Probability

- Recall we have some experiment, with distinct possible outcomes, sample space, \(\Omega \).

Equally likely outcomes, \(E \) event

\[
P(E) = \frac{n(E)}{n(\Omega)}
\]

\(0 \leq P(E) \leq 1, \quad P(\Omega) = 1 \)

Probability of mutually exclusive events, \(E, F \)

\[
P(E \cup F) = P(E) + P(F)
\]

Complement rule: \(P(E^c) = 1 - P(E) \)

Union rule: \(P(E \cup F) = P(E) + P(F) - P(E \cap F) \)
Here, E and F are any two events.

\[\text{Ex} \] A die is rolled and we observe the number. Are the Events E and F mutually exclusive? Find \(P(E \cup F) \)

a) \(E \): The number is even
b) \(F \): The number is odd

\[E \cap F = \{ \text{number is even and odd} \} = \emptyset \]

\(\implies E, F \) are mutually exclusive, so

\[P(E \cup F) = P(E) + P(F) = \frac{1}{2} + \frac{1}{2} = 1 \]
b) E: The number is even

F: The number is greater than 4

$\text{ENF} = \{ \text{number is even and greater than 4} \}$

$= \{ 6 \}$

$\Rightarrow E$ and F are not mutually exclusive

$P(E \cup F) = P(E) + P(F) - P(E \cap F)$

$= \frac{3}{6} + \frac{2}{6} - \frac{1}{6}$

$= \frac{4}{6}$
Conditional Probability

- we restrict the sample space given some condition

"Given _, what is the probability of _?"

Given F, probability of E?

Conditional probability of E given F is

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$
Complement rule of Conditional Prob.

\[P(E^c | F) = 1 - P(E | F) \]

Ex. Two dice are rolled.

a) What is the probability that the sum of the numbers is greater than 8?

For sum to be greater than 8

\[
\begin{array}{c|cccc}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & none & none & 6 & 5, 6 & 4, 5, 6 \\
3 & none & none & 6 & 5, 6 & 3, 4, 5, 6 \\
4 & none & none & 6 & 5, 6 & 3, 4, 5, 6 \\
5 & none & none & 6 & 5, 6 & 3, 4, 5, 6 \\
6 & none & none & 6 & 5, 6 & 3, 4, 5, 6 \\
\end{array}
\]

\[\Rightarrow P(\text{sum} > 8) = \frac{10}{6 \cdot 6} = \frac{10}{36} \]
6) What is the probability that the sum is greater than 8 given that the first die shows a 3?

E = \{ sum > 8 \}
E^c = \{ sum \leq 8 \}
P(E|F) = \frac{P(E \cap F)}{P(F)}

= \frac{\frac{1}{36}}{\frac{16}{36}}

= \frac{1}{6}

1^{st} die must be a 3
2^{nd} die can be 1, 2, \ldots, 6

\(\) What is the probability that the first die shows a 3, given
that the sum is greater than 8?

\[P(F \mid E) = \frac{P(E \cap F)}{P(E)} \]

\[= \frac{1}{36} \]

\[= \frac{10}{36} \]

\[= \frac{1}{10} \]

Independent Events

\[P(E \cap F) = P(E) \cdot P(F) \]

- Can extend this to more than 2 events
Ex. We roll a die twice. Let

\[E = \{ \text{1st roll is a 6}\} \]
\[F = \{ \text{2nd roll is a 6}\} \]

a) Find the probability of showing a 6 on both rolls.

Only 1 way to roll 2 6's
36 possible outcomes

\[P(E \cap F) = \frac{1}{36} \]

b) Are the events E and F independent?

\[P(E) = \frac{1}{6}, \quad P(F) = \frac{1}{6} \]

\[P(E \cap F) = \frac{1}{36} = \frac{1}{6} \cdot \frac{1}{6} = P(E) \cdot P(F) \]
\[\Rightarrow P(E \cap F) = P(E)P(F) \]

\[\Rightarrow E \text{ and } F \text{ are independent events.} \]

- Let \(A, B \) be two sets
 - \(A \) and \(B \) are disjoint if \(A \cap B = \emptyset \)

\(A \cap B \)

- Let \(A \) and \(B \) be two events
 - If \(P(A \cap B) = P(A)P(B) \), then \(A \) and \(B \) are independent
 - If \(A \) and \(B \) are disjoint events then we say they are mutually exclusive.
Law of Total Probability

\[S_2 \]

\[F_1, F_2, \ldots, F_6 \] are pairwise disjoint, exhaustive events

i.e. \(F_1 \cap F_2 \cap \ldots \cap F_6 = \emptyset \)

\[F_1 \cup F_2 \cup \ldots \cup F_6 = \Omega \]

Let \(E \) be any event, and \(F_1, F_2, \ldots, F_k \) a collection of pairwise disjoint, exhaustive events. Then
\[P(E) = P(E|F_1)P(F_1) + P(E|F_2)P(F_2) + \ldots + P(E|F_k)P(F_k) \]
\[= \sum_{i=1}^{K} P(E|F_i)P(F_i) \]

Ex. One card randomly removed from a standard deck. If a 2nd card is removed, what is the probability that the second card is a face card?

\[E = \{ \text{2nd card a face} \} \]
\[\{ \text{1st card is a face} \} \cup \{ \text{1st card not a face} \} \]
\[= \Omega \]
\[F_1 = \text{1st card a face} \]
\[F_2 = \text{1st card not a face} \]

\[
P(E) = P(E|F_1)P(F_1) + P(E|F_2)P(F_2)
\]
\[
= \frac{11}{51} \cdot \frac{12}{52} + \frac{12}{51} \cdot \left(1 - \frac{12}{52} \right)
\]
\[
= \frac{11 \cdot 12 + 12 \cdot 40}{51 \cdot 52}
\]
\[
= \frac{51 \cdot 12}{51 \cdot 52}
\]
\[
= \frac{3}{13}
\]
\[P(A \cap B \cap C) = P(A) P(B) P(C) \]