &= \frac{d}{dx}[x^2 - 4x + 3](x - 2) + (x^2 - 4x + 3)\frac{d}{dx}[x - 2] \\
&= (2x - 4)(x - 2) + (x^2 - 4x + 3)(1 + 0) \\
&= (2x - 4)(x - 2) + (x^2 - 4x + 3).
\end{align*}
\]

Therefore \(g'(4) = (8 - 4)(4 - 2) + (16 - 16 + 3) = 8 + 3 = 11 \).

Alternative method: Rewrite the function as \(g(x) = (x - 1)(x - 3)(x - 2) \). Using general product rule we get

\[
\begin{align*}
g'(x) &= \left[\frac{d}{dx}(x - 1)\right](x - 3)(x - 2) + (x - 1)\left[\frac{d}{dx}(x - 3)\right](x - 2) + (x - 1)(x - 3)\left[\frac{d}{dx}(x - 2)\right] \\
&= (1 + 0)(x - 3)(x - 2) + (x - 1)(1 + 0)(x - 2) + (x - 1)(x - 3)(1 + 0) \\
&= (x - 3)(x - 2) + (x - 1)(x - 2) + (x - 1)(x - 3).
\end{align*}
\]

Therefore \(g'(4) = (4 - 3)(4 - 2) + (4 - 1)(4 - 2) + (4 - 1)(4 - 3) = 2 + 6 + 3 = 11 \).

[19] \(f(x) = \frac{4x^2 - 3x}{8\sqrt{x}} \). Rewrite the function as

\[
\begin{align*}
f(x) &= \frac{4x^2 - 3x}{8x^{1/2}} \\
&= \frac{1}{8} (4x^2 - 3x)x^{-1/2} \\
&= \frac{1}{8} (4x^{3/2} - 3x^{1/2}) \\
&= \frac{1}{2} x^{3/2} - \frac{3}{8} x^{1/2}.
\end{align*}
\]
Using power rule we obtain

\[
f'(x) = \left(\frac{1}{2} \times \frac{3}{2} x^{1/2} \right) - \left(\frac{3}{8} \times \frac{1}{2} x^{-1/2} \right) = \frac{3}{4} x^{1/2} - \frac{3}{16} x^{-1/2} = \frac{3}{4} \sqrt{x} - \frac{3}{16 \sqrt{x}}
\]

[21] \(f(x) = \frac{x^2 - 4x + 3}{x - 1} \). Note that the function is not defined for \(x = 1 \) (we have \(\frac{0}{0} \) form for \(x = 1 \)). We can rewrite the function as \(f(x) = \frac{(x-1)(x-3)}{x-1} = x - 3 \) for \(x \neq 1 \). Differentiating, we get \(f'(x) = 1 + 0 = 1 \) for \(x \neq 1 \).

[31] \(f(x) = \frac{3 - 2x - x^2}{x^2 - 1} \). This function is not defined for \(x = \pm 1 \). We can rewrite the function as \(f(x) = \frac{(1-x)(3+x)}{(x+1)(x-1)} = -\frac{3+x}{x+1} \) if \(x \neq \pm 1 \). Using quotient rule we have

\[
f'(x) = -\frac{(x+1) \left[\frac{d}{dx} (3 + x) \right] - (3 + x) \left[\frac{d}{dx} (x + 1) \right]}{(x + 1)^2} x + 1)^2
\]

\[
= -\frac{(x+1) - (3 + x)}{(x + 1)^2}
\]

\[
= -\frac{-2}{(x + 1)^2}
\]

\[
= \frac{2}{(x + 1)^2}
\]

for \(x \neq \pm 1 \).
[37] \(g(x) = \left(\frac{x^2 - 3}{x + 4} \right) (x^2 + 2x + 1) \). Using product rule and quotient rule we have

\[
g'(x) = \left[\frac{d}{dx} \left(\frac{x^2 - 3}{x + 4} \right) \right] (x^2 + 2x + 1) + \left(\frac{x^2 - 3}{x + 4} \right) \left[\frac{d}{dx} (x^2 + 2x + 1) \right]
\]

\[
= \left[\frac{(x + 4) \frac{d}{dx} (x^2 - 3) - (x^2 - 3) \frac{d}{dx} (x + 4)}{(x + 4)^2} \right] (x^2 + 2x + 1) + \left(\frac{x^2 - 3}{x + 4} \right) [2x + 2]
\]

\[
= \left[\frac{(x + 4) - (x - 3)}{(x + 4)^2} \right] (x^2 + 2x + 1) + 2 \left(\frac{x - 3}{x + 4} \right) (x + 1)
\]

\[
= \frac{7}{(x + 4)^2} (x^2 + 2x + 1) + 2 \left(\frac{x - 3}{x + 4} \right) (x + 1)
\]

\[
= \frac{7(x + 1)^2}{(x + 4)^2} + 2 \left(\frac{x - 3}{x + 4} \right) (x + 1)
\]

\[
= \frac{(x + 1)}{(x + 4)} \left[\frac{7(x + 1)}{(x + 4)} + 2(x - 3) \right]
\]

\[
= \frac{(x + 1)}{(x + 4)} \left[\frac{7(x + 1) + 2(x - 3)(x + 4)}{(x + 4)} \right]
\]

\[
= \frac{(x + 1)}{(x + 4)} \left[\frac{7x + 7 + 2(x^2 + x - 12)}{(x + 4)} \right]
\]

\[
= \frac{(x + 1)}{(x + 4)} \left(\frac{2x^2 + 9x - 17}{(x + 4)} \right)
\]

\[
= \frac{2x^3 + 11x^2 - 8x - 17}{(x + 4)^2}
\]

[43] \(f(x) = \left(\frac{x + 5}{x - 1} \right) (2x + 1) \). Using product rule and quotient rule we have

\[
f'(x) = \left[\frac{d}{dx} \left(\frac{x + 5}{x - 1} \right) \right] (2x + 1) + \left(\frac{x + 5}{x - 1} \right) \left[\frac{d}{dx} (2x + 1) \right]
\]

\[
= \left[\frac{(x - 1) \frac{d}{dx} (x + 5) - (x + 5) \frac{d}{dx} (x - 1)}{(x - 1)^2} \right] (2x + 1) + \left(\frac{x + 5}{x - 1} \right) [2 + 0]
\]

\[
= \left[\frac{(x - 1) - (x + 5)}{(x - 1)^2} \right] (2x + 1) + 2 \left(\frac{x + 5}{x - 1} \right)
\]

\[
= \frac{-6(2x + 1)}{(x - 1)^2} + 2 \left(\frac{x + 5}{x - 1} \right).
\]
Slope of the tangent line at $x = 0$ is

$$f'(0) = \frac{-6}{(-1)^2} + 2 \frac{5}{-1}$$

$$= -6 - 10$$

$$= -16.$$

Therefore equation of the tangent line at $(0, -5)$ is

$$y - (-5) = -16(x - 0)$$

i.e., $y + 16x + 5 = 0.$