

1. Determine whether the following statements are true or false. (No need to show work) (20 points, 2 points each)

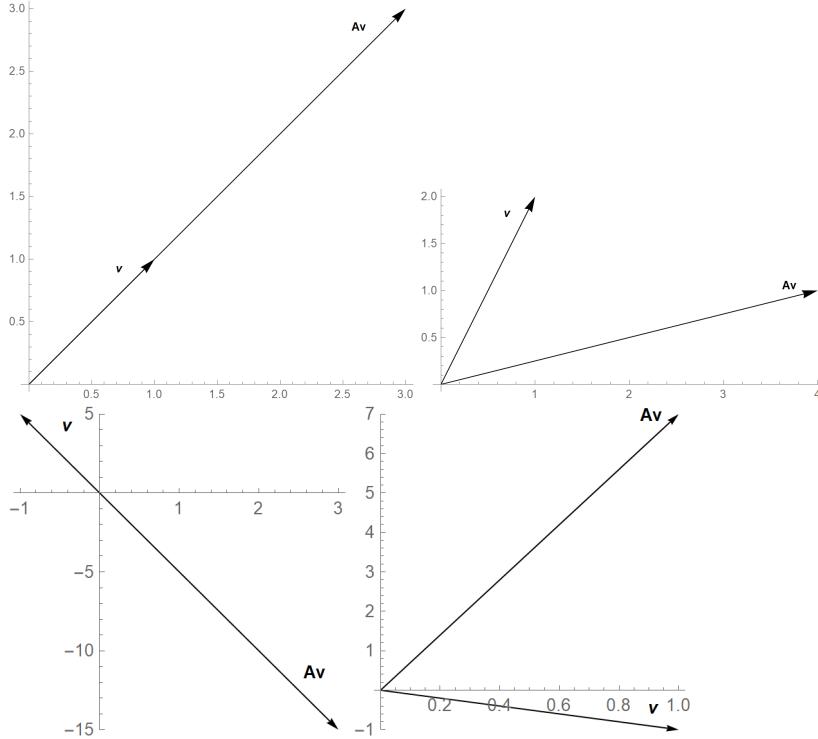
- (a) Suppose Q is an orthogonal matrix. Then $Q\mathbf{x} = \mathbf{b}$ has the solution $\mathbf{x} = Q^T\mathbf{b}$.
- (b) Suppose $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a basis of some subspace S . If $n < k$ and $\{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ is linearly independent, then $\{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ is also a basis of S .
- (c) Let A be an $m \times n$ matrix and $n > m$. If $\text{rank}(A) = n$, then $\text{N}(A)$ is $(n - m)$ -dimensional.
- (d) The column space of A and the nullspace of A are orthogonal complements.
- (e) If $\lambda = 0$ is an eigenvalue of A , then A is invertible.

(f) Let $A = \begin{bmatrix} 1 & 2 & 4 & 5 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & 5 & 7 \\ 0 & 4 & 1 & 2 \end{bmatrix}$. $\det(A) = -44$.

- (g) $\det((A^{-1})^T) = \det(A)$
- (h) If E_{ij} is an elimination matrix, then $\det(E_{ij}A) = \det(A)$.
- (i) $\det((AB)^T) = \det(A) \det(B^T)$
- (j) If λ is an eigenvalue of A , then $\frac{1}{\lambda^2}$ is an eigenvalue of $(A^{-1})^2$.

2. Clearly explain your reasoning for the following problems. (25 points)

- (a) Suppose \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. Prove that \mathbf{v}_1 and \mathbf{v}_2 are linearly independent. (10 points)
- (b) Determine the eigenvalue-eigenvector pairs of A from the following plots. (10 points)



- (c) Compute the determinant of the following matrix. (5 points)

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 2 \\ 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 8 & 10 \\ 9 & 2 & 1 & 2 & 3 \end{bmatrix}$$

3. Consider the following matrix A . (20 points)

$$A = \begin{bmatrix} 1 & 2 & 2 & -1 \\ 2 & 4 & 4 & -2 \\ 2 & 0 & 0 & 2 \\ 2 & 0 & 2 & 3 \end{bmatrix}$$

- (a) Find a basis of the column space of A .
- (b) Find a basis of the left nullspace of A .
- (c) Write $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ -1 \\ -4 \end{bmatrix}$ as $\mathbf{b} = \mathbf{s} + \mathbf{t}$ where $\mathbf{s} \in \mathbf{C}(A)$ and $\mathbf{t} \in \mathbf{C}(A)^\perp$.
- (d) What are the dimensions of the four fundamental subspaces of A ?

4. Find the $A = QR$ decomposition of A where Q is an orthogonal matrix and R is an upper triangular matrix. Then use the QR decomposition to solve $A\mathbf{x} = \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix}$. (Use back substitution to solve $R\mathbf{x} = \mathbf{c}$) (20 points)

$$A = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$$

5. Find the $A = X\Lambda X^{-1}$ decomposition of A^2 . Here Λ is a diagonal matrix whose entries are the eigenvalues of A and X is a matrix whose columns are the eigenvectors of A . If $B = V \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} V^{-1}$, show that A and B are similar matrices. (10 points)

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 2 & -1 & -1 \end{bmatrix}$$

6. Find the projection of $\mathbf{b} = \begin{bmatrix} 2 \\ 4 \\ 4 \\ 4 \end{bmatrix}$ onto $S = \text{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} -4 \\ 7 \\ 7 \\ 1 \end{bmatrix} \right\}$. (10 points)