Conditional Probability

Consider events E and F with $P(F)$. The probability of E given F is

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

"We know F happened so it is now our universe."

"Only way for E to happen is when $E \cap F$"

Complement rule for conditional probability

$$P(E^c|F) = 1 - P(E|F)$$
Multiplication Rule and Independence

Multiplication rule: \(P(ENF) = P(E|F)P(F) \)

Independence

\(E \) and \(F \) independent if \(P(ENF) = P(E)P(F) \)

Law of Total Probability

\(F_1, F_2, \ldots, F_k \) pairwise disjoint, exhaustive events. Then

\[
P(E) = P(E|F_1)P(F_1) + \cdots + P(E|F_k)P(F_k)
\]

Bayes' Rule

\[
P(F|E) = \frac{P(E|F)P(F)}{P(E)}
\]
Discrete Random Variables

- a way to assign events to numbers
- X takes in an element of sample space and outputs a number
- "$X=i$" means a particular element of sample space taking place
- $P(X=i)$ is the probability of that outcome

Probability density function (PDF)

$P_i = P(X=i)$

- $P_i \geq 0$, $\forall i$
- $\sum_i P_i = 1$

Cumulative distribution function (CDF)

$F_i = P(X \leq i)$

"What is the probability of events up to i occurring?"
Mean and Variance of Discrete Random Variables

Expected value/mean (center of mass):

\[E[X] = \sum_i i p_i \]

"What are your expected winnings?"

Variance:

\[\text{Var}[X] = \sum_i (i - E[X])^2 p_i \]

"How far do you go away from the mean?"

Standard deviation:

\[\sigma = \sqrt{\text{Var}[X]} \]

Bernoulli Random Variables

- Takes values in \(\{0, 1\} \)

 * \(P(X=1) = p \)

 \[P(X=0) = 1 - p \]